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Abstract. An effective sequence of unifomities on a set and its limit are defined.
By taking the diagonal of the limit space, we can express the uniform computability
of the Rademacher function system, which is the basis of Walsh-Fourier analysis.

1. Introduction

It is important and mathematically significant to review some theories of
mathematics from an algorithmic standpoint.

The standard notion of computability of a real number or of a sequence
of real numbers as well as that of computability of a continuous or of a
sequence of continuous functions is now generally agreed. There are many
references on this subject. We have referred to [8]; there is also [18] for a
quick read.

The reason why one can define a reasonable notion of computability for a
continuous function is that for a continuous function there is a way to nicely
approximate the values for computable inputs, and this notion depends on
the continuity.

Very often, however, we compute values and draw a graph of a discon-
tinuous function. We thus expect that some class of discontinuous functions
can be attributed a certain kind of computability. In an attempt of com-
puting a discontinuous function, a problem arises in the computation of the
value at a jump point (a point of discontinuity). This is because it is not
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in general decidable if a real number is a jump point, that is, the question
“x = a?” is not decidable even for computable x and a.

(For the subsequent discussion, let us here note the following: =,≤, < on
natural numbers and fractional numbers are decidable. a < b is decidable for
computable real numbers a and b, while a = b and a ≤ b are not necessarily
decidable even for computable real numbers.)

One method of dissolving this problem was proposed in [8] by Pour-El
and Richards and was succeeded by Washihara (cf. [11],[12],[13]). It was
a functional analysis approach. In their treatment, a function is regarded
as computable as a point in a space. This is sufficient in order to draw a
rough graph of the function, but does not supply us with information when
computing individual values.

There are many ways of characterizing computation of a discontinuous
function. We have proposed some approaches to this problem. One is to
express the value of a function at a jump point in terms of a “limiting
recursive” modulus of convergence instead of a recursive one (Yasugi, Brat-
tka, Washihara:[14]). Another is to change the topology of the domain of
a function (Tsujii, Mori, Yasugi:[10]). In a way, these two approaches are
equivalent ([16]).

As for a sequence of functions with different jump points, we proposed an
approach with an example of the system of Rademacher functions (Yasugi,
Washihara:[19]) in terms of a “limiting recursive” modulus of convergence.
(The notion of limiting recursive functions is due to [1], and has been utilized
also in [7] and [2] along a similar line as ours.)

Let {φn(x)} be the sequence of Rademacher functions, that is, for each
n, φn(x) is defined on [0, 1), is discontinuous at the dyadic rational num-
bers of the form k

2n , and assumes the values 1 and −1 alternatingly. The
mathematical significance of the Rademacher function system among vari-
ous discontinuous functions is that it is a subsystem of the Walsh function
system, and the latter plays an important role in Walsh-Fourier analysis.
(As for Rademacher and Walsh functions, one can refer to [9].)

In [19], it was shown that {φl} has a “weak computation” in the follow-
ing sense: there is a program which acts in a manner that, input a sequence
of information {〈rmn, α〉} of {xm}, a recursive sequence of rational num-
bers {slmn} which converges to {φl(xm)} constructed with a modulus of
convergence which is “limiting recursive” can be utilized.

Here we present an alternative way of expressing a notion of computabil-
ity of the Rademacher function system by changing the topology of the real
interval [0, 1) by decomposing it to {[ k

2ν , k+1
2ν )} for k ≤ 2ν − 1, and then

taking a kind of the limit with respect to ν. Our theory of the effective
uniform space (cf. [10], [17], [16]).

We subsequently present a brief account of some basics such as the defi-
nitions of computable reals and computable (continuous) functions (Section
2), the definition of the Rademacher function system (Section 3), and the
theory of effective uniformity (Section 4). Next a theory of a sequence of
uniformities and its limit is introduced (Section 5). We then confine our-
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selves to the real numbers in the interval I = [0, 1) and functions on it. The
theory of an effective sequence of uniformities on I and its limit is developed
in Section 6. The “limit uniformity” is proven to be effectively equivalent to
the “diagonal uniformity” and two notions of computability, “diagonal com-
putability” and “ω-computability,” are shown to be equivalent (Theorem 1:
Section 7). With all this preparation, we propose the notion of “uniform
D-computability” of a piecewise continuous function in the space of the
diagonal uniform space and then prove that the Rademacher function sys-
tem is “uniformly D-computable” (Theorem 2: Section 8). As an additional
topic, we show that the metric induced from the diagonal uniformity by a
general construction “preserves comutability” (Theorem 3: Section 9).

