京都産業大学   伊藤維昭研究室
  What's New  

伊藤維昭 論文リスト

(千葉志信 論文リストはこちら

原著論文&英文総説

(日本語総説はこちら
  • Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama KI, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, Nureki O. (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature, in press

  • Mio, K., Tsukazaki, T., Mori, H., Kawata, M., Moriya, T., Sasaki, Y., Ishitani, R., Ito, K., Nureki, O. and Sato, C. (2013) Conformational variation of the translocon enhancing chaperone SecDF. J. Struct. Funct. Genomics, 10.1007/s10969-013-9168-4

  • Lim, B., Miyazaki, R., Neher, S., Siegele, D. A., Ito, K., Walter, P., Akiyama, Y., Yura, T and Gross, C. A. (2013) Heat Shock Transcription Factor σ32 Co-opts the Signal Recognition Particle to Regulate Protein Homeostasis in E. coli. PLoS Biol. 11 (12): e1001735.

  • Ito, K. and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82, 171-202.

  • Akiyama, Y., and Ito, K. (2013) HtpX peptidase. pp. 683-685, Handbook of Proteolytic Enzymes 3rd ed. (ed. Rawlings, N. D. and Salvesen, G.) Academic Press

  • Hizukuri, Y., Ito, K., and Akiyama, Y. (2013) RseP Peptidase. pp. 1545-1550, Handbook of Proteolytic Enzymes 3rd ed. (ed. Rawlings, N. D. and Salvesen, G.) Academic Press

  • Chadani, Y., Ito, K., Kutsukake, K. and Abo, T (2012) ArfA recruits RF2 to rescue stalled ribosomes by peptidyl-tRNA hydrolysis in Escherichia coli. Mol Microbiol. 86, 37-50.

  • Chiba, S. and Ito, K. (2012) Multisite ribosomal stalling: A unique mode of regulatory nascent chain action revealed for MifM. Mol. Cell 47, 863-872.
  • Ito, K., Chadani, Y., Nakamori, K., Chiba, S., Akiyama, Y. and Abo, Y. (2011) Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS ONE 6(12): e28413.

  • Saito, A., Hizukuri, Y., Matsuo, E. -i., Chiba, S., Mori, H., Nishimura, O., Ito, K. and Akiyama, Y. (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc. Natl. Acad. Sci. USA. 108, 13740-13745.

  • Tsukazaki, T., Mori, H., Echizen, Y., Ishitani, R., Fukai, S., Tanaka, T., Perederina, A., Vassylyev, D. G., Kohno, T., Maturana, A. D., Ito, K. and Nureki, O. (2011) Structure and function of a membrane component SecDF that enhances protein export. Nature. 474, 235-238.

  • Chiba, S., Kanamori, T., Ueda, T., Akiyama, Y., Pogliano, K. and Ito, K. (2011) Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proc. Natl. Acad. Sci. USA. 108, 6073-6078.

  • Ron, D. and Ito, K. (2011) A translational pause to localize. Science. 331, 543-544. (Perspective)

  • Ito, K., Chiba, S. and Pogliano, K. (2010) Divergent stalling sequences sense and control cellular physiology.  Biochem. Biophys. Res. Commun. 393, 1-5.

  • Ito, K. (2009) Editing disulphide bonds: error correction using redox currencies.  Mol Microbiol. 75, 1-5

  • Inaba, K., Murakami, S., Nakagawa, A., Iida, H. Kinjo, M., Ito, K. and Suzuki, M. (2009) Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J. 28, 779-791

  • Ito, K. and Mori, H. (2009) The Sec protein secretion system. pp. 3-22, in Bacterial Secreted Proteins, Ed. K. Wooldridge, Caister Academic Press, Norfolk, UK

  • Tsukazaki, T., Mori, H., Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D.G., Ito, K. and Nureki, O. (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures, Nature 455, 988-991
  • Muto, H. and Ito, K (2008) Peptidyl-prolyl-tRNA at the ribosomal P site reacts poorly with puromycin. Biochem. Biophys. Res. Commun. 366, 1043-1047

  • Koide, K., Ito, K. and Akiyama, Y. (2008) Substrate recognition and binding by RseP, an Escherichia coli intramembrane protease.  J. Biol. Chem. 283, 9562-9570

  • Inaba, K. and Ito, K. (2008) Structure and mechanisms of the DsbB-DsbA disulfide generation machine.  Biochim. Biophys. Acta. 1783, 520-529 

  • Ito, K. and Inaba, K. (2008)  The disulfide bond formation (Dsb) system.  Curr. Opinion Struct. Biol. 18, 450-458

  • Inaba, K., Suzuki, M., Maegawa, K., Akiyama, S., Ito, K. and Akiyama, Y. (2008) A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of Escherichia coli. J. Biol. Chem. 283, 35042-35052

  • Shimohata, N., Nagamori, S., Akiyama, Y., Kaback, H. R. and Ito, K. (2007)  SecY alterations that impair membrane protein folding and generate a membrane stress.  J. Cell Biol. 176, 307-317

  • Koide, K., Maegawa, S., Ito, K. and Akiyama, Y. (2007) Environments of the active site region of RseP, an E. coli RIP protease, assessed by site-directed cysteine alkylation.  J. Biol. Chem. 282 4553-4560

  • Maegawa, S., Koide, K., Ito, K. and Akiyama, Y. (2007)  The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyzes an extramembrane peptide-bond of substrates.  Mol. Microbiol. 64, 435-447

  • Ito, K. (2007) "The role of chaperones and Sec machinery in protein secretion", in Houry, W. (ed.), Molecular Chaperones: Principles and Diseases, The Biomedical & Life Sciences Collection, Henry Stewart Talks Ltd, London (online at http://www.hstalks.com/?t=BL0261705-Ito)

  • Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K. and Ito,K. (2006)  Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation.  Cell 127, 789–801

  • Inaba, K., Takahashi, Y.-h., Ito, K. and Hayashi, S. (2006)  Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB.  Proc. Natl. Acad. Sci. USA 103, 287-292

  • Takahashi, Y.-h., Inaba, K. and Ito, K. (2006)  Role of the cytosolic loop of DsbB in catalytic turnover of the ubiquinone-DsbB complex. Antioxid. Redox Signal. 8, 743-752

  • Ito, K. (2006)  Redox Control of Protein Processing: From Electrons to Cells.  Antioxid. Redox Signal. 8, 729-730

  • Chiba, S., Ito, K. and Akiyama, Y. (2006)  The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations.  Mol. Microbiol. 60, 448-457

  • Tsukazaki, T., Mori, H., Fukai, S., Numata, T., Perederin, A., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Inoue, T., Mori, Y., Sasaki, T., Vassylyev, D., Nureki, O. and Ito, K. (2006)  Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, from Thermus thermophilus.  Acta Cryst. F62, 376-380.

  • Muto, H., Nakatogawa, H. and Ito, K. (2006)  Genetically encoded but non-polypeptide prolyl-tRNA functions in the A-site for SecM-mediated ribosomal stall.  Mol. Cell 22, 545-552.

