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1 Introduction

It is important and mathematically significant to review some theories of math-
ematics from an algorithmic standpoint.

In studies of algorithm in analysis, one puts the basis of considerations on the
computability of real numbers and the computability of continuous functions.

Here a real number x is said to be computable if there is a sequence of rational
numbers (fractions) {r,} which approximates & and satisfies the following two
conditions.

(1) The fractional sequence {r,} is recursive.

(2) There is a recursive modulus of convergence (approximation).

When the condition (2) holds, we say that x is effectively approximated
by {rn}, or {r,} effectively converges to x. In general, we use the expression
effective when a condition similar to (2) is satisfied.

A computable sequence of real numbers can also be defined in a similar
manner. One needs the computability of a sequence of real numbers when one
has to refer to the limit.

The family of all computable sequences of real numbers is called the com-
putability structure of the field of real numbers.

The computability of a continuous real function on a compact interval with
computable end points can be defined in a natural manner. A real function f
(on a compact interval) is computable if the following hold.

(3) f preserves sequential computability, that is, for any input of a com-
putable sequence of real numbers, its output by f is also a computable sequence.

(4) f has a recursive modulus of uniform continuity.

Computability on an open interval can be defined in terms of an approxima-
tion of the interval by a sequence of compact intervals and a modulus of uniform
continuity which is recursive relative to the approximating intervals.

These notions of computability respectively of a real number (a sequence of
real numbers) and of a continuous function (a sequence of continuous functions)
are generally agreed to be natural and in a sense the strongest.



According to the definition described in (3) and (4) above for a continuous
function, computability means that there is a way to nicely approximate the
values for computable inputs, and this notion depends on the continuity.

Very often, however, we compute values and draw a graph of a discontinuous
function. We can, let Mathematica, for example, draw graphs of some discon-
tinuous functions. We thus expect that some class of discontinuous functions
can be attributed a certain kind of computability. In an attempt of computing
a discontinuous function, a problem arises in the computation of the value at
a jump point (a point of discontinuity). This is because it is not in general
decidable if a real number is a jump point, that is, the question “z = a?” is not
decidable even for computable x and a.

(For the subsequent discussion, let us here note the following: =, <, < on
natural numbers and fractional numbers are decidable. a < b is decidable for
computable real numbers a and b, while a = b and a < b are not necessarily
decidable even for computable real numbers.)

One method of dissolving this problem was proposed in [10] by Pour-El and
Richards. It was a functional analysis approach, that is, a function is regarded
as computable if it can be effectively approximated by effectively enumerated
rational coefficient polynomials with respect to the norm of a function space,
such as a Banach space or a Fréchet space.

In such a case, a function is regarded as computable as a point in a space.
This is sufficient in order to draw a rough graph of the function, but does not
supply us with information when computing individual values.

There are many ways of characterizing computation of a discontinuous func-
tion. Here we will report some of the approaches to this problem which we have
undertaken so far.! One is to express the value of a function at a jump point
in terms of limiting recursive funcions instead of recursive functions ([16]). An-
other is to change the topology of the domain of a function ([12]). In fact they
are equivalent ([18]).

This is a report of our joint works with V.Brattka, T.Mori, Y.Tsujii and
M.Washihara. References of related works and some other approaches are listed
in References, details of which will not be mentioned here. Pour-El theory as
well as its succeeding works on computability structures for Fréchet spaces and
metric spaces are also explained in [20].

2 Preliminaries

The basic definitions below are taken from [10]. A sequence of ratinal numbers
{rn} is called recursive if

_ m (1)
n = (—1)7 )m

with recursive 3,7 and J.

1This work has been supported in part by JSPS 12440031 as well as by KSU-Project03.



A real number z is called computable (R-computable) if

1
Ym > a(p).je —rm| < %

for recursive o and {ry,}. We will express such a circumstance as z >~ (1, a).
These definitions can be extended to a computable sequence of real numbers.
A real (continuous) function f is computable (R-computable) if the following
hold.
(i) f preserves sequential computability, that is, for a computable {x,},
{f(zn)} is computable.
(ii) f is continuous with recursive modulus of continuity, say [;

Vp¥n € NTVE > B(n,p)Vo,y € [n,n + 1].
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v —yl < 55 = [f@) = F)] < 5.

This can be extended to a computable sequence of functions.

3 Computation in the limit

As a start, we will try to compute g(z) = 3[z], where [z] is the Gaussian
function, according to [16].

Let = be a computable real number with « ~ (r,,,a), and let us consider
how to compute the value g(z). For the sake of simplicity, we assume z > 0.
From the information on z, one can effectively find an n such that n < z < n+2.
Then check

Tap) < (n41) —=1/27 7

According to the answer to this inquiery, we define a sequence of integers { N}
as follows. While the answer is No, put N, = n + 1. Once the answer becomes
Yes at p, then put N, = n for all g satisfying ¢ > p. The sequence {N,} is
well-defined and recursive.

