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Abstract

We define the effective integrability of Fine-computable functions and effectivize some
fundamental limit theorems in the theory of Lebesgue integral such as Bounded Con-
vergence Theorem and Dominated Convergence Theorem. It is also proved that the
Walsh-Fourier coefficients of an effectively integrable Fine-computable function form an
E-computable sequence of reals and converge effectively to zero. The latter fact is the
effectivization of Walsh-Riemann-Lebesgue Theorem. The article is closed with the effec-
tive version of Dirichlet’s test.

keyword: Fine-computable function, Fine convergence, Walsh Fourier series, effective
integrability, Dirichlet’s test

1 Introduction

In this article, we make an introductory step to reconstruct effectively the theory of Walsh-
Fourier series ([3], [12]). Although Walsh-Fourier series and Haar wavelets have become
important tools in digital processing nowadays, it seems that Haar, Rademacher, Walsh,
Fine and others had already investigated these subjects in the middle of the twentieth century
from mathematical interest. The theory of Walsh-Fourier series is treated similarly to that
of Fourier series by replacing trigonometric functions with Walsh functions.

Let S,,(f) be the nth partial sum of the Walsh-Fourier series of a function f. A major
problem concerning S, (f) is to find a sufficient condition for the convergence of {S,(f)} to
f. Many types of convergence, such as pointwise convergence, uniform convergence, almost
everywhere convergence and LP-convergence, are treated in [3] and [12].

From the standpoint of computable analysis, it is more appropriate if the pointwise con-
vergence of {S,(f)} to f be replaced by some kind of effective convergence, which is stronger
than pointwise convergence. We have adopted “effective Fine convergence” in [10] for Fine-
computable functions.

Our present objective is to effectivize Dirichlet’s test for Fine-computable functions with
respect to effective Fine convergence. For this purpose, we need to reformulate integration
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theory in an effective way and prove effective versions of some fundamental theorems such as
Bounded Convergence Theorem and Dominated Convergence Theorem of Lebesgue (Theo-
rems 8, 10). These are treated in Section 3. A Fine-computable function is Fine continuous,
and hence is Euclidean continuous at dyadic irrationals. This means that such a function
is measurable, and so the classical theorems hold for it. Therefore, the effectivization of
integration theory is reduced essentially to the replacement of “convergence” by “effective
convergence” .

In Section 4, we prove E-computability of the indefinite integral and the second mean value
theorem (Theorem 16) for an effectively integrable Fine-computable function (Theorem 20).

In Section 5, we prove the effectivizations of Walsh Riemann Lebesgue Theorem (Theorem
19) and Dirichlet’s Test.

For the reader’s convenience, we review some basics of Fine metric, Fine-computable
functions and Fine convergence, and some fundamental theorems of integration.

We assume the knowledge of computability of the real number sequences and the real
function sequences with respect to the Euclidean topology. See [11] for details.

2 Preliminaries

The Fine-metric on [0,1) was introduced in [2]. It is defined by

o0

dp(x,y) =Y ok —7l2 %, (1)

k=1

where, o109 -+ and 717 - - - are dyadic expansions of z and y respectively with infinitely many
0's.

A left-closed right-open interval with dyadic rational end points is called a dyadic interval.
It is easy to see that a dyadic interval is open with respect to the Fine metric.

We use the following notations for special dyadic intervals.

I(n,k)=[k2",(k+1)27"),0 < k< 2" — 1,
J(xz,n) = such I(n, k) that includes .

We call I(n, k) a fundamental dyadic interval (of order n) and J(x,n) a dyadic neighbor-
hood of x (of order n).

The topology generated by {J(z,n)|z € [0,1),n = 1,2,3,---} is equivalent to that in-
duced by the Fine metric. We call this topological space the Fine space. We put “Fine-” to
the topological notions with respect to this topology. For topological notions with respect to
the usual Euclidean metric, we put prefix “E-".

We cite the following lemma from [10] concerning I(n, k) and J(z,n).

Lemma 2.1 ([10]) The following three conditions are equivalent for any z,y € [0,1) and
any positive integer n.

(i) yeJ(z,n).

(i) =€ J(y,n).

(iii) J(z,n) = J(y,n).



A sequence of dyadic rationals {r,} in [0,1) is called recursive if there exist recursive
functions a(n) and B(n) which satisfy 7, = a(n)27#™. A double sequence {x,,,} in [0,1)
is said to Fine-converge effectively to a sequence {z,,} from [0, 1) if there exists a recursive
function a(m, k) such that, for all m, k, ., € J(2m, k) for all n > a(m, k).

A sequence {z,,} in [0, 1) is said to be Fine-computable if there exists a recursive sequence
of dyadic rationals {7, ,} which Fine-converges effectively to {zy,}.

Definition 2.1 (Uniformly Fine-computable sequence of functions, [6]) A sequence of func-
tions {fn} is said to be uniformly Fine-computable if (i) and (ii) below hold.

(i) (Sequential Fine-computability) The double sequence {fn(zm)} is E-computable for
any Fine-computable sequence {zy,}.

(ii) (Effectively uniform Fine-continuity) There ezists a recursive function a(n,k) such
that, for all n,k and all z,y € [0,1), y € J(x, a(n, k)) implies |fn(z) — fn(y)] < 27F.

The Fine-computability of a single function f is defined by that of the sequence {f, f,...}.

Notice that the computability of the sequence {f,(z)} in (i) is E-computability.

Throughout this article, we fix an effective enumeration of all dyadic rationals in [0,1)
and denote it with {e;}.

Definition 2.2 (Effectively uniform convergence of functions, [6]). A double sequence of
functions {gmn} is said to converge effectively uniformly to a sequence of functions {fp} if
there exists a recursive function a(m, k) such that, for all m,n and k,

n > a(m,k) implies |gmn() — fu(x)] <27F for all .