  • Vassylyeva, M. N., Mori, H., Tsukazaki, T., Yokoyama, S., Tahirov, T. H., Ito, K. and Vassylyev, D. G. (2006)  Cloning, expression, purification, crystallization and initial crystallographic analysis of the preprotein translocation ATPase SecA from Thermus thermophilus.  Acta Cryst. F62, 909-912

  • Vassylyev, D. G., Mori, H., Vassylyeva, M. N., Tsukazaki, T., Kimura, Y., and Ito, K. (2006)  Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer.  J. Mol. Biol.364, 248–258

  • Mori, H. and Ito, K. (2006)  Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-crosslinking.  Proc. Natl. Acad. Sci. USA 103, 16159-16164

  • Mori, H. and Ito, K. (2006)  The long a-helix of SecA is important for the ATPase coupling of translocation.  J. Biol. Chem. 281, 36249-36256

  • Nakatogawa, H., Murakami, A., Mori, H. and Ito, K. (2005)  SecM facilitates translocase function of SecA by localizing its biosynthesis.  Genes Dev. 19, 436-444

  • Shimohata, N., Akiyama, Y. and Ito, K. (2005)  Peculiar properties of DsbA in its export across the E. coli cytoplasmic membrane.  J. Bacteriol. 187, 3997-4004

  • Ito, K. and Akiyama, Y. (2005)  Cellular functions, mechanism of action, and regulation of FtsH protease.  Annu. Rev. Microbiol. 59, 211-231

  • Ito, K. (2005)  Ribosome-based protein folding systems are structurally divergent but functionally universal across biological kingdoms.  Mol. Microbiol. 57, 313-317

  • Inaba, K., Takahashi, Y.-h. and Ito, K. (2005)  Reactivities of quinone-free DsbB from Escherichia coliJ. Biol. Chem. 280, 33035-33044

  • Sakoh, M., Ito, K. and Akiyama, Y. (2005)  Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease of E. coli.  J. Biol. Chem. 280, 33305-33310

  • Maegawa, S., Ito, K. and Akiyama, Y. (2005)  Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane.  Biochemistry 41, 13543-13552

  • Murakami, A., Nakatogawa, H. and Ito, K. (2004)  Translation arrest of SecM is essential for the basal and regulated expression of SecA.  Proc. Natl. Acad. Sci. USA 101, 12330-12335

  • Nakatogawa, H., Murakami, A. and Ito, K. (2004)  Control of SecA and SecM translation by protein secretion.  Curr. Opinion Microbiol. 7, 145-150

  • Nakatogawa, H. and Ito, K. (2004)  Intra-ribosomal regulation of expression and fates of proteins.  ChemBiochem 5, 48-51

  • Inaba, K., Takahashi, Y.-H., Fujieda, N., Kano, K., Miyoshi, H. and Ito, K. (2004)  DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation.  J. Biol. Chem. 279, 6761-6768

  • Mori, H., Shimokawa, N., Satoh, Y. and Ito, K. (2004)  Mutation analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase.  J. Bacteriol. 186, 3960-3969

  • Takahashi, Y., Inaba, K. and Ito, K. (2004)  Characterization of menaquinone-dependent disulfide bond formation pathway of Escherichia coli.  J. Biol. Chem. 279, 47057-47065

  • Akiyama, Y., Kanehara, K. and Ito, K. (2004)  RseP (YaeL), an E. coli RIP protease, cleaves transmembrane sequences.  EMBO J. 23, 4434-4442

  • Saikawa, N., Akiyama, Y. and Ito, K.  (2004)  FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli.  J. Struct. Biol. 146, 123-129

  • Akiyama, Y., Ito, K and Ogura, T. (2004)  FtsH protease.  pp. 794-798, Handbook of Proteolytic Enzymes 2nd Edn., Elsevier

  • Mori, H. and Ito, K.  (2003)  Biochemical characterization of a mutationally altered protein translocase: proton-motive force stimulation of the initiation phase of translocation.  J. Bacteriol. 185, 405-412

  • Mori, H., Akiyama, Y. and Ito, K. (2003)  A SecE mutation that modulates SecY-SecE translocase assembly, identified as a specific suppressor against SecY defects.  J. Bacteriol. 185, 948-956

  • Shimokawa, N., Mori, H. and Ito, K. (2003)  Importance of transmsmbrane segments in SecY.  Mol. Gen. Genomics 269, 180–187

  • Matsuo, E., Mori, H. and Ito, K. (2003)  Interfering mutations provide in vivo evidence that Escherichia coli SecE functions in multimeric states.  Mol. Gen. Genomics 268, 808–815

  • Laursen, B. S., Siwanowicz, I., Larigauderie, G., Hedegaard, J., Ito, K., Nakamura,Y., Kenney, J. M., Mortensen, K. K. and Uffe Sperling-Petersen, H. (2003)  Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli.  J. Mol. Biol. 326, 543-551

  • Mori, H., Tsukazaki, T., Masui, R., Kuramitsu, S., Yokoyama, S., Johnson, A. E., Kimura, Y., Akiyama, Y. and Ito, K. (2003)  Fluorescence resonance energy transfer analysis of protein translocase: SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes.  J. Biol. Chem. 278, 14257-14264

  • Akiyama, Y. and Ito, K. (2003)  Reconstitution of membrane proteolysis by FtsH.  J. Biol. Chem. 278, 18146-18153

  • Satoh, Y., Matsumoto, G., Mori, H. and Ito, K. (2003)  Nearest neighbor analysis of the SecYEG complex. I. Identification of a SecY-SecG interface.  Biochemistry 42, 7434-7441

  • Satoh, Y., Mori, H. and Ito, K. (2003)  Nearest neighbor analysis of the SecYEG complex.  II. Identification of a SecY-SecE cytosolic interface.  Biochemistry 42, 7442-7447

  • Kanehara, K., Ito, K. and Akiyama, Y (2003)  YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA.  EMBO J. 22, 6389-6398

  • Nakatogawa, H. and Ito, K. (2002)  The ribosomal exit tunnel functions as a discriminating gate.  Cell 108, 629-636

  • Mori, H., Shimizu, Y. and Ito, K. (2002)  Super active SecY variants that fulfill the essential translocation function with a reduced cellular quantity.  J. Biol. Chem. 277, 48550-48557

  • Chiba, K., Mori, H. and Ito, K. (2002)  Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli.  J. Bacteriol.184, 2243–2250

  • Inaba, K. and Ito, K. (2002)  Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade.  EMBO J. 21, 2646-2654

  • Chiba, S., Akiyama, Y. and Ito, K. (2002)  Membrane protein degradation by FtsH can be initiated from either end.  J. Bacteriol. 184, 4775-4782

  • Saikawa, N., Ito, K. and Akiyama, Y. (2002)  Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB).  Biochemistry 41, 1861-1868.

