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Abstract

The major objective of this article is a refinement of treatments of the
mutual relationship between two notions of sequential computability of
a function which is possibly Euclidean-discontinuous, one using limiting
recursion and one using effective uniformity. We also speculate on these
methods from a mathematician’s viewpoint.

1 Introduction

The objective of this article is to distill the general situation in which two meth-
ods of computing some Euclidean-discontinuous functions become equivalent.
Those are the methods developed respectively on “effective uniformity” and on
“limiting recursion.” In so doing, we speculate on the two notions of “sequential
computability.”

*e-mail: yasugi@cc.kyoto-su.ac.jp This work has been supported in part by Research Grant
from KSU No.113 and No.114.



The domain of our discourse is the real line or a subinterval of the real line
as well as some (possibly Euclidean-discontinuous) functions on it.

It has been an old practice to review mathematics from the algorithmic view-
points. It is based on the recursive function. On the continuum, a computable
object is approximated by a recursive sequence of rational numbers or a recur-
sive sequence from a discrete structure with a recursive modulus of convergence
(effective approximation).

Investigation of computability on the continuum is based on the “computable
sequence of reals.” Computability of real functions was originally defined for
continuous functions (cf. Chapter 0 in [5], for example). A continuous real func-
tion is called computable if it maps any computable sequence of real numbers to
a computable sequence (sequential computability), and it has a recursive modu-
lus of continuity (effective continuity). The sequential computability is required
for the following reason. In order to claim that a function be computable, one
must have a general algorithm to compute the value of that function for any
computable real number. In order to secure it, it is known to be sufficient to
assume the sequential computability.

One might expect that one can compute the values of a function without
the assumption of (effective) continuity, but it is not so. A simple function such
as the integer-part function [z] (called also the GauBlian function), which jumps
at each integer but is continuous (constant) on the interval of two adjacent
integers, does not preserve sequential computability ([9]).

Such a problem has been discussed in [9], [8], [10]. In fact, we easily compute
such a function at any (computable) point. We know that, for any integer n,
on the interval [n,n + 1), [z] satisfies the requirements on the computability of
a continuous function (and the value is n). It is all too easy! Of course there
are many Euclidean-discontinuous functions which are far more complex than
[x] and still maintain some notion of sequential computability.

We wished to express such an intellectual activity of the human mind in a
mathematical language, and have proposed two such treatments: one expressing
such a computation in terms of “limiting recursive functions” of natural numbers
([9], [8]), and one in terms of “changing topology” of the domain of a function,
thus regarding a (Euclidean-) discontinuous function like [z] as continuous in
the new topology so that we can conceive the computability of a function as
that of a continuous function ([6]).

Both methods have been well developed and applied to many examples of
Euclidean-discontinuous functions ([7], [9], [11], [12], [14]). Analyzing these
individual treatments, we have pinpointed a general framework under which two
notions of sequential computability concide. The framework will be introduced
as the assumption [A] and the condition [C] in Section 3. In this framework,
the equivalence of the two notions (methods) is mathematically established. On
the other hand, each of them can be interpreted as expressing a certain human
intellectual activity of a same phenomenon from different viewpoints.

It is notable that this equivalence holds notwithstanding that the two ap-
proaches are methodologically quite different. This disparity has forced the
author to speculate on the meaning of the two approaches. As for the limiting



recursion method, we have already discussed its signigicance and problems in
[8]. Here we will put emphasis on the contrast between the two methods.

To us, the method of uniform spaces is the most natural and intuitive. It
represents the freedom that our mind enjoys.

We present very briefly in Section 2 some basics of computability on the con-
tinuum. No mathematical details will be supplied except for what is necessary
for our present purpose. For basics of computability in analysis, we refer the
reader to [5] and [13].

Our interest lies in a real function which is Euclidean-discontinuous but is
farily tame so that one can attribute to it some kind of computability property.
We will hence set up a framework to meet our purpose in Section 3. Two
(extended) notions of “sequential computability” of a function in our framework
are then formulated in Section 4.

Our main mathematical result, the equivalence of the two notions of sequen-
tial computability in our general framework, is proved in Section 5.

An example of computation in the respective method according to our frame-
work is explained in Section 6. The article is concluded with a speculation on
the limiting recursion versus effective uniformity in Section 7.