In the references we only list those which have close relationship with
the present work. We may add our approach to computability problems in
the metric space, [6], [15].

2. Preliminaries

In the following, N will denote the set of natural numbers.
The basic definitions below are taken from [8]. A sequence of ratinal

numbers {rn} is called recursive if

rm = (−1)β(m) γ(m)
δ(m)

with recursive β, γ and δ.
A real number x is called computable (R-computable) if

∀m ≥ α(p).|x − rm| <
1
2p

for recursive α and {rm}. We will express such a circumstance as x �
〈rm, α(p)〉, or for short x � 〈rm, α〉.

These definitions can be extended to a computable sequence of real num-
bers.

A real (continuous) function f is computable (R-computable) if the fol-
lowing hold.

(i) f preserves sequential computability, that is, for a computable {xn},
{f(xn)} is computable.

(ii) f is continuous with recursive modulus of continuity, say β:

∀p∀n ∈ N∀k ≥ β(n, p)∀x, y ∈ [n, n + 1].

|x − y| <
1
2k

⇒ |f(x) − f(y)| <
1
2p

.

This can be extended to a computable sequence of functions.
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3. Rademacher functions

Rademacher functions are step functions from I = [0, 1) to {−1, 1} defined
below.

Definition 31 (Rademacher functions) Let n denote 0, 1, 2, 3, · · · . Then
the nth Rademacher function φn(x) is defined as follows.

φ0(x) = 1, x ∈ [0, 1)

φn(x) =
{

1, x ∈ [ 2i
2n , 2i+1

2n )
−1, x ∈ [2i+1

2n , 2i+2
2n )

where n ≥ 1 and i = 0, 1, 2, · · · , 2n − 1.
The sequence {φn(x)} will be called the system of Rademacher functions,

or the Rademacher function system.

A Rademacher function φn(x) is a step function which takes a value 1
or −1, and jumps at dyadic fractions k

2n for k = 1, 2, · · · , 2n − 1. It is right
continuous with left limit.

As a sequence of functions, {φn} is eventually constant at each dyadic
point. Namely, let x be a dyadic point k

2n , where n is the first number with
respect to which x can be expressed as such. Then k is an odd number,
and φn(x) = −1. For any m > n, x = 2l

2m for an l, and this implies that
φm(x) = 1.

Yasugi and Washihara [19] have shown that the function system {φn} is
endowed with some kind of computational attributes. The double sequence
of values {φn(xm)} for a computable sequence of real numbers {xm} ⊂ [0, 1)
is “weak computable” in the sense that {φn(xm)} is approximated by a
recursive triple sequence of rational numbers with a “limiting recursive”
modulus of convergence (Remark 1 in Section 4 of [19]). The result cannot
be sharpened to a recursive modulus of convergence.

4. Topological computability

In computing the values or drawing the graph of a piecewise continuous
function, it is a usual practice to first compute the value or plot a dot
at a jump point, and then compute values or draw a curve on the open
interval where the function is continuous. Such an action corresponds to
the mathematical notion of isolating the jump points. We were thus led to
the uniform topology of the real line induced from the Euclidean topology
by isolating the jump points. (We have employed the definition of uniformity
in [3].)

Let X be a non-empty set. A sequence {Vn}n∈N of maps such that
Vn : X → P (X) is called a uniformity if it satisfies some axioms, Axioms
A1 ∼ A5 to be stated below. In particular, A1 and A2 in [3] can be unified
to A1&A2:

∩nVn(x) = {x}.
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We will state Axioms A3 ∼ A5 in the form of effective uniformity.
Subsequent definitions are due to [10].

Definition 41 (Effective uniformity) A uniformity {Vn} on X is effective
if there are recursive functions α1, α2, α3 which satisfy the following.

∀n, m ∈ N∀x ∈ X.Vα1(n,m)(x) ⊂ Vn(x) ∩ Vm(x) (effective A3);

∀n ∈ N∀x, y ∈ X.x ∈ Vα2(n)(y) → y ∈ Vn(x) (effective A4);

∀n ∈ N∀x, y, z ∈ X.x ∈ Vα3(n)(y), y ∈ Vα3(n)(z) → x ∈ Vn(z) (effective A5).

T = 〈X, {Vn}, α1, α2, α3〉 forms an effective uniform topological space.

Definition 42 (Effective convergence) {xk} ⊂ X effectively converges to
x in X if there is a recursive function γ satisfying ∀n∀k ≥ γ(n).xk ∈ Vn(x).

This can be extended to effective convergence of a multiple sequence.

Definition 43 (Computability structure) Let S be a family of sequences
from X (multiple sequences included). S is called a computability structure
if the following hold.