Define next a recursive sequence of rational numbers r, = % IfN,=n+1

holds for all p, then the limit of the sequence {rp} is "TH; otherwise, the limit
is Z. In either case, the sequence {r,} approximates the value 1[z]. For each

case, there is a recursive modulus of continuity; only, we cannot decide which is
the case.

This undecidability indicates that, although there is a computation algo-
rithm for each z, it does not guarantee a master program to compute the value
%[m] Indeed, there is a computable sequence of real numbers {z,} for which
the sequence of values {3[z]} is not computable. On the other hand, if we allow
a limiting recursive function for a modulus of convergence, then we can claim
the following: for any computable sequence of real numbers {z,,}, there is a
recursive sequence of rational numbers {g,,;} which approximates {3 [z.,]} with
a modulus of convergence which is limiting recursive.

The limiting recursive function is defined as follows.



Definition 3.1 (Limiting recursive function: Gold[4]) Let r, s > 0 be integers
and let g and ¢q, - -, ¢, be recursive functions. The partial function h defined
as follows will be called limiting recursive:

h(p17 o 7ps) = 117?19((51(71)7 o '7&7"(”);1915 T apsan)7

where ¢(n) is a code for the finite sequence

<¢(Oap1a' "aps)a' "a¢(nap1a' "aps)> .

Examples
h(p17 e 7ps) = thLn¢(nap17 e aps)'

h(p1,---,ps) =the least value of ¢(n,p1,---,ps) with respect to n.

There are many examples of real functions which can be computed using
the limiting recursive modulus of convergence: see examples below. They are
all piecewise continuous functions, jumping at some computable points. It is
hence sensible to confine ourselves to such functions as a start of studying com-
putability problems of discontinuous functions.

Examples ([16], [21]) h(z) =z — [z]; |z[=n if and only if n < z < n +1;
o(z) = 1(z € (0,00)),= 3(z = 0),= 0(z € (—00,0)); the Rademacher function

system; 7(z) = tanz if 22871 <z < 2837 and 7(z) = 0 if 2 = 2%H 7.

4 Topological computability

In computing the values or drawing the graph of a piecewise continuous function,
it is a usual practice to first compute the value or plot a dot at a jump point, and
then compute values or draw a curve on the open interval where the function is
continuous. Such an action corresponds to the mathematical notion of isolating
the jump points. We are thus led to the uniform topology of the real line induced
from the Euclidean topology by isolating the jump points.

Let X be a non-empty set.

A sequence {V,,}nen such that V,, : X — P(X) is called a uniformity if it
satisfies some axioms, say, Axioms A; ~ As (to be stated below). In particular,
A; and As can be unified to

NV (z) = {z}.

We will state Axioms Az ~ As in the form of effective uniformity. 7 = (X, {V,})
forms a uniform topological space. Subsequent definitions are due to [12].

Definition 4.1 (Effective uniformity) A uniformity {V,,} on X is effective if
there are recursive functions a1, as, ag which satisfy the following.

Vn,m € NVz € X, V,, (n,m)(x) C Vo(x) N Vi () (effective As);

Vn e NVz,y € X,z € Vo,(n)(y) — y € Viu(z) (effective Ay);
Vn € NVz,y,2 € X, 2 € Voy(n)(¥),y € Vagn)(2) = 2 € Viu(2)  (effective As).



Definition 4.2 (Effective convergence) {xr} C X effectively converges to = in
X if there is a recursive function v satisfying VaVk > vy(n)(xp € Vi (x)).
This can be extended to effective convergence of a multiple sequence.

Definition 4.3 (Computability structure) Let S be a family of sequences from
X (multiple sequences included). S is called a computability structure if the
following hold.

C1: (Non-emptiness) S is nonempty.

C2: (Re-enumeration) If {zx} € & and « is a recursive function, then
{xo{(i)}i eS.

This can be extended to multiple sequences.

C3: (Limit) If {z;;} belongs to S, {x;} is a sequence from X, and {z}
converges to {x;} effectively, then {z;} € S. (S is closed with respect to effective
convergence.)

This can be extended to multiple sequences.

A sequence belonging to S is called computable, and x is computable if
{z,z,---} is computable.

We will henceforth consider the space

CT = <X7 {Vn}7a1;a27a3;8> .