  • Shimohata, N., Chiba, S., Saikawa, N., Ito, K. and Akiyama, Y. (2002)  The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with cytosolic active site.  Genes Cells 7, 653-662

  • Kanehara, K., Ito, K. and Akiyama, Y. (2002)  YaeL (EcfE) activates the sE pathway of stress response through a site-2 cleavage of anti-sE, RseA.  Genes Dev. 16, 2147-2155

  • Nakatogawa, H. and Ito, K. (2001)  Secretion monitor, SecM, undergoes self translation arrest in the cytosol.  Mol. Cell 7, 185–192

  • Mori, H. and Ito, K. (2001)  An essential amino acid residue in protein translocation channel revealed by targeted random mutagenesis of SecY.  Proc. Natl. Acad. Sci. USA 98, 5128-5133

  • Mori, H. and Ito, K. (2001)  The Sec protein-translocation pathway.  Trends Microbiol. 9, 494-500

  • Kihara, A., Akiyama, Y. and Ito, K. (2001)  Revisiting the lysogenization control of bacteriophage l: Identification and characterization of a new host component, HflD.  J. Biol. Chem. 276, 13695-13700

  • Akiyama, Y. and Ito, K. (2001)  Roles of the  homo-oligomerization and membrane association in the ATPase and the proteolytic activities  of FtsH in vitro.  Biochemistry 40, 7687-7693.

  • Kanehara, K., Akiyama, Y. and Ito, K. (2001)  Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli.  Gene 281, 71-79

  • Kobayashi, T., Takahashi, Y., and Ito, K. (2001)  Identification of a segment of DsbB essential for its respiration-coupled oxidation.  Mol. Microbiol. 39, 158-165

  • Matsumoto, G., Homma, T., Mori, H. and Ito, K. (2000)  A mutation in secY that causes enhanced SecA insertion and impaired late functions in protein translocation.  J. Bacteriol. 182, 3377-3382

  • Nakatogawa, H., Mori, H., Matsumoto, G. and Ito, K. (2000)  Characterization of a mutant form of SecA that alleviates a SecY defect at low temperature and shows a synthetic defect with the SecY alteration at high temperature.  J. Biochem. 127, 1071 - 1079

  • Chiba, S., Akiyama, Y., Mori, H., Matsuo, E. and Ito, K. (2000)  Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis.  EMBO Reports 1, 47-52.

  • Akiyama, Y. and Ito, K. (2000)  Roles of multimirization and membrane association in the proteolytic functions of FtsH (HflB).  EMBO J. 19, 3888-3895

  • Nakatogawa, H., Mori, H. and Ito, K. (2000)  Two independent mechanisms down-regulate the intrinsic SecA ATPase activity.  J. Biol. Chem. 275, 33209-33212

  • Matsumoto, G., Nakatogawa, H., Mori, H. and Ito, K. (2000)  Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect.  Genes Cells 5, 991-1000

  • Matsuo, E., Sampei, G., Mizobuchi, K. and Ito, K. (1999)  The plasmid F OmpP protease, a homologue of OmpT, as a potential obstacle to E. coli-based protein production.  FEBS Lett. 461, 6-8

  • Ito, K., Matsuo, E. and Akiyama, Y. (1999)  A class of integral membrane proteins will be overlooked by the "proteome" study that is based on two-dimensional gel electrophoresis.  Mol. Microbiol. 31, 1600-1601

  • Kobayashi, T. and Ito, K. (1999)  Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide-bond formation pathway.  EMBO J. 18, 1192-1198

  • Kihara, A., Akiyama, Y. and Ito, K. (1999)  Dislocation of membrane proteins in FtsH-mediated proteolysis.  EMBO J. 18, 2970-2981

  • Yoshida, M., Endo, T., Ito, K., Hosokawa, N. and Nagata, K. (1999)  Dynamics and regulation of the stress response:  meeting report on the stress response and molecular chaperones from Kyoto.  Cell Stress & Chaperones 4, 66-74.

  • Akiyama, Y., and Ito, K. (1998)  FtsH. pp. 1502-1504., Handbook of Proteolytic Enzymes (ed. Barrett, A. D.,Rawlings, and N. D., Woessner, J. F., Jr.).  Academic Press

  • Kihara, A., Akiyama, Y. and Ito, K. (1998)  Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA.  J. Mol. Biol. 279, 175-188

  • Akiyama, Y., Ehrmann, M., Kihara, A. and Ito, K. (1998)  Polypeptide-binding of E. coli FtsH.  Mol. Microbiol. 28, 803-812.

  • Matsuo, E. and Ito, K. (1998)  Genetic analysis of an essential cytoplasmic domain of Escherichia coli SecY based on resistance to Syd, a SecY-interacting protein.  Mol. Gen. Genet. 258, 240-249

  • Matsuo, E., Mori, H., Shimoike, T. and Ito, K. (1998)  Syd, a SecY-interacting protein, excludes SecA from the SecYE complex with an altered SecY24 subunit.  J. Biol. Chem. 273, 18835-18840

  • Ukai, H., Matsuzawa, H., Ito, K., Yamada, M. and Nishimura, A. (1998)  ftsE(Ts) affects translocation of K+-pump proteins into the cytoplasmic membrane of Escherichia coliJ. Bacteriol. 180, 3663-3670.

  • Akiyama, Y., Kihara, A., Mori, H., Ogura, T. and Ito, K. (1998)  Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation.  J. Biol. Chem. 273, 22326-22333.

  • Kihara, A. and Ito, K. (1998)  Translocation, folding and stability of the HflKC complex with signal-anchor topogenic sequences.  J. Biol. Chem. 273, 29770-29775.

  • Matsumoto, G., Mori, H. and Ito, K.  (1998)  Roles of SecG in ATP- and SecA-dependent protein translocation.  Proc. Natl. Acad. Sci. USA 95, 13567-13572

  • Ito, K., Akiyama, Y., Kihara, A., Matsuo, E., Homma, T., Shirai, Y., Yoshihisa, T., Taura, T., Shimoike, T., Baba, T., Sone, M. and Matsumoto, G. (1997)  The SecY complex and the FtsH complex in the E. coli plasma membrane.  pp 169-181,  Membrane Proteins: Structure, Function and Expression Control (ed. N. Hamasaki and K. Mihara, Kyushu University Press/ Karger Medical and Scientific Publishers, Fukuoka and Basel)

  • (Sone, M., Akiyama, Y., and Ito, K. (1998). Additions and Corrections to Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds.  J. Biol. Chem. 273, 27756)

  • Sone, M., Kishigami, S., Yoshihisa, T. and Ito, K. (1997)  Roles of disulfide bonds in bacterial alkaline phosphatase.  J. Biol. Chem. 272, 6174-6178

  • Sone, M., Akiyama, Y. and Ito, K. (1997)  Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds.  J. Biol. Chem. 272, 10349-10352.

  • Kobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T. and Ito, K. (1997)  Respiratory electron transfer chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells.  Proc. Natl. Acad. Sci. USA 94, 11857-11862

  • Homma, T., Yoshihisa, T. and Ito, K. (1997)  Subunit interactions in the Escherichia coli protein translocase: SecE and SecG associate independently with SecY.  FEBS Lett. 408, 11-15

  • Taura, T., Yoshihisa, T. and Ito, K. (1997)  Protein translocation functions of Escherichia coli SecY: in vitro characterization of cold-sensitive secY mutants.  Biochimie 79, 517-521

  • Matsumoto, G., Yoshihisa, T. and Ito, K. (1997)  SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia. coli plasma membrane.  EMBO J. 16, 6384-6393

  • Akiyama, Y., Ogura, T., and Ito, K. (1997)  E. coli FtsH.  pp. 451 - 453,  Guidebook of Molecular Chaperones and Protein Folding Factors (ed. M.-J. Gething), Oxford University Press

  • Kihara, A., Akiyama, Y. and Ito, K. (1997)  Host regulation of lysogenic decision in bacteriohage l: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).  Proc. Natl. Acad. Sci. USA 94, 5544-5549

  • Yoshihisa, T. and Ito, K. (1996)  Pro-OmpA derivatives with a His6-tag in their N-terminal "translocation initiation domain" are arrested by Ni2+ at an early post-targeting stage of translocation.  J. Biol. Chem. 271, 9429-9436.

  • Ito, K. (1996)  The major pathways of protein translocation across membranes.  Genes to Cells 1, 337-346.

  • Shirai Y., Akiyama, Y. and Ito, K. (1996)  Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones.  J. Bacteriol. 178, 1141-1145

  • Qu, J.-N., Makino, S.-I., Adachi, H., Koyama, Y., Akiyama, Y., Ito, K., Tomoyasu, T., Ogura, T., and Matsuzawa, H. (1996)  The tolZ gene of Escherichia coli is identified as the ftsH gene.  J. Bacteriol. 178, 3457-3461.

  • Kihara, A., Akiyama, Y. and Ito, K. (1996)  A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY.  EMBO J. 15, 6122-6131.

  • Akiyama, Y., Kihara, A., Tokuda, H. and Ito, K. (1996)  FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins.  J. Biol. Chem. 271, 31196-31201

  • Akiyama, Y., Kihara, A. and Ito, K. (1996)  Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coliFEBS Lett. 399, 26-28

  • Kishigami, S., and Ito, K. (1996)  Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulfide bond catalyst of Escherichia coliGenes to Cells 1, 201-208.

  • Ito, K. (1995)  Protein translocation genetics.  Advances in Cell and Molecular Biology of Membranes and Organelles, volume 4 (Protein Export and Membrane Biogenesis),  pp.35-60 (edited by A. M. Tartakoff and R. Dalbey); JAI Press

  • Shimoike, T., Taura, T., Kihara, A., Yoshihisa, T., Akiyama, Y., Cannon, K. and Ito, K. (1995)  Product of a new gene, syd, functionally interacts with SecY when overproduced in Escherichia coli.  J. Biol. Chem. 270, 5519-5526.

  • Kihara, A., Akiyama, Y. and Ito, K. (1995)  FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit.  Proc. Natl. Acad. Sci. USA 92, 4532-4536.

  • Akiyama, Y., Yoshihisa, T. and Ito, K. (1995)  FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coliJ. Biol. Chem. 270, 23485-23490.

  • Akiyama, Y. and Ito, K. (1995)  A new Escherichia coli gene, fdrA, identified through suppression analysis of dominant negative ftsH mutations.  Mol. Gen. Genet. 249, 202-208.

  • Homma, T., Yoshihisa, T., Kihara, A., Akiyama, Y. and Ito, K. (1995)  Intracellular stability of a fragment of b-galactosidase: effects of amino-terminally fused polypeptides.  Biochem. Biophys. Res. Commun. 215, 452-458.

  • Kishigami, S., Akiyama, Y. and Ito, K. (1995)  Redox states of DsbA in the periplasm of Escherichia coli.  FEBS Lett., 364, 55-58.

  • Kishigami, S., Kanaya, E., Kikuchi, M. and Ito, K. (1995)  DsbA-DsbB interaction through their active site cysteines: evidence from an odd cysteine mutant of DsbA.  J. Biol. Chem. 270, 17072-17074.

  • Baba, T., Taura, T., Shimoike, T., Akiyama, Y., Yoshihisa, T. and Ito, K. (1994)  A cytoplasmic domain is important for the formation of a SecY-SecE translocator complex.  Proc. Natl. Acad. Sci. USA 91, 4539-4543.

  • Taura, T., Akiyama, Y. and Ito, K. (1994)  Genetic analysis of SecY: additional export defective mutations and factors affecting their phenotypes.  Mol. Gen. Genet. 243, 261-269.

  • Akiyama, Y., Ogura, T. and Ito, K. (1994)  Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter.  J. Biol. Chem. 269, 5218-5224.

  • Akiyama, Y., Shirai, Y. and Ito, K. (1994)  Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions.  J. Biol. Chem. 269, 5225-5229.

  • Taura, T., Baba, T., Akiyama, Y. and Ito, K. (1993)  Determinants of the quantitiy of the stable SecY complex in the Escherichia coli cell.  J. Bacteriol. 175, 7771-7775.

  • Akiyama, Y. and Ito, K. (1993)  Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo.  J. Biol. Chem. 268, 8146-8150.

  • Herman, C., Ogura, T., Tomoyasu, T., Hiraga, S., Akiyama, Y., Ito, K., Thomas, R., D'Ari, R. and Bouloc, P. (1993)  Cell growth and l phage development controlled by the same essential Escherichia coli gene, ftsH/hflBProc. Natl. Acad. Sci. USA 90, 10861-10865.

  • Shimoike, T., Akiyama, Y., Baba, T., Taura, T., and Ito, K. (1992)  SecY variants that interfere with Escherichia coli protein export in the presence of normal secYMol. Microbiol. 6, 1205-1210.

  • Ueguchi, C., and Ito, K. (1992)  Multicopy suppression: an approach to understanding intracellular functioning of the protein export system.  J. Bacteriol. 174, 1454-1461.

  • Ito, K. (1992)  SecY and integral membrane components of the Escherichia coli protein translocation system.  Mol. Microbiol. 6, 2423-2428.

  • Taura, T., Ueguchi, C., Shiba, K.,and Ito, K. (1992)  Insertional disruption of the nusB gene leads to cold-sensitive growth and suppression of the secY24 mutation.  Mol. Gen. Genet. 234, 429-432.

  • Kamitani, S., Akiyama, Y., and Ito, K. (1992)  Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme.  EMBO J. 11, 57-62.

  • Akiyama, Y., Kamitani, S., Kusukawa, N., and Ito, K. (1992)  In vitro catalysis of oxidative folding of disulfide-bonded proteins by Escherichia coli dsbA (ppfA) gene product.  J. Biol. Chem. 267, 22440-22445.