C1: (Non-emptiness) S is nonempty.
C2: (Re-enumeration) If {xk} ∈ S and α is a recursive function, then

{xα(i)}i ∈ S.
This can be extended to multiple sequences.
C3: (Limit) If {xlk} belongs to S, {xl} is a sequence from X , and {xlk}

converges to {xl} effectively, then {xl} ∈ S. (S is closed with respect to
effective convergence.)

This can be extended to multiple sequences.
A sequence belonging to S is called computable, and x is computable if

{x, x, · · · } is computable.
We will henceforth consider the space

CT = 〈X, {Vn}, α1, α2, α3,S〉 .

For each fixed n, an effective uniform space, say Un, will be associated
to the Rademacher function φn and it will be claimed that φn is “uniformly
computable” in it. Our present interest is in defining an effective uniform
space which is a kind of the limit of {Un} and in which the computability
of the function sequence {φn} can be stated.

5. A sequence of uniformities

We assume that ν, n ∈ N.

Definition 51 (Effective sequence of uniformities) 1) Let {V ν
n } be a se-

quence of uniformities on a set X with the following modifications (cf. Def-
inition 41).

For each ν, A1&A2 holds, that is, ∩nV ν
n (x) = {x}.
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In A3, A4, A5, the recursive functions α1, α2, α3 depend also on ν. Thus,
for example, effective A4 stands as follows.

∀ν, n ∈ N∀x, y ∈ X.x ∈ V ν
α2(ν;n)(y) → y ∈ V ν

n (x).

2) The limit sequence of {V ν
n }, denoted by {W〈ν,n〉}, is defined as follows,

where 〈ν, n〉 represents a code for the pair of ν and n effectively enumerated:

W〈ν,n〉 = V ν
n .

3) The limit sequence W〈ν,n〉 will be called the effective limit of {V ν
n }

if for A3 further holds: there are recursive β and γ satisfying the following.

∀ν1, ν2; n, m ∈ N∀x ∈ X.V
γ(ν1,ν2;n,m)
β(ν1,ν2;n,m) (x) ⊂ V ν1

n (x) ∩ V ν2
m (x).

Proposition 51 (Limit uniformity) The sequence {W〈ν,n〉} defined in 2)
of Definition 51 satisfying 3) forms an effective uniformity on X . We will
then call {W〈ν,n〉} the limit uniformity of {V ν

n }.
Proof A1&A2 is obvious. A4 and A5 hold due to the conditions in 1) of
Definition 51. For example, A4 can be stated as follows.

∀ν, n ∈ N∀x, y ∈ X.x ∈ W〈ν,α2(ν;n)〉(y) → x ∈ W〈ν,n〉(y).

A3 holds due to the condition of 3): taking the β, γ, it holds

W〈γ(ν1,ν2;n,m),β(ν1,ν2;n,m)〉(x) ⊂ W〈ν1,n1〉(x) ∩ W〈ν2,n2〉(x).

Proposition 51 suggests that one can utilize the effective limit of an ef-
fective sequence of uniformities in an attempt to describe the computability
of a sequence of functions {fν} whose jump points vary according to ν in a
certain way.

We will henceforth confine ourselves to our original interest, that is, to
the Rademacher function system. The sequence of uniformities associated
with this system is not only an effective sequence satisfying the condition
in 3) of Definition 51 but is endowed with some more favorable properties.
In the subsequent sections we will investigate these properties.

6. A sequence of uniformities on I

Put I = [0, 1). We assume that ν, k ∈ N and 0 ≤ k ≤ 2ν − 1. We will
consider real numbers and sequences of real numbers in I.

Definition 61 (Intervals and uniformity) Define subintervals of I, Iν
k , and

a sequence of maps Uν
n : I → P (I) as follows.

Iν
k = [

k

2ν
,
k + 1
2ν

)

Uν
n(x) = Iν

k ∩ (x − 1
2n

, x +
1
2n

) if x ∈ Iν
k .
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Notice that
∀x∀ν∃!k.x ∈ Iν

k

and
∀n.x ∈ (x − 1

2n
, x +

1
2n

).

Lemma 1 1) {Uν
n} is a decreasing sequence with respect to ν, that is,

Uν+1
n (x) ⊂ Uν

n(x).
2) {Uν

n} is a decreasing sequence with respect to n, that is, Uν
n (x) ⊂

Uν
m(x) if n ≥ m.

3) x ∈ Uν
n(y) ↔ y ∈ Uν

n(x) (symmety).
4) x ∈ Uν

n+1(y), y ∈ Uν
n+1(z) → x ∈ Uν

n(z) (transitivity).