We have also worked on a sequence of uniformities and its limit; some math-
ematical results as well as the significance of such a theory are seen in [10].

2 Preliminaries

We will list some of the basic notions and notations which are just necessary to
our discussion.

Definition 2.1 (Computable real sequence) (i) A sequence of real numbers
{zm,} is called R-computable (computable in the Euclidean topology) if the
following hold ([5]).

(1) There is a recursive (double) sequence of rational numbers {r,,,} which
approximates {Z,} .

(2) There is a recursive modulus of convergence of {rm,,} to {z,,}, say S,

that is,
1

n > ﬁ(m)p) - |£L’m - Tmn| < %

In such a case, and in any similar situation, we say that {rm..} effectively
approximates (converges to) {x, }.

(ii) A number-theoretic function 7 is called after Gold [2] limiting recursive
if it is defined to be the limit of a recursive function, that is, there is a recursive
function h satisfying n(p) = lim,, h(p,n) if the limit exists. (In fact, a function
which is recrusvie in a limiting recursive function will also be called limiting
recursive.)

(A formal treatment of mathematics with limiting recursion has been devel-
oped in [3].)

(iii) Ifin (2) of (i) above the recursive 3 be replaced by a limiting recursive
n, then we say that {z,,} has a weak representation by {rm,} and 7.



We will define the effective uniform topology on an arbitrary non-empty set
X although the universe of our discourse is the set of real numbers R or its
subinterval. N will denote the set of positive integers {1,2,3,---}. (We have
employed the definition of (classical) uniformity in [4].)

Definition 2.2 (Effective uniformity:[6]) A uniformity {U,} on X is called an
effective uniformity if U, is a map from X to the powerset of X, and there are
recursive functions a1, as, a3 which satisfy the following.

Vz € X.[\Un(z) = {z}.

Vn,m € NVz € X.Uq,(n,m)(2) C Un(z) N Up(z).
Vn € NVz,y € X.2 € Upgy(n)(y) = y € Un(x).
Vn € NVz,y,2 € X.2 € Usyn)(y) ANy € Usyn)(2) = = € Un(2).

It is known that ¢ = (X, {U,}) is a uniform toplogical space with {U,(z)}
as the system of fundamental neighborhoods.

Effective convergence and the “computability structure” on U = (X, {U,})
are also defined in [6].

Definition 2.3 (Effective U-convergence:[6]) A double sequence {r,} from
X is said to effectively U-converge to a sequence {z,,} if there is a recursive
function v satisfying YmVnVk > v(m,n).xmr € Un (@ ). We also say that {z,}
is the effective U-limit of {r,,} and ~.

If in this definition 7 is replaced by a limiting recursive function n, then we
say that {z,,} has a weak U/-representation by {r,..} and n.

Definition 2.4 (/-computable sequences) Let X be R. A sequence of real
numbers {z,, } is called U-computable if {x,,} is the effective ¢/-limit of a recur-
sive sequence of rational numbers {r,,, } and a recursive function ~.
The definition can be extended to any multiple sequence of real numbers.
A real number z is called U-computable if {z,z,z, -} is.

The set of U-computable sequences (multiple sequences included) is closed
under any recursive re-enumeration and the effective {/-limit.

Proposition 2.1 (Recursive sequence of rationals) A recursive sequence of
rationals (hence of natural numbers) is U/-computable.

It is known that the set of {/-computable sequences has a nice property, but
we will not go into details. In all the examples we have been concerned with,
a U-computable sequence of real numbers is R-computable, but not conversely,
while a single real number is {/-computable if and only if it is R-computable.



3 Framework

We will here set up a framework in order to attain our purpose. We will first
place an overall assumption.

Assumption [A] We work in an effective uniform space & = (R, {U,}), and
assume that (***) R-computable numbers and U/-computable numbers concide
and (***) that every U-compurable sequence is R-computable.

We further assume a condition on U, denoted by [C].

Condition [C] on ¢/ Given an R-computable sequence {z,,}, there is a U-
computable sequence {zmp} and a limiting recursive function v such that {z,,}
has a weak representation by {z,,,} and v (cf. Definition 2.3), that is,

Vm,n¥p > v(m,n).zmp € Un(Zm). (1)

Proposition 3.1 If {z,,} is U-computable, then v can be recursive, since by
definition z,,p, = =, will do.