  • Mizobata, T., Akiyama, Y., Ito, K., Yumoto, N., and Kawata, Y. (1992)  Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP.  J. Biol. Chem. 267, 17773-17779.

  • Sakaguchi, M., Ueguchi, C., Ito, K., and Omura, T. (1991)  Yeast gene which suppresses the defect in protein export of a secY mutant of E. coliJ. Biochem. 109, 799-802.

  • Taura, T., and Ito, K. (1991)  Does protein secretion activity vary during the cell cycle of Escherichia coliJ. Biochem. 109, 811-815.

  • Ito, K. and Akiyama, Y. (1991)  In vivo analysis of integration of membrane proteins in Escherichia coliMol. Microbiol. 5, 2243-2253.

  • Ito, K., and Akiyama, Y. (1991)  Membrane components of the protein secretion machinery.  Meth. Cell Biol. 34, 189-203. (Academic Press)

  • Bassford, P., Beckwith, J., Ito, K., Kumamoto, C., Mizushima, S., Oliver, D., Randall, L., Silhavy, T., Tai, P.C., and Wickner, W. (1991)  The primary pathway of protein export in E. coli.  Cell 65, 367-368. (Letter to the editor article)

  • Akiyama, Y. and Ito, K. (1990)  SecY protein, a membrane embedded secretion factor of E. coli, is cleaved by the OmpT protease in vitro.  Biochem. Biophys. Res. Commun. 167, 711-715.
  • Amaya, Y., Nakano, A., Ito, K. and Mori, M. (1990)  Isolation of a yeast gene, SRH1, that encodes a homologue of the 54K subunit of mammalian signal recognition particle.  J. Biochem. 107, 457-463.

  • Akiyama, Y., Inada, T., Nakamura, Y. and Ito, K. (1990)  SecY, a multispanning membrane protein, contains a potential leader peptidase cleavage site.  J. Bacteriol. 172, 2888-2893.

  • Ito, K. (1990)  Structure, function and biogenesis of SecY, an integral membrane protein involved in protein export.  J. Bioenerg. Biomembr. 22, 353-367.

  • Ito, K., Akiyama, Y., Ueguchi, C., Taura, T. and Baba, T. (1990)  Structure and function of E. coli SecY protein, an integral membrane component of the protein translocation system. pp. 317-322, Protein Engineering. Protein Design in Basic Research, Medicine and Industry (ed. M. Ikehara), Japan Scientific Societies Press/ Springer-Verlag

  • Ueguchi, C., and Ito, K. (1990)  Escherichia coli sec mutants accumulate a processed immature form of maltose-binding protein (MBP), a late-phase intermediate in MBP export.  J. Bacteriol. 172, 5643-5649.

  • Baba, T., Jacq, A., Brickman, E., Beckwith, J., Taura, T., Ueguchi, C., Akiyama, Y., and Ito, K. (1990)  Characterization of cold-sensitive secY mutants of Escherichia coliJ. Bacteriol. 172, 7005-7010.

  • Nakamura, K., Takamatsu, H., Akiyama, Y., Ito, K., and Yamane, K. (1990)  Complementation of the protein transport defect of the Escherichia coli secY mutant (secY24) by B. subtilis secY homologue.  FEBS Lett. 273, 75-78.

  • Yamane, K., Akiyama, Y., Ito, K., and Mizushima, S. (1990)  A positively charged region is a determinant of the orientation of cytoplasmic membrane proteins in Escherichia coliJ. Biol. Chem. 265, 21166-21171.

  • Akiyama, Y. and Ito, K. (1989)  Export of Escherichia coli alkaline phosphatase attached to an integral membrane protein, SecY.  J. Biol. Chem. 264, 437-442.

  • Inada, T., Court, D.L., Ito, K., and Nakamura, Y. (1989)  Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coliJ. Bacteriol. 171, 585-587.

  • Ito, K., Hirota, Y. and Akiyama, Y. (1989)  Temperature-sensitive sec mutants of Escherichia coli: inhibition of protein export at the permissive temperature.  J. Bacteriol. 171,1742-1743.

  • Lill, R., Cunningham, K., Brundage, L.A., Ito, K., Oliver, D. and Wickner, W. (1989)  SecA protein hydrolyzes ATP and is essential component of the protein translocation ATPase of Escherichia coliEMBO J. 8, 961-966.

  • Ueguchi, C., Wittekind, M., Nomura, M., Akiyama, Y. and Ito, K. (1989)  The secY-rpmJ region of the spc ribosomal protein operon in Escherichia coli: structural alterations affecting secY expression.  Mol. Gen. Genet. 217, 1-5.

  • Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y. and Ito, K. (1989)  Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coliEMBO J. 8, 3517-3521.

  • Taura, T., Kusukawa, N., Yura, T. and Ito, K. (1989)  Transient shut off of Escherichia coli heat shock protein synthesis upon temperature shift down.  Biochem. Biophys. Res. Commun. 163, 438-443.

  • Akiyama, Y. and Ito, K. (1987)  Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coliEMBO J. 6, 3465-3470.

  • Iwashita, S., Ito, K. and Yoshida, M. (1987)  Detection of transiently phosphorylated membrane proteins by protein blotting through a non-ionic detergent layer.  Analyt. Biochem. 165, 190-199.

  • Wada, C., Imai, M., Akiyama, Y., Ito, K. and Yura, T. (1987)  Transcription control of F plasmid replication: involvement of sigma 32.  RNA Polymerase and the Regulation of Transcription (Reznikoff, W.S., et al., eds), pp. 413-416, Elsevier.

  • Ito, K. (1986)  Genetic control of protein secretion and localization.  Adv. Biophys. 21, 267-280.

  • Ito, K., Akiyama, Y., Yura, T. and Shiba, K. (1986)  Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology.  J. Bacteriol. 167, 201-204.

  • Akiyama, Y. and Ito, K. (1986)  Overproduction, isolation, and determination of the amino-terminal sequence of the SecY protein, a membrane protein involved in protein export in Escherichia coliEur. J. Biochem. 159, 263-266.

  • Shiba, K., Ito, K. and Yura, T. (1986)  Suppressors of the secY24 mutation: Identification and characterization of additional ssy genes in Escherichia coliJ. Bacteriol. 166, 849-856.

  • Shiba, K., Ito, K., Nakamura, Y., Dondon, J. and Grunberg-Manago, M. (1986)  Altered translation initiation factor 2 in the cold-sensitive ssyG mutant affects protein export in Escherichia coliEMBO J. 5,, 3001-3006.

  • Bacallao, R., Crooke, E., Shiba, K., Wickner, W. and Ito, K. (1986)  The SecY protein can act post-translationally to promote bacterial protein export.  J. Biol. Chem. 261, 12907-12910.

  • Wada, C., Akiyama, Y., Ito, K. and Yura, T. (1986)  Inhibition of F plasmid replication in htpR mutants of Escherichia coli deficient in sigma 32 protein.  Mol. Gen. Genet. 203, 208-213.