The proofs are straightforward.

Proposition 61 (Effective sequence) 1) {Uν
n} forms an effective sequence

of uniformities on I (cf. 1) of Definition 51).
2) Put Z〈ν,n〉 = Uν

n . {Z〈ν,n〉} is the effective limit of {Uν
n} (cf. 3) of

Definition 51).

Proof 1) A1&A2: ∩nUν
n(x) = {x} is obvious.

A3, A4, A5 follow from 2), 3) and 4) of Lemma 1, that is, take max(n, m)
for α1(ν; n, m), n for α2(ν; n) and n + 1 for α3(ν; n).

2) We will show that there are β and γ as in 3) of Definition 51. Put

β(ν1, ν2; n, m) = max(ν1, ν2); γ(ν1, ν2; n, m) = max(n, m).

Then U
β(ν1,ν2;n,m)
γ(ν1,ν2;n,m) ⊂ Uν1

n (x) ∩ Uν2
m (x).

Definition 62 (ν-computability) Let ν be an arbitrary (but fixed) natural
number.

1) A sequence {aµi} with multiple index µi is called a ν-sequence if, for
a k = kµ ≤ 2ν − 1, {aµi}i ⊂ Iν

k . (µ may be empty.)
2) A multiple sequence of rational numbers {rµi} is called a recursive

ν-sequence if it is recursive and is a ν-sequence.
3) {aµmi} converges ν-effectively to {xµm} with respect to i if there is

a recursive α so that i ≥ α(µ, m, p) implies aµmi ∈ Uν
p (xµm). We write this

property as
xµm �ν 〈aµmi, α(µ, m, p)〉

or, for short, xµm �ν 〈aµmi, α〉.
4) A sequence of real numbers {xµm} is called ν-computable if there are

recursive ν-sequence {rµmi} and α as in 3), that is,

xµm �ν 〈rµmi, α(µ, m, p)〉 .

Note For each ν, 〈I, {Uν
n}n〉 is a space in which one can express the uniform

computability of the ν-th Rademacher function φν in a natural manner.
Our objective is then to set up a uniform space in which the computability
problem of the function sequence {φν} can be expressed.
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Definition 63 (ω-computability) 1) A sequence {aν
µi} ⊂ I is called a

{ν}-sequence if, for each ν, for a kν
µ ≤ 2ν − 1, {aν

µi}i ⊂ Iν
kν

µ
.

2) A multiple sequence of rational numbers from I, say {rν
µi}, is called

a recursive {ν}-sequence if it is recursive and is a {ν}-sequence.
In this case, {kν

µ} can be recursive, for we can find kν
µ by cheking “rν

µ1 ∈
Iν
k ?”.

3) A multiple {ν}-sequence {aν
µmi} converges {ν}-effectively to xµm

(with respect to i) if there is a recursive α such that

∀ν∀µ∀m∀p∀i ≥ α(ν; µ, m, p).aν
µmi ∈ Uν

p (xµm).

This fact will be expressed by

xµm �ω

〈
aν

µmi, α(ν; µ, m, p)
〉

or simply
xµm �ω

〈
aν

µmi, α
〉
.

4) A sequence {xµm} is ω-computable if there are a recursive {ν}-
sequence {rν

µmi} and a recursive α as in 3), that is,

xµm �ω

〈
rν
µmp, α(ν; µ, m, i)

〉
.

Proposition 62 (R-computability, ω-computability and ν-computability)
1) For a single real number x ∈ I, R-computability (i.e., computable in the
Euclidean topology), ω-computability and ν-computability (for each fixed
ν) are equivalent.

2) If {xµm} is ω-computable, then it is ν-computable for all ν.
3) For each ν, if {xµm} is ν-computable, then it is R-computable, hence

by 2), an ω-computable sequence is R-computable.
4) For each ν, there is a sequence {xm}, which is R-computable but is

not ν-computable.
5) For each ν1, ν2 where ν2 > ν1, there is a sequence {xm} which is

ν1-computable but not ν2- computable.
6) If ν1 < ν2 and {xµm} is ν2-computable, then it is ν1-computable.

Proof 1) An ω-computable real number is ν-computable for each ν and a
ν computable real number is R-computable as special cases of 2) below.

¿From the definition, each rational number is both R- and ν-computable.
Suppose x is R-computable with x � 〈qm, α〉. We will show that x is

ω-computable. Then the equivalences follow.
Given x and ν, x ∈ Iν

k for some k ≤ 2ν − 1. Note that for a single x,
we need not attempt to compute k from x; the subsequent construction is
carried out assuming that a k is fixed.