Definition 3.1 (Framework) The framework of our study of real functions con-
sists of [A] and [C].

Note (i) The condition [C] signifies that an R-computable sequence may not
be U-computable, but it is “almost” I/-computable.

(ii) All the uniform spaces we have dealt with satisfy the assumption [A]
and the condition [C] ([6], [7], [10], [11], [12]).

4 Sequential computabilities

We subsequently define two notions of sequential computability of a real function
within the framework of Section 3. Although the definitions are stated for
the function whose domain is the whole real line, the definitions can be easily
modified to any interval with computable end-points.

Definition 4.1 (Sequential computability of a function:[11]) (i) (£-sequential
computability, relative to v) f is L-sequentially computable if, for any R-
computable sequence of real numbers {z,,}, the sequence of function values
{f(z.)} is weakly represented, that is there exist a recursive sequence of rational
numbers {sm.»} and a function n which is recursive in v (as claimed in [C]) so
that {f(zm)} is U-approximated by {s,.,} with a limiting recursive modulus of
convergence 1.

(ii) (U-sequential computability) f is called U-sequentially computable if,
for any U/-computable sequence of real numbers {z,, }, the sequence of function
values {f(zm)} is R-computable.

Note It should be noted that the input sequence {z,,} is computable in the
above definition. Our interest is to see how a function (its values) behaves for
computable inputs.



5 Equivalence results

We will prove the equivalence of two notions of sequential computability of a
real function as has been defined in the previous section in the general framewok
of Section 3. The proof is similar to the one in [11] for a special case.

Theorem 1 (From L-sequential computability to U/-sequential computability)
If fis L-sequentially computable (relative to v), then f is U-sequentially com-
putable.

Proof of Theorem 1 Suppose f is L-sequentially computable, and let {z,,}
be U-computable. Then, by [A], {z.,} is R-computable. So, by L-sequential
computability, there is a recursive sequence of rational numbers {t,,,} and a
function ¢ which is recursive in v (cf. [C]) satisfying

1
Vm, pVq > n(m, p).|f (Tm) — tmg| < %"

By virtue of Proposition 3.1, one can take a recursive v for such a sequence
{zm}, and so we can take a recursive n so that {f(zm,)} is R-computable by
{tmq} and 7, and hence f is U-sequentially computable.

Notice that so far we have not assumed any kind of continuity on the function
f- The converse of Theorem 1 will be proved under a weak kind of effective U-
continuity, which claims that a function is fairly well-behaved.

Definition 5.1 (Relatively effectively U/-continuous function:[6]) A function
f is called relatively effectively U-continuous if the following holds. For any
U-computable sequence {z,,}, there is a recursive function y(m,p) such that

Y € Uy(m,p)(Tm) implies |f(y) — f(zm)| < zlp

Theorem 2 (From U-sequential computability to £-sequential computability)
If f is U-sequentially computable and relatively effectively {/-continuous, then
f is L-sequentially computable.

Proof of Theorem 2 Suppose f is U-sequentially computable. Let {z,,} be an
R-computable sequence of real numbers. Then by the condition [C], there is a
U-computable sequence {zn,} and a limiting recursive function v as in Equation
(1) of Section 4. Since {2z} is U-computable, {f(zmp)} is R-computable, and
hence it is approximated by a recursive sequence of rational numbers {s.,q}
and a recursive function 3, that is,

1

l Z 6(m7q>n) - |f(zmq) - qul| < 2_n (2)

Then define a recursive sequence of rational numbers {tm,,} by

tmn = Smng(m,n,n)- (3)



Recall that, since f is relatively effectively {/-continuous,

(4)

Zmg € Us(m,n) (¥m) = |f(2mq) = flam)| < o

In (1), put n = y(m,n). Then we have
q> V(mﬁ(ma")) — Zmgq € U'y(m,n) (mm) (5)

Combining Equations (4) and (5) as well as Equations (2) and (3), we obtain
that, if ¢ > max(v(m,y(m,n)),n), then since 2%1 < 2%,
1
[f(@m) = tmgl < [F(@m) = F(zma)| + |f (2mq) = tmgl < 257 (6)
So, with n(m,n) = max(v(m,y(m,n +1)),n+ 1), {f(xm)} is weakly repre-
sented by {tmn,} and n since 7 is recursive in v.