  • Akiyama, Y. and Ito, K. (1985)  The SecY membrane component of the bacterial protein export machinery: Analysis by new electrophoretic methods for integral membrane proteins.  EMBO J. 4, 3351-3356.

  • Ito, K. and Akiyama, Y. (1985)  Protein blotting through a detergent layer, a simple method for detecting integral membrane proteins separated by SDS-polyacrylamide gel electrophoresis.  Biochem. Biophys. Res. Commun. 133, 214-221.

  • Shiba, K., Ito, K., Yura, T. and Cerretti, D.P. (1984)  A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: Isolation and characterization of a new temperature-sensitive secY mutant.  EMBO J. 3, 631-635.

  • Ito, K., Cerretti, D.P., Nashimoto, H. and Nomura, M. (1984)  Characterization of an amber mutation in the structural gene for ribosomal protein L15, which impairs the expression of the protein export gene, secY, in Escherichia coliEMBO J. 3, 2319-2324.

  • Ito, K. (1984)  Identification of the secY (prlA) gene product involved in protein export in Escherichia coliMol. Gen. Genet. 197, 204-208.

  • Shiba, K., Ito, K., and Yura, T. (1984)  Mutation that suppresses the protein export defect of the secY mutation and causes cold-sensitive growth of Escherichia coli.  J. Bacteriol. 160, 696-701.

  • Ohno-Iwashita, Y., Wolfe, P., Ito, K., and Wickner, W. (1984)  Processing of preproteins by liposomes bearing leader peptidase.  Biochemistry 23, 6178-6184.

  • Tobe, T., Ito, K. and Yura, T. (1984)  Isolation and physical mapping of temperature-sensitive mutants defective in heat shock induction of proteins in Escherichia coliMol. Gen. Genet. 195, 10-16.

  • Yura, T., Tobe, T., Ito, K. and Osawa, T. (1984)  Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature.  Proc. Natl. Acad. Sci. USA 81, 6803-6807.

  • Wickner, W., Date, T., Zimmermann, R. and Ito, K. (1983)  Pulse-labeling studies of membrane assembly and protein secretion in intact cells: M13 coat protein.  Methods Enzymol. 97, 57-61.

  • Ito, K., Wittekind, M., Nomura, M., Shiba, K., Yura, T., Miura, A. and Nashimoto, H. (1983)  A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins.  Cell 32, 789-797.

  • Ito, K. (1982)  Some current problems in the study of the mechanism of protein localization in Escherichia coliAnn. Microbiol. 133A, 101-104.

  • Ito, K., (1982)  Purification of the precursor form of maltose-binding protein, a periplasmic protein of Escherichia coliJ. Biol. Chem. 257, 9895-9897.

  • Yamamori, T., Osawa, T., Tobe, T., Ito, K. and Yura, T. (1982)  Escherichia coli gene (hin) controls transcription of heat-shock operons and cell growth at high temperature.  Heat Shock from Bacteria to Man (Schlesinger, M.J., Ashburner, M. and Tissieres, A. eds.), Cold Spring Harbor Laboratory. pp. 131-137.

  • Ito, K., Bassford, P and Beckwith, J. (1981)  Protein localization in E. coli: Is there common step for secretion of the periplasmic and outer membrane proteins?  Cell 24, 707-717.

  • Ito, K. and Beckwith, J. (1981)  Role of the mature protein sequence of maltose binding protein in its secretion across the E. coli cytoplasmic membrane.  Cell 25, 143-150.

  • Wickner, W., Ito, K., Mandel, G., Bates, M., Nokelainen, M. and Zwizinski, C. (1980)  The three lives of M13 coat protein: A virion capsid, an integral membrane protein, and a soluble cytoplasmic proprotein.  Ann. N.Y. Acad. Sci. 343, 384-390.

  • Ito, K., Date, T. and Wickner, W. (1980)  Synthesis, assembly into the cytoplasmic membrane, and proteolytic processing of the precursor of coliphage M13 coat protein.  J. Biol. Chem. 255, 2123-2130.

  • Sato, T., Ohki, M., Yura, T. and Ito, K. (1979)  Genetic studies of an E. coli K-12 temperature-sensitive mutant defective in membrane protein synthesis.  J. Bacteriol. 138, 305-313.

  • Ito, K., Mandel, G. and Wickner, W. (1979)  Soluble precursor of an integral membrane protein: Synthesis of procoat protein in Escherichia coli infected with bacteriophage M13.  Proc. Natl. Acad. Sci. USA 76, 1199-1203.

  • Ito, K. (1978)  Protease inhibitors inhibit production of protein I of the outer membrane in Escherichia coliBiochem. Biophys. Res. Commun. 82, 99-107.

  • Yamamori, T., Ito, K., Nakamura, Y. and Yura, T. (1978)  Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature.  J. Bacteriol. 134, 1133-1140.

  • Yamamori, T., Ito, K., Yura, T., Suzuki, T. and Iino, T. (1977)  Ribonucleic acid polymerase mutant of Escherichia coli defective in flagella formation.  J. Bacteriol. 132, 254-261.

  • Ito, K., Sato, T. and Yura, T. (1977)  Synthesis and assembly of the membrane proteins in E. coli.  Cell 11, 551-559.

  • Sato, T., Ito, K. and Yura, T. (1977)  Membrane proteins of Escherichia coli K-12: Two-dimensional polyacrylamide gel electrophoresis of inner and outer membranes.  Eur. J. Biochem. 78, 557-567.

  • Ito, K. (1977)  Effects of a protease inhibitor on biosynthesis of Escherichia coli proteins.  J. Bacteriol. 132, 1021-1023.

  • Ishihama, A., Ito, K., Iwakura, Y., Fukuda, R., Taketo, M. and Saitoh, T. (1976)  Control of synthesis and assembly of RNA polymerase in Escherichia coliControl of Ribosome Synthesis. Alfred Benzon Symposium IX, Munksgaad, pp. 98-114.

  • Ito, K., Iwakura, Y. and Ishihama, A. (1975)  Biosynthesis of RNA polymerase in Escherichia coli. III. Identification of intermediates in the assembly of RNA polymerase.  J. Mol. Biol. 96, 257-271.

  • Iwakura, Y., Ito, K. and Ishihama, A. (1974)  Biosynthesis of RNA polymerase in Escherichia coli. I. Control of RNA polymerase content at various growth rates.  Mol. Gen. Genet. 133, 1-23.

  • Inoko, H., Naito, S., Ito, K. and Imai, M (1974)  Regulation of the tryptophan operon integrated into the phage F80 genome.  Mol. Gen. Genet. 129, 37-48.

  • Ito, K. and Ishihama, A. (1973)  Subunits of RNA polymerase in function and structure. III. Accumulation of the intermediate a2b in the subunit assembly of Escherichia coli RNA polymerase by treatment with cyanate.  J. Mol. Biol. 79, 115-125.