We will construct a recursive {ν}-sequence {tνp} and a recursive δ such
that x �ω

〈
tνp , δ

〉
.

Construction of tνp:

tνp = qα(p+ν) if
k

2ν
≤ qα(p+ν) <

k + 1
2ν

;
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= qα(p+ν) +
1

2p+ν
if qα(p+ν) <

k

2ν
;

=
k + 1
2ν

− 1
2p+ν

if
k + 1
2ν

≤ qα(p+ν).

Given k, the double sequence {tνp} is recursive. We will show that it is a
{ν}-sequence, and that it converges to x effectively, that is,

1. tνp ≥ k
2ν ;

2. tνp < k+1
2ν ;

3. |x − tνp | < 1
2p .

We then have that x is ω-computable.
Proof of 1∼3.

Case where qα(p+ν) < k
2ν (≤ x).

1. Since 0 < x − qα(p+ν) < 1
2p+ν , it follows that

k

2ν
≤ x < qα(p+ν) +

1
2p+ν

= tνp .

2. Since qα(p+ν) < k
2ν , it follows that

tνp = qα(p+ν) +
1

2p+ν
<

k

2ν
+

1
2p+ν

<
k + 1
2ν

.

3. |x − tνp | = |x − (qα(p+ν) + 1
2p+ν )|

≤ |x − qα(p+ν)| +
1

2p+ν
<

1
2p+ν

+
1

2p+ν
≤ 1

2p
.

The last inequality holds presuming that ν ≥ 1.
Case where qα(p+ν) ≥ k+1

2ν can be dealt with similarly.
Case where k

2ν ≤ qα(p+ν) < k+1
2p .

Since tνp = qα(p+ν), 1 ∼ 3 for this case trivially hold.
2) and 3) Obvious from definitions.
4) Let a be a recursive injection whose image is not recursive.
Define ym = 1

2l if m = a(l); = 0 if there is no l such that m = a(l). {ym}
is known to be R-computable (cf. [8]). Next define xm by

xm =
1
2ν

− ym

2ν
.

Then xm = 1
2ν − 1

2l+ν < 1
2ν if there is an l such that m = a(l) and = 1

2ν

otherwise. In the former case, xm ∈ Iν
0 and in the latter case xm ∈ Iν

1 . {xm}
is R-computable.

Suppose there were a recursive ν-sequence {qmi} which ν-effectively con-
verges to {xm} (cf. Definition 62). Then the following equivalences hold.

{qmi}i ⊂ Iν
0 ↔ xm <

1
2ν

↔ ym =
1
2l

for some l ↔ m ∈ a(N);

{qmi}i ⊂ Iν
1 ↔ xm =

1
2ν

↔ ym = 0 ↔ m /∈ a(N).
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Since {qmi} is a ν-sequence, it can be determined in which of Iν
0 or Iν

1 it is
contained by checking qm1, hence it can be recursively determined whether
m ∈ a(N) or not for every m, contradicting non-recursiveness of a(N). So,
{xm} cannot be ν-computable.

5) Define {ym} as above for ν2, and then define {xm} as follows.

xm =
1

2ν2
− ym

2ν2
.

With the same reason as in 4), {xm} is ν1-computable, but not ν2-computable.
6) Immediate from the definition.

Lemma 2 A recursive sequence of rational numbers, say {qj}, regarded
as a sequence of real numbers, is ω-computable, since we can obtain an
approximating sequence by {rν

ji}, rν
ji = qj .

Proposition 63 (ω-computability structure) ω-computable sequences form
a computability structure with respect to {Z〈ν,n〉} (cf. Definition 43).

Proof C1 is guaranteed by Lemma 2. C2 is obvious.
C3: Suppose {xlm} is ω-computable, that is there is a recursive {ν}-

sequence {rν
lmi} and a recursive α satisfying

∀l∀m∀ν∀p∀i ≥ α(ν; l, m, p).rν
lmi ∈ Uν

p (xlm).

Suppose also that {xl} ⊂ I and {xlm} converges effectively to it, that is,
there is a recursive γ satisfying

∀l∀ν∀m ≥ γ(ν; p).xlm ∈ Uν
p (xl).

Define

qν
lp = rν

lγ(ν;p+1)α(ν;l,γ(ν;p+1),p+1).

{qν
lp}p is a recursive {ν}-sequence, and the following hold.

qν
lp ∈ Uν

p+1(xlγ(ν;p+1)), xlγ(ν;p+1) ∈ Uν
p+1(xl),

from which follows

∀s ≥ p.qν
ls ∈ Uν

p (xl),

that is, {xl} is ω-computable with {qν
lp} and the identity function as a

modulus of convergence.
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7. Diagonal computability

Definition 71 (Diagonal sequence) The sequence {Un
n } will be called the

diagonal sequence of {Uν
n}, and will be denoted by {Un}.