Definition 4.4 (Effective approximation) {ey} € S is an effective approzimat-
ing set of S: V{x;} computable, there is a recursive function v such that

VnVl(ey(n’l) S (l‘l))

Definition 4.5 (Effective separability) Suppose{e} is an effective approxi-
mating set and dense in X:

VnVa3k(er € Vo (z)).
Then Cr is effectively separable, and {ey} is called an effective separating set.

Note Classically, a general method to define a metric d* from a countable
uniformity is known. It is an open problem if this induced metric preserves
computability. We can, however, show that, effective convergence respectively
with respect to an effective uniformity and with respect to the induced metric
are equivalent ([19]).

Definition 4.6 (Relative computability) (1) f : X — R is relatively com-
putable (with respect to S) if:

(i) f preserves sequential computability, that is, if {x,,} is Er-computable,
then {f(z,)} is an R-computable sequence of real numbers.

(ii) For any {z,,} € S there exists a recursive function y(m, p) such that
Y € Viimp) (zm) implies |f(y) — f(2m)| < QLP

(2) (1) can be extended to a sequence of functions.



Definition 4.7 (Computable function) (1) f: X — R is computable if the
following hold.

(i) f preserves sequential computability.

(ii) f is relatively computable, and there exist an effective approximating
set, say {ex} € S, and a recursive function vo(k,p) for which

Y € Voo (p) (ex) implies | f(y) — fler)| < 5
and -
U V’Yo(k7p)(ek) =X
k=1

for p.
(2) (1) can be extended to a sequence of functions.

Definition 4.8 (Uniform computability) f is uniformly computable if f pre-
serves sequential computability and there is a recursive modulus of uniform
continuity for f.

We will henceforth confine ourselves to real functions, and assume the nota-
tions below. Most of the subsequent definitions and results are taken from [18].

[Assumption] {aj;}rez will denote an R-computable sequence satisfying the
following.

ar < agy1,  Uglar,ap1] = R, ap = (vgp, 7)

where R is the set of real numbers and {vk,} and « are recursive.

Definition 4.9 (A-uniformity) Ay = {ax}, Jx = (ak, ax+1), J = UrJk,
A:{aklkEZ}ZUkAk, Ar =AU J,
(As a set, AR = R)
n=12,3,---, x € AR;
Un(z) :={z} ={ar} if x € Ay;
Un(z) :={y:y € Ju, |z —y| < 5=} if x € Jj,
A= (AR, {Un})

Notice that Ag = R as sets.
Corollary 1 {U,} is an effective uniformity on Ar (A-uniformity).

Definition 4.10 (A-computability) Ag =JNQ;

tk (t-symbol) will denote a “symbolic name” for ay,.

AEQ =AgUUkez{tk};

{qun} C AJ is called an A-sequence if, for each y, 3k € Z, gy = . for all
por {gun} C Ji

An A-recursive sequence is a recursive A-sequence.



For {z,,} C AR,

{xm} ~A <an7 aA(map)> (*)

will denote the following relation:
{an} C Jk if Tm € Jka {an} = {Lk} if Tm € Akv and

1
VL2 ca(m,p)(m = amila < 55) ()

if ¥y, € Ji (la —bla = |a =0, a,b € J).

{@mn} is said to effectively .A-approximate {x,,} with modulus of conver-
gence a4.

Similarly, for {z;m,} C Ar,

{xim} ~A <qimn7 aA(iv mvp» (*)

can be defined.

{zm} C Ar is A-computable if it is effectively approximated by a recursive
A-sequence {gmn} C A7 with a recursive modulus of convergence aa(m, p),
that is, (*) holds.

x is A-computable if {z,z,z, -} is A-computable.

{en} will denote an effective enumeration of Ag U {ay}.

Proposition 4.1 (R- and A-computable real) For a single real number z, x
is R-computable if and only if x is A-computable.

Theorem 1 (Computability structure S4) Let S4 be the family of computable
sequences as defined in Definition 4.10. Then (AR, {U,},{en},S4) is an effec-
tive uniform space with an effective separating set {e,}.

Examples ([12]) Consider the space (Ar,{U,},{en},Sa) with ax = k. In
this space, the function g(z) = %[x] is uniformly computable.

The function f defined by f(n) = n for n € Z (the set of integers) and
fz) = m—ik on Jyj is computable but not uniformly computable.

Consider J = Ui (k,k + 1) and let Sy denote the set of alll sequences from
S 4 which lie in J. It is a computability structure on Agr. Let f be the function
f(z) = x. Then f is relatively computable with respect to Sy but not computable
with respect to it.

Take the computability structure Sz, that is, the subfamily of S4 whose
sequences lie in Z. Define f(z) = [z + 1]. f is relatively computable with
respect to Sz but not continuous.

Similarly to A, we can change the topology of a subset of R. Using this
idea applied to the interval [0,1], we can further supply some examples and
counter-examples.