  • Ishihama, A., Fukuda, R. and Ito, K. (1973)  Subunits of RNA polymerase in function and structure. IV. Enhancing role of sigma in the subunit assembly of Escherichia coli RNA polymerase.  J. Mol. Biol. 79, 127-136.

  • Ito, K. (1972)  Regulatory mechanism of the tryptophan operon in Escherichia coli; possible interaction between trpR and trpS gene products.  Mol. Gen. Genet. 115, 349-363.

  • Ishihama, A. and Ito, K. (1972)  Subunits of RNA polymerase in function and structure. II. Reconstitution of Escherichia coli RNA polymerase from isolated subunits.  J. Mol. Biol. 72, 111-123.

  • Ito, K., Hiraga, S. and Yura, T. (1969)  Tryptophanyl transfer RNA synthetase and expression of the tryptophan operon in the trpS mutants of Escherichia coliGenetics 61, 521-538.

  • Ito, K., Hiraga, S. and Yura, T. (1969)  Temperature-sensitive repression of the tryptophan operon in Escherichia coliJ. Bacteriol. 99, 279-286.

  • Hiraga, S., Ito, K., Matsuyama, T., Ozaki, H. and Yura, T. (1968)  5-methyltryptophan resistant mutations linked with the arginine G marker in Escherichia coliJ. Bacteriol. 96, 1880-1881.

  • Hiraga, S., Ito, K., Hamada, K. and Yura, T. (1967)  A new regulatory gene for the tryptophan operon of Escherichia coliBiochem. Biophys. Res. Commun. 26, 522-527.

日本語総説

  1. 伊藤維昭 (2008)  表現模写. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 984.
  2. 伊藤維昭 (2008)  ポリペプチド鎖排出トンネル. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1003.
  3. 伊藤維昭 (2008)  RpoH. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1081.
  4. 伊藤維昭 (2008)  Sec経路. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1082.
  5. 伊藤維昭 (2008)  Secトランスロコン. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1083-1084.
  6. 伊藤維昭 (2008)  SecA. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1085.
  7. 伊藤維昭 (2008)  SecB. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1086.
  8. 伊藤維昭 (2008)  SecM. 「キーワード:タンパク質の一生」蛋白質核酸酵素(増刊)53, 1087.
  9. 稲葉謙次、伊藤維昭 (2007) 細胞品質管理に関与するタンパク質ジスルフィドネットワーク pp 77-85, バイオ研究マスターシリーズ タンパク質の一生集中マスター (遠藤斗志也、森和俊、田口英樹編)羊土社
  10. 稲葉謙次、伊藤維昭 (2007) まだまだ見つかるProtein Disulfide Isomerase (PDI) の新しい機能  pp 132-133, バイオ研究マスターシリーズ タンパク質の一生集中マスター (遠藤斗志也、森和俊、田口英樹編)羊土社
  11. 伊藤維昭 (2007) アトモスフィア「さじ加減」 生化学 79, 197
  12. 伊藤維昭,稲葉謙次 (2007) ジスルフィド結合の形成メカニズム  メディカルバイオ 4, 58-65
  13. 稲葉謙次,伊藤維昭 (2007) 構造が明らかにしたジスルフィド結合の形成機構  蛋白質核酸酵素 52, 853-861
  14. 伊藤維昭 (2007) 最終講義「トランスロコンとめぐりあえて」 蛋白質核酸酵素 52, 1480-1485
  15. 武藤洋樹、伊藤維昭 (2006) 分泌モニターSecMが明らかにした新しい概念  蛋白質核酸酵素(増刊「RNAと生命」) 51, 2583-2589
  16. 稲葉謙次、伊藤維昭 (2005) タンパク質ジスルフィド結合導入のための細胞支援システム。実験医学 23 増刊「細胞内タンパク質の社会学」(永田和宏、遠藤斗志也 編) 2260-2265
  17. 稲葉謙次、伊藤維昭 (2005) Oxidative protein foldingにかかわる細胞因子.  別冊・医学のあゆみ「レドックスーストレス防御の医学」(淀井淳司、松尾禎之 編)pp. 67-71
  18. 中戸川 仁、伊藤維昭 (2004) 蛋白質の誕生におけるリボソームのトンネルの役割。蛋白質核酸酵素(増刊「細胞における蛋白質の一生」生成・成熟・輸送・管理・分解・病態)49, 829-833
  19. 下畑宣行、伊藤維昭 (2004) 膜への挿入とフォールディング。特集「階層別に見るタンパク質のフォールディングと品質管理:in vitroから細胞・個体レベルまで。細胞工学 23, 1380-1383
  20. 中戸川仁、伊藤維昭 (2003) 蛋白質の膜透過と翻訳アレスト。「RNAの細胞生物学」蛋白質核酸酵素増刊 48, 338-345. 共立出版
  21. 中戸川仁、村上亜希子、伊藤維昭 (2003) タンパク質分泌モニターSecMによるSecAの発現制御機構。難産なタンパク質が誕生するとき。実験医学 21, 869-873. 羊土社
  22. 中戸川仁、伊藤維昭 (2002) 大腸菌におけるタンパク質膜透過ならびに輸送。わかる実験医学シリーズ「細胞内輸送がわかる」(米田悦啓 編)PP. 78-86.  羊土社
  23. 伊藤維昭、徳田元 (2001) 輸送・大腸菌。分子シャペロンによる細胞機能制御(永田和宏、森正敬、吉田賢右 編)pp. 56-66. シュプリンガー・フェアラーク東京
  24. 伊藤維昭 (2001) 生命を分子の働きとしてみる。「現代化学への招待」(廣田襄、梶本興亜 編)pp. 146-163.  朝倉書店
  25. 伊藤維昭 (2000) 細胞質膜を舞台としたタンパク質の通過儀礼。タンパク質の一生−タンパク質の誕生、成熟から死まで シリーズ「バイオサイエンスの新世紀」(中野明彦、遠藤斗志也 編、日本生化学会編集)pp. 75-91.
  26. 伊藤維昭 (1999) 細菌の細胞表面。栄養科学シリーズ・微生物学(井内史郎、松崎昇編)、講談社サイエンティフィク
  27. 曾根道夫、伊藤維昭 (1998) タンパク質にジスルフィド結合を導入する細胞の仕組み。蛋白質・核酸・酵素 43, 1-10.
  28. 曾根道夫、伊藤維昭 (1997) ジスルフィド結合はどのようにして形成されるか。 化学と生物 35, 2-4.
  29. 小椋光、多賀也光男、友安俊文、伊藤維昭、秋山芳展、中井俊樹、大隅隆、塚本利朗 (1996) AAAスーパーファミリータンパク質−新しいATPaseファミリーの構造とその多様な機能 細胞工学15, 968-980
  30. 秋山芳展、伊藤維昭 (1995): 細胞内局在化. 「生物化学実験法」37 タンパク質の分泌と細胞内輸送 pp. 29-42(学会出版センター)
  31. 伊藤維昭 (1994):分子シャペロンとしてのストレス蛋白質  Biosience Series 「ストレス蛋白質−基礎と臨床 (永田和宏編), 49-58 (中外医学社)
  32. 伊藤維昭 (1994): タンパク質の構造形成や膜組み込みを助ける細胞の仕組みについて  放射線生物研究 29 (2), 104-109.
  33. 伊藤維昭 (1993): 蛋白質の"自己実現"補助システム−分子シャペロンを中心として−  蛋白質・核酸・酵素 38, 1089-1099, 増刊号「生体超分子システム」(共立出版)
  34. 伊藤維昭 (1993): 分子シャペロンの機能  Molecular Medicine 30, 480-487(中山書店)
  35. 田浦徹也、伊藤維昭  (1992):大腸菌のタンパク質分泌機構  細胞生物学レビュー  2, 74-85 (中外医学社)
  36. 伊藤維昭  (1992): 分泌経路におけるタンパク質の膜透過機構  Medical Immunology 24, 5-8(国際医書出版)
  37. 伊藤維昭、秋山芳展 (1992): 生体膜と膜輸送・生体膜研究法・遺伝学的方法・細菌  新生化学実験講座 6, 254-263(東京化学同人)
  38. 伊藤維昭 (1992): 生体膜と膜輸送・膜透過の遺伝生化学的実験法  新生化学実験講座 6, 791-803(東京化学同人)
  39. 上口智治、伊藤維昭  (1991): 大腸菌のsec 遺伝子  生化学 63, 293-298.
  40. 伊藤維昭  (1991): ストレスタンパク質とシャペロン機能  細胞工学 10, 325-333. (秀潤社)
  41. 伊藤維昭  (1991): シャペロニンのタンパク質構造形成補助機能  Medical Immunology 21, 553-559. (国際医学出版)
  42. 秋山芳展、 伊藤維昭(1991): 大腸菌におけるタンパク質構造形成の制御−分泌タンパク質を中心に  Cell Science 7, 703-725. (医学出版センター)
  43. 伊藤維昭 (1989): タンパク質の膜への組み込みと透過の機構。生物物理, 29, 10-13.
  44. 伊藤維昭 (1989): タンパク質局在性の遺伝的制御。分子生物学の進歩(日本分子生物学会編)、丸善、pp. 121-139.
  45. 伊藤維昭,秋山芳展 (1987): タンパク質膜透過系の遺伝学的解析. 現代化学 増刊10,タンパク質の細胞内輸送と膜透過。pp.20-31 東京化学同人.
  46. 芝清隆, 伊藤維昭 (1985): タンパク質の膜透過とその遺伝制御. 化学と生物 23, 186-191.
  47. 伊藤維昭,芝清隆,秋山芳展 (1985): タンパク質の局在化. 細胞工学 4, 1172-1184.
  48. 伊藤維昭 (1984): タンパク質の分泌 (膜透過)に関与するRNA.細胞工学 3, 1192-1200.
  49. 伊藤維昭 (1981): タンパク質の細胞内局在機構ー大腸菌表層タンパク質を中心として.生化学 53, 427-443.
  50. 伊藤維昭 (1974): 核酸の生合成. 遺伝 28, 22-30.
  51. 伊藤維昭,石浜明 (1973): RNAポリメラーゼの再構成. 蛋白質 核酸 酵素 18, 498-501.
  52. 伊藤維昭 (1972): アミノ酸活性化酵素の変異株. 蛋白質 核酸 酵素,増刊 細菌ファージ遺伝実験法 pp. 167-172.
  53. 石浜明,伊藤維昭 (1972): 遺伝情報転写酵素ーRNA合成とその制御. 代謝 9, 363-372.
  54. 伊藤維昭 (1972): 細菌におけるアミノ酸合成系の遺伝的制御. 蛋白質 核酸 酵素 17, 32-41.