Lemma 3 1) For any n and any x ∈ I, Un(x) = In
k for some k. So,

y ∈ Un(x) ↔ Un(y) = In
k = Un(x).

2) Un+1(x) ⊂ Un(x).

Proposition 71 (Diagonal sequence and limit) The sequence {Un} forms
an effective uniformity which is topologically effectively equivalent to the
effective limit {Z 〈ν, n〉} (cf. Proposition 61).

Proof We use Lemma 3.
A1&A2 is obvious. For A3, m = max(n1, n2) will do. For A4 and A5,

put m = n. {Un} thus forms an effective uniformity.
As for the effective equivalence, notice that {Un} is a subsequence of

{Uν
n}. For the converse, put n0 = max(ν, n). Then Uν

n(x) ⊃ Un0(x).

Definition 72 (Diagonal uniformity) The sequence of diagonals {Un} as
in Definition 71 will be called the diagonal uniformity determined by {Uν

n}
or {Z〈ν,n〉}, and the space 〈I, {Un}〉 will be called the diagonal space deter-
mined by {Uν

n}.

Definition 73 (Diagonal computability) A sequence of real numbers {xm} ⊂
I is diagonal computable if there is a recursive sequence {qmp} of rational
numbers which converges to {xm} effectively with respect to {Un} in a man-
ner that, for a recursive γ and for k ≥ γ(m, p), qmk ∈ Up(xm). We will write
this property as

xm �D 〈qmk, γ〉 .

More generally {xµm} ⊂ I is diagonal computable if there is a recursive
sequence {qµmp} of rationals and a recursive γ such that for k ≥ γ(µ, m, p),
qµmk ∈ Up(xµm), or

xµm �D 〈qµmp, γ〉 .

Proposition 72 The family of diagonal computable sequences of real
numbers, say R, forms a computability structure for 〈I, {Un}〉 (cf. C1∼C3
of Definition 43).

Proof It can easily been demonstrated that R is non-empty (A recursive
sequence of rationals, for example, belongs to R.) and is closed with re-
spect to a recursive re-enumeration, hence C1 and C2. Suppose {xlm} ∈ R
represented by xlm �D 〈qlmp, γ〉, and the sequence effectively converges to
{xl} with a recursive modulus of convergence ε. In particular, qlmγ(l,m,p) ∈
Up(xlm) and xlε(l,p) ∈ Up(xl).

If we put rlp = qlε(l,p)γ(l,ε(l,p),p), then {rlp} is a recursive sequence of
rational numbers satisfying rlp ∈ Up(xlε(l,p)). On the other hand, xlε(l,p) ∈
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Up(xl) implies Up(xlε(l,p)) = Up(xl) by 1) of Lemma 3. So, rlp ∈ Up(xlε(l,p)) =
Up(xl).

Put next η(l, p) = p. If q ≥ p, then by 2) of Lemma 3, rlq ∈ Uq(xl) ⊂
Up(xl). It thus follows that xl �D 〈rlp, η〉, or {xl} ∈ R.

Theorem 1 (Diagonal computability and ω-computability) A sequence
{xm} ⊂ [0, 1) is diagonal computable if and only if it is ω-computable (cf.
Definitions 73 and 63).

Proof Suppose {xm} is diagonal computable. Then there are recursive
{qmp} and γ such that

∀m∀p∀k ≥ γ(m, p).qmk ∈ Up(xm).

Define rν
mi = qmγ(m,ν)+i. If we put α(ν; m, p) = γ(m, ν + p), then {rν

mi} is
a recursive {ν}-sequence and converges to {xm} effecitvely with recursive
modulus of convergence α shown as follows.

rν
mα(ν;m,p) = rν

mγ(m,ν+p) = qmγ(m,ν)+γ(m,ν+p)

= qmγ(m,ν+p)+γ(m,ν) ∈ Uν+p
ν+p (xm) ⊂ Uν

p (xm).

If j = α(ν; m, p) + l, then

rν
mj = rν

mα(ν;m,p)+l = rν
mγ(m,ν+p)+l = qmγ(m,ν)+γ(m,ν+p)+l

= qmγ(m,ν+p)+(γ(m,ν)+l) ∈ Uν+p
ν+p (xm) ⊂ Uν

p (xm).