Example Let X = [0,1], and let X4 be the set X regarded as the disjoint sum
of {0} and (0, 1]. Define V;(0) = {0} and Vi(z) = B(z, 3r) N (0, 1] for z € (0,1].
X4 with {V;} is an effective uniform topological space.

Consider the function f(z) = 2 on (0,1] and f(0) = 0. f is computable on
X 4, but not uniformly computable.



5 Equivalence

As for a sequence of real numbers, R-computability and .A-computability can be
related in a certain way. As for a real function, the sequential computability with
respect to the Euclidean topology and the sequential computability with respect
to the uniform topology are equivalent (without any assumption). To state these
facts, we will first introduce a limiting recursive sequence (of natural numbers).
All the subsequent definitions and results are due to [18]. [Assumption] in the
previous section is still assumed.

Definition 5.1 (Judging sequence) Let A and B be recursive relations defined

as follows. 4
A(map) : |vkm+17(km + ]-ap) - rm(y(m,p)| < 2_;0’

4
B(m,p) : Wk +19(km+10) ~ Tmatmp)| > 55

(Notice that either IpA(m,p) or VpB(m,p) holds.) Define next a recursive
sequence of natural numbers {N,,;,} and a limiting recursive sequence {l,,}.

Npp =0 if A(m,p),
Nmp =1 if B(m7p)a

Ly = lim N,y
p

(I, = 0 if and only if IpA(m, p); L, = 1 if and only if VpB(m, p).)
{l;»} is a limiting recursive sequence of natural numbers, which will be called
a judging sequence (judging which of the two cases holds).

Theorem 2 (Two computabilities of real numbers) (1) Suppose , >~ (rmn, &)
is R-computable. Then we can construct an A-computable double sequence of
real numbers, say {zmp}, which converges to {z,,} with a modulus of conver-
gence v which is “recursive in {l,,}.”

(2) Suppose {z,,} is an A-computable sequence of real numbers with z,, ~4
(@mn,aa). Then {x,,} is R-computable.

Definition 5.2 (Sequential computability) (1) f is £-sequentially computable
if, for any R-computable {z,,} (2, =~ (rmn,a)), one can construct a recursive
sequence of rational numbers {s,,,} and a function ¢ which is “recursive in {i,, }”
such that {s,,,} approximates {f(x,,)} with ¢ as a modulus of convergence.

(2) f is A-sequentially computable if, for any A-computable sequence of
real numbers {x,,}, we can construct a recursive sequence of rational numbers
{smp} and a recursive function § such that f(zm,) =~ (Smp, 5)-

Theorem 3 (Equivalence) As for a real function f, two notions of sequential
computability as defined in Definition 5.2 are equivalent (without any assump-
tion).



(1) (From L to.A) An L-sequentially computable function f is A-sequentially
computable.

(2) (From Ato £) An A-sequentially computable function f is £-sequentially
computable.

We now turn to piecewise continuous functions, and define a notion of com-
putability which we regard natural and productive.

Definition 5.3 (Piecewise computable function) f: R — R is piecewise com-
putable if the following hold.

(i) For each R-computable real number x, f(z) is R-computable.

(ii) There is a recursive function x with which, for any z,y such that ax <

2.y < i and [z — y| < gakr, [F(@) — F@)] < 5.

Definition 5.4 (Para-computability) A real function f is para-computable if
f is L- (hence A-) sequentially computable and is piecewise computable (cf.
Definition 5.2, Theorem 3 and Definition 5.3).

Note (ii) of Definition 5.3 requires that f be effectively uniformly continuous
on each interval (ag, ar+1). In fact, we can lift this condition in order to cover a
wider range of piecewise computable functions, details of which will be omitted
here.

The examples in Sections 3 and 4 are para-computable in the extended sense
of Note above.

6 Appendix: Computability as a locally inte-
grable function

At the end, let us briefly explain a function space approach to the computability
of some piecewise continuous functions.

The family of real functions which are integrable on each compact set [—k, k]
for every integer k forms a Fréchet space with the sequence of semi-norms

= [ il

Let us denote this space with (L{,.(R),{px}), or LOCfor short.

As a generating set of the space LOC, take for example the sequence of
monomials 1,z,2% 23, --- 2", --.. That is, every function in £LOC can be ap-
proximated by a sequence of rational coefficient polynomials, or the linear span
with respect to rational coefficients is dense in LOC.

A function in LOC can be defined to be computable if it is effectively ap-
proximated by a recursive enumeration of rational coefficient polynomials with
respect to the semi-norms {px}. The sequence of monomials can therefore be
regarded as an effectively generating set in LOC.

The para-computable functions in the sense of Definition 5.4 are computable
in this sense.
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