 

千葉志信 論文リスト

  • Kumazaki K*, Chiba, S*, Takemoto M, Furukawa A, Nishiyama KI, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, Nureki O. (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature, in press (*These authors contributed equally to this work)

  • Ito, K. and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82, 171-202. (review)

  • Chiba, S. and Ito, K. (2012) Multisite ribosomal stalling: A unique mode of regulatory nascent chain action revealed for MifM. Mol. Cell 47, 863-872.
  • Ito, K., Chadani, Y., Nakamori, K., Chiba, S., Akiyama, Y. and Abo, Y. (2011) Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS ONE 6(12): e28413.

  • Saito, A., Hizukuri, Y., Matsuo, E. -i., Chiba, S., Mori, H., Nishimura, O., Ito, K. and Akiyama, Y. (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc. Natl. Acad. Sci. USA. 108, 13740-13745.
  • Chiba, S., Kanamori, T., Ueda, T., Akiyama, Y., Pogliano, K. and Ito, K. (2011) Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proc. Natl. Acad. Sci. USA. 108, 6073-6078.

  • White, R., Chiba, S., Pang, T., Dewey, J. S., Savva, C. G., Holzenburg, A., Pogliano, K. and Young, R. (2011) Holin triggering in real time. Proc. Natl. Acad. Sci. USA. 108, 798-803.

  • Ito, K., Chiba, S. and Pogliano, K. (2010) Divergent stalling sequences sense and control cellular physiology.  Biochem. Biophys. Res. Commun. 393, 1-5. (review)

  • Chiba, S., Lamsa, A. and Pogliano, K. (2009) A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO J. 18, 3461-3475.

  • Aung, S., Shum, J., Abanes-De, Mello, A., Broder, D. H., Fredlund-Gutierrez, J., Chiba, S. and Pogliano, K. (2007) Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation. Mol. Microbiol. 65, 1534-1546.

  • Chiba, S., Coleman, K. and Pogliano, K. (2007) Impact of membrane fusion and proteolysis on SpoIIQ dynamics and interaction with SpoIIIAH. J. Biol. Chem. 282, 2576-2586.
  • Chiba, S., Ito, K. and Akiyama, Y. (2006)  The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations.  Mol. Microbiol. 60, 448-457.

  • Jiang, X., Rubio, A., Chiba, S. and Pogliano, K. (2005) Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control sigma activity. Mol. Microbiol. 58, 102-115.

  • Chiba, S., Akiyama, Y. and Ito, K. (2002)  Membrane protein degradation by FtsH can be initiated from either end.  J. Bacteriol. 184, 4775-4782.

  • Shimohata, N., Chiba, S., Saikawa, N., Ito, K. and Akiyama, Y. (2002)  The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with cytosolic active site.  Genes Cells 7, 653-662.

  • Chiba, S., Akiyama, Y., Mori, H., Matsuo, E. and Ito, K. (2000)  Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis.  EMBO Reports 1, 47-52.
 
 
 
   
   
 
       
       
   
   
 
  〒603-8555 京都市北区上賀茂本山 京都産業大学総合生命科学部生命システム学科  
 
Tel:075-705-2972     kitocc.kyoto-su.ac.jp