We have thus obtained ω-computability of {xm}.
Suppose conversely, that {xm} is ω-computable: xm �ω 〈rν

mi, α〉, where
{rν

mp} is a recursive {ν}-sequence. Define qmp = rp
mp. Then qmp ∈ Up(xm) =

Ip
k for some appropriate k. {qmp} converges to {xm} with modulus of conver-

gence β(m, p) = α(p; m, p)+p as follows. Suppose i ≥ β(m, p) = α(p; m, p)+
p. Then i = α(p; m, p)+j+p. So, qmi = ri

mα(p;m,p)+j+p ∈ U i
p(xm) ⊂ Up

p (xm)
(cf. 1) of Lemma 1), that is, xm �D 〈qmi, β〉.

For a later use, we prove the following lemma.

Lemma 4 We can re-define the diagonal computability as follows. {xm}
is diagonal computable if there is a recursive sequence of rational numbers
{rmp} such that

∀p∀k ≥ p.rmk ∈ Up(xm).

Proof From the original definition, ∀k ≥ γ(m, p).qmk ∈ Up(xm). Define
{rmp} by rmp = qmγ(m,p). Then rmp = qmγ(m,p) ∈ Up(xm). For k ≥ p, put
k = p + i. Then

rmk = rm(p+i) = qmγ(m,p+i) ⊂ Up+i(xm) ⊂ Up(xm)

by 2) of Lemma 3.
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8. D-sequential computability of a function sequence

Let U = 〈X, {Vn},S〉 be an effective uniform space with a computability
structure S. We will consider functions from X to R.

Definition 81 (Sequential computability) A function sequence {fl} is
called sequentially computable in U if, for every sequence {xm} in S,
{fl(xm)} is an R-computable double sequence of real numbers.

Proposition 81 (D-sequential computability of the Rademacher function
system) Let {φj(x)} be the Rademacher function system (cf. Definition
31). Then it is sequentially computable in the diagonal uniform space. (We
will call such a sequence D-sequentially computable.)

Proof Let {xm} be a diagonal computable sequence of real numbers. We
show that {φl(xm)} is an R-computable double sequence of real numbers.
Suppose {xm} is represented by recursive {qmp} such that for all k ≥ p,
qmk ∈ Up(xm) (cf. Lemma 4). There is (classically) a k = kmp such that
Up(xm) = Ip

kmp
, hence, in particular, qmp ∈ Ip

kmp
. Since qmp is a rational

number, the kmp can in fact be computed, by checking

kmp

2p
≤ qmp <

kmp + 1
2p

.

By definition, φp(xm) = φp(qmp), hence to evaluate φp(xm), it suffices to
compute φp(qmp). φp(qmp) (= 1 or = −1) can be determined according to
the parity of kmp (cf. Definition 31). It is then a trivial fact that {φp(xm)}(=
{φp(qmp)}) is a computable sequence of real numbers.

Definition 82 (Effective uniform continuity: Definition 4.5, [10]) A se-
quence of functions {fn} is called uniformly computable in U if it is se-
quentially computable and there is a recursive function α such that

y ∈ Vα(n,p)(x) ⇒ |fn(x) − fn(y)| ≤ 1
2p

(cf. Definition 4.5 of [10]).

Theorem 2 (Uniform computability of the Rademacher function system)
The function sequence {φl} is uniformly computable with respect to {Un}
(cf. Definition 82). We will call this computability “uniformly D-computable.”

The same conclusion holds for the Walsh function system.

Proof D-sequential computability has been proved in Proposition 82.
As for effective uniform continuity, use φp(x) = φp(y) if y ∈ Up(x).

Remark One might view that one could have defined the diagonal uni-
formity from the outset, which would have simplified the entire argument.
Technically that may be so. However, that would not represent our natural
thinking process as was explained in Introduction.
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9. Metrization

Yasugi, Tsujii and Mori [17] showed that the metric induced from a uni-
formity by a general construction preserves effective convergence, and left
it open if it preserves sequential computability. Here we show that such a
metric induced from the uniformity {Un} preserves sequential computabil-
ity.

We will follow [17] and prepare a lemma. Instead of quoting general
definitions of relevant notions from Section 3 of [17], we will give definitions
and equations here just necessary for the purpose.

Lemma 5 {Un} is an “effective sequence of uniform coverings” and is “nor-
mal”.

Proof An effective uniformity is an effective sequence of uniform coverings
(Theorem 3.5 [17]).

We prove that {Un} is normal, that is, U∗
n+1 � Un, where U∗ denotes the

“star refinement” of U , and V � U expresses that X ∈ V implies X ⊂ Y
for some Y ∈ U .

S(x, Un) = ∪{Un(y)|y ∈ Un(x)} = Un(x).