Note (i) It is worth noticing that separability of the uniform space is not
assumed in the equivalence proofs.

(ii) Theorem 2 is proved under the relatively effective ¢/-continuity of f. Rel-
atively effective /-continuity is a preliminary condition of effective U/-continuity
of a function, but is much weaker than effective U/-continuity (cf. [6]). Since
the uniformity has been introduced to make a function continuous in the new
topology, relative U/-continuity is a reasonable condition to be assumed.

6 Example of seuential computation

There are many examples whose sequential computabilities have been success-
fully treated; among them are the Gaufiian and the Rademacher functions ([6],
[9], [14]), and Brattka’s Fine continuous function ([1]). Brattka’s function is an
example of a Fine continuous but not locally uniformly Fine continuous function.

Here we explain how the requirements of the framework are met and how
sequential computability can be established with an easy example of the Gaufian
function [z], by partly reviving the corresponding content in [9)].

Recall that the value [z] is an integer, a computable number, for any real
number z. There is thus no sense in questioning about the computability of the
function value at a single point x. It is computable. With a sequence of values,
it takes on a new aspect.

We define an R-computable sequence of rational numbers, {z,,}, which is
not recursive. Let a : N — N (n = 1,2,3,---) be a recursive injection whose
range is not recursive. Consider the sequence of reals {x,,} defined by

S 1— 3 if m = a(l) for some [,
™1 otherwise.

{zm} is computable since it is effectively approximated by {r} defined below
with a recursive modulus of convergence, say a.

S 1— 5 if m=a(l) for some | <k,
mk= 1 otherwise.



From the definition we have

(o] = 0 if m = a(l) for some I,
™71 1 otherwise.

Now, suppose {[z,,]} were a computable sequence. Then, it can be shown
(similarly to Example 4, Chapter 0 of [5]) that the range of a would be recursive,
yielding a contradiction. So, {[z,,]} cannot be an R-computable sequence.

This counter-example assures us of the following fact: the Gauflian function
does not necessarily preserve R-sequential computability.

With the function [z], we associate a uniform space U = (R, {U,}) by mu-
tually isolating the half-open intervals [[,] + 1) for all integer [. Namely,

1 1
Un(z) = (x — 2—n,a:+ 2—n) Nni,l+1) if zell,l+1).
Corollary 1 A U/-computable sequence is R-computable, and hence the as-
sumption [A] is satisfied in U.

Proposition 6.1 The sequence {z,,} deinfed above is not {-computable.

Proof Suppose {z,,} were U-sequentially computable. Then there are a recur-
sive sequence of rational numbers, say {smi} and a recursive function 7 such
that Vk > v(m, n).smk € Un(@m ). Then

Sm,y(m,1) € [0, 1) S xy, <1,

and since the left-hand side is effectively decidable (recursive in m), so is the
right-hand side. But then the range of the function a would be recursive, con-
tradicting the property of a.

Proposition 6.2 The sequence {z,,} has a weak U-representation and hence
satisfies the condition [C].

Proof As for {z,}, it suffices to take {rn}. Since this is a recursive sequence
of rational numbers, it is ¢-computable (Proposition 2.1). Define a function h
as follows.

h(m,k)=1 if VI<korn =1,

h(m,k) =ko+ 1 if ko is the least | < k.rpy < 1
h is recursive, and it is easy to see that v(m) = limy h(m, k) exists. v(m) =1
or = ko, and v serves as the modulus of convergence of {r,,,} to {zm}.

Now, an attempt of computing {[z]} goes very roughly like this (cf. [9],[8]):
It can be decided that 0 < z,, < 2 for all m. In order to determine whether
0 <z, <1orz, > 1, we define a recursive sequence of rational numbers
(integers as a matter of fact) {N,,,} as follows.

_ 1 lf rma(m,p) Z 1-— 2%,,
Nmp o { 0 if Tma(m,p) < 1-— 2%,.



It can be easily shown that there is a limiting recursive function 7 (recursive
in v) so that {[z,,]} is weakly represented by {Np,,} and 5. This indicates a
way to establish the £-sequential computability of [z] (cf. [9]). Since {z..} is
not U-computable by Proposition 6.1, we need not compute {[z.,]} in U.