S(Un(x), Un) = ∪{Un(y)|Un(x) ∩ Un(y) �= ∅} = Un(x).

U∗
n+1 = ∪{S(Un+1(x), Un+1)|x ∈ I}

= {Un+1(x)|x ∈ I} = Un+1.

U∗
n+1 = Un+1 � Un

for
∀x ∈ I.Un+1(x) ⊂ Un(x).

In order to attain our major purpose, we first define and evaluate some
quantities.

V (x,
1
2n

) = S(x, Un) = Un(x);

Suppose

r =
1

2i1
+

1
2i2

+ · · · + 1
2ik

, i1 < i2 < · · · < ik.

Then
V (x, r) = S(· · ·S(S(x, Ui1), Ui2), · · · , Uin)

= S(· · ·S(Ui1(x), Ui2), · · · , Uin).

S(Ui1(x), Ui2 ) = ∪{Ui2(y)|Ui1(x) ∩ Ui2(y) �= ∅}

= ∪{Ui2(y)|y ∈ Ui1(x)} = Ui1(x)
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From this follows that in fact

V (x, r) = Ui1(x),

that is,V (x, r) is determined by i1 alone.
Using this fact, we can define successively the following fx(y), d∗x(y, z)

and d(y, z).

fx(y) := sup{r|y ∈ V (x, r)c} = sup{r|y ∈ U c
i1(x)}.

If x = y, then fx(y) = 0, and otherwise fx(y) = 1
2i0 , where i0 is the last

i such that y ∈ Ui(x). For, suppose i1 = i0 + 1. Then y /∈ Ui1(x), and for
r = 1

2i1 + 1
2i2 + · · · , i1 < i2 < · · · , sup r = 1

2i0 .

d∗x(y, z) := |fx(y) − fx(z)| = |( 1
2i0

)∗ − (
1

2j0
)∗|,

where (a)∗ represents either a or 0 as the case may be.

d(y, z) := sup
x

d∗x(y, z) =
1

2i∗ , (∗)

where i∗ is the last i such that for a k ≤ 2i − 1, y, z ∈ Ii
k, for, d∗x(y, z)

attains its maximum when y = x or z = x. This is shown as follows. We
may assume for a fixed x that ( 1

2i0 )∗ ≥ ( 1
2j0 )∗ holds. Now to maximize

d∗x(y, z), it suffices to put ( 1
2j0 )∗ = 0, or z = x.

Remark It is known that two notions of effective convergence, one with
respect to an effective uniformity (here {Un}) and one with respect to the
derived metric (here d), are equivalent (cf. [17]).

Corollary 1 For R-computable y and z, d(y, z) is R-computable.

Theorem 3 (Preservation of sequential computability) d preserves com-
putability, that is, for diagonal computable sequences of real numbers in I,
say {xi} and {yj}, {d(xi, yj)} is an R-computable double sequence of real
numbers.

Proof Let {xi} and {yj} be diagonal computable sequences, respectively
represented by {rip} and {sjp}. Recall that they satisfy the following.

∀k ≥ p.rik ∈ Up(xi), ∀l ≥ p.sjl ∈ Up(yj)

(cf. Lemma 4). Notice that Up(xi) = Ip
u for some u = uip ≤ 2p − 1 with uip

recursively determined by the relation rip ∈ Ip
uip

. Similarly Up(yj) = Ip
vjp

with vjp recursively determined by {sjp}.
Now define a triple sequence of rational numbers in I, {tijq}, as follows.
Let R(i, j, p) denote the relation uip = vjp ∧ ui(p+1) �= vj(p+1), and put

p0 = the least p such that p < q and R(i, j, p)
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depending on i, j, q. Now put tijq = 1
2p0 if there is a (least) p as above. If

uip = vjp for all p ≤ q, then put tijq = 1
2q . {tijq} is recursive, and wij =

limq tijq = 1
2p if there is a (least) p such that R(i, j, p). wij = 0 otherwise.

The convergence to the limit is effective since |wip − tijq | ≤ 1
2q holds, and

hence {wij} is a computable double sequence of real numbers. Furthermore,
d(xi, yj) = wij . So, {d(xi, yj)} is a computable double sequence.

Remark 1) The metric d as above induced from the uniformity {Un} by
a general metric construction is closely related to Fine metric. We plan to
relate various notions of computability of a function or a function sequence
with respect to Fine metric (cf. [4],[5]) to our theory of {Un}.

2) The general theory of an effective sequence of uniformities is yet to
be worked out. It is expected to have wide applications to the computability
problems of piecewise continuous real functions.
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