Proposition 6.3 The function [z] is relatively effectively /-continuous.

The proposition can be easily proved if one notices that, for any {/-computable
{Tm}, Tm € [, +1) & Thy(m,n) € [[,1 + 1) and that the right-hand side is de-
cidable. This fact also implies the U/-sequential computability of [z].

7 Limiting recursion versus effective uniformity

The definition of L-sequential computability and that of U/-sequential com-
putability appear mutually quite different. Let us see this with the example
[z]. With L-sequential computability, given any R-computable sequence {x,},
start innocently computing the values {[z.,]}, step by step for p = 1,2,3,---,
trying to see if a recursive condition R(m,p) = rma(m.p) < 1 — 2%, is satisfied.
One either has a luck to hit a p satisfying R(m,p) or keep checking. In any
case, if one can go ad infinitum, then the computation result can be settled.
“Observing the computation from the infinity” corresponds to accepting the
limit of a recursive process. On the other hand, with the uniform topology, one
does not even attempt to compute the function value for certain R-computable
sequences such as {z,,} in Section 6.

The (mathematical) equivalence of the two notions of sequential computabil-
ity (under a certain condition) therefore needs some speculation.

Let us first observe the limiting recursion method. Here one attempts to
compute the function values mechanically. The input values for a function
are supplied with a recursive sequence of rationals and a recursive modulus of
convergence, but the outputs, viz. the function values, are represented by a
recursive sequence of rationals with a limiting recursive modulus of convergence
which may not be recursive. This is discussed in [9] and [8] in detail.

The good of this method lies in its simplicity. The only tool in need beyond
the recursive function is the limit of a recursive function. The function value
at a jump point is represented with a recursive sequence of rational numbers.
At each step of computation one is approaching the right value, and one knows
that eventually one gets the proper value, though not knowing when. It may
be a bit tantalizing if one wishes to know where one is now. It is, however,
assuring and in a way sufficient to know that one stands on the right track. It
is along the straight extension of the computation of continuous functions; only
the speed of convergence needs limiting recursion instead of recursion. The idea
and the knowledge are simple and easily understood. No extra knowledge is
required. This is its advantage. A disadvantage is that it does not represent the
mental activity of a mathematician computing the function value at a point of
discontinuity.



In the method of effective uniformity, with each function is associated a
uniform space in which it becomes continuous. The theory of computability
structure in such a space is developed, and a function is defined to be com-
putable as a continuous function in this topology. We can thus adhere to the
computability problem of a continuous function. A wide range of functions can
be regarded as computable with this method. Except for recursive functions,
we do not need any special tool beyond ordinary mathematical knowledge. For
each instance of a function, we only need to associate a uniformity by isolating
the points of discontinuity or intervals determined by the points of discontinuity.

This approach is also quite intuitive. The values of a function in each interval
(possibly consisting of a singleton) of continuity can be computed as in the case
of a Euclidean-continuous function. Only one must judge, for example, whether
z€[0,1) orz € [1,2).

In the effective uniformity method, it is important to notice that one can
recognize the jump points “intuitively”. In the case of [z], these are integers,
and they are the most obvious points that a humen being can recognize on the
real line. Consider another example. Let 7 denote the function which coincides
with the tan function where tan is defined, and takes the value 0 where tan
is not defined. The computation of 7 at a jump point like 7, which should
cause a problem in a mechanical computation, is the easier part: the value is 0.
Isolating the jump points (and the computation of the function values at them),
which is not a decidable procedure, is thus intuitively appealing. The effective
uniformity method thus describes the human mental activity of computing a
Euclidean-discontinuous function.

We need not attempt to judge effectively if a real number is a jump point.
The judgement is taken care of in the definition of the effective uniformity;
Un(5) = {3} for 7, for example. It is a mathematical activity, and we are
at liberty to do that. In that sense, the theory of effective uniformity yields a
“supple method” (according to the phrasing of Nakatogawa) for computing a
discontinuous function. It reflects the flexibility that a mathematician wishes
to experience.

Incidentally we may consider isolating some points or intervals as similar to
the type system of a program language. We leave judgement of the type of data
outside a program itself.
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