Theorem 1 ([6]) If a uniformly Fine-computable sequence of functions {f,} Fine-converges
effectively uniformly to a function f, then f is also uniformly Fine-computable.

We can treat weakened notions of computability and convergence as follows.

Definition 2.3 (Locally uniformly Fine-computable sequence of functions, [7]) A sequence
of functions {fn} is said to be locally uniformly Fine-computable if the following (i) and (ii)
hold.

(i) {fn} is sequentially Fine-computable.

(ii) (Effectively locally uniform Fine-continuity) There exist recursive functions a(n, i, k)
and (3(n,i) which satisfy the following (ii-a) and (ii-b).

(ii-a) Foralli, n and k, |fu(2)—fn(y)| < 27 if 2,y € J(ei, B(n,i)) andy € J(z,a(n,i, k).

(ii-b) U;2, J(ei, B(n,i)) =[0,1) for each n.

Definition 2.4 (Effectively locally uniform Fine-convergence, [7]). A double sequence of
functions {gmn} is said to Fine-converge effectively locally uniformly to a sequence of func-
tions {fm} if there exist recursive functions a(m,i) and S(m,i,k) such that

(@) |gmn(z) — fm(z)| < 27F for x € J(e;, a(myi)) and n > B(m,i,k),

(b) UX,J(e;, (m,i)) =[0,1).

Theorem 2 ([7]) If a locally uniformly Fine-computable sequence of functions {f,} Fine-
converges effectively locally uniformly to f, then f is locally uniformly Fine-computable.



Definition 2.5 (Fine-computable sequence of functions) A sequence of functions {f,} is
said to be Fine-computable if it satisfies the following.
(i) {fn} is sequentially Fine-computable.
(ii) (Effective Fine-Continuity) There exists a recursive function a(n,k,i) such that
(ii-a) x € J(e;, a(n,k,i)) implies | fo(x) — fo(ei)| < 27F,
(ii-b) U;2, J(ei,a(n, k,i)) =1[0,1) for each n, k.

Definition 2.6 (Effective Fine-convergence of functions) We say that a double sequence
of functions {gmn} Fine-converges effectively to a sequence of functions {fn} if there exist
recursive functions a(m,k,i) and B3(m,k,i), which satisfy

(a) € J(ei,a(m,k,i)) and n > B(m, k,i) imply |gmn(z) — fm(z)] < 27F,

(b) U2, J(ei, a(m, k,i)) =1[0,1) for each m and k.

Definition 2.7 (Computable sequence of dyadic step functions, [6]) A sequence of functions
{¢n} is called a computable sequence of dyadic step functions if there exist a recursive function
a(n) and a E-computable sequence of reals {c,;} (0 < j < 20(n) 'p =1,2,...) such that

2x(n) _1

> niXram) (@),
i=0

where x A denotes the indicator (characteristic) function of A.

Proposition 2.1 Let f be a Fine-computable function. Define a computable sequence of

dyadic step functions {pn} by

2n—1

Zfﬂ )X1(n.5)(T)- (2)

Then {pn} Fine-converges effectively to f.

Remark 2.1 If f is uniformly Fine-computable or locally uniformly Fine-computable, then
the convergence can be replaced by the effectively uniform Fine-convergence or the effectively
locally uniform Fine-convergence respectively([7, 6]).

Theorem 3 ([10]) If a Fine-computable sequence of functions {f,} Fine-converges effec-
tively to f, then f is Fine-computable.

Now, we review the theory of Lebesgue integral for functions on [0,1). In the following, we
will say simply “measurable” or “integrable” instead of “Lebesgue measurable” or “Lebesgue
integrable” respectively.

A function ¢(x) is called a simple function if it is represented as a finite linear combination
of indicator functions of some measurable sets, that is, if p(z) = Z?_ol a;ixg, (z ), where a;’s

are real numbers and F;’s are mutually disjoint measurable sets satisfying |J—; E; = [0, 1).
The integral fo @dz is defined by Y ", ' a;|E;|, where |E;| is the Lebesgue measure of the set
E;.



For a bounded measurable function f, there exists a sequence of simple functions {p, }
which converges pointwise to f. In this case, fol pndz converges and we denote this limit as
fol fdz. Tt holds that, if {¢,,} is another approximating sequence of simple functions of f,
then lim,,_ oo fol Opdr = lim, s fol 1pdx and hence the above definition is sound.

For a positive function f, we say that f is integrable if the limit lim,_, fol f A 2Mdx
exists, and we denote this limit as fol fdx, where (f A2")(x) = min{f(z),2"}. A general
measurable function f is called integrable if f* = fV0and f~ = (—f)VO0 are both integrable.
We define fol fdx = fol frde — fol fdux.

For the reader’s convenience, we cite two fundamental theorems from [4] and [5].

Theorem 4 A bounded function f is Riemann integrable if and only if the Lebesque measure
of the set of all discontinuous points is zero. In this case, f is also Lebesgue integrable and
the both integrals have the same value.

From Theorem 4, a bounded Fine-computable function is Riemann integrable and also
Lebesgue integrable.

Theorem 5 (Bounded convergence theorem) Let {f,} be a uniformly bounded sequence
of measurable functions which converges pointwise to a function f. Then lim,_, . fol fndx =
fol fdx. (Uniformly boundedness means that there exists a constant M such that |f,(z)] < M
for all n and x.)

Theorem 6 (Dominated convergence theorem) Let {f,} be a sequence of integrable func-
tions which converges pointwise to a function f. Suppose further that there exists an in-
tegrable function g such that |fn(z)| < g(z) for all n and z. Then, f is integrable and

limy, o0 [y fodz = [} fda.

3 Effective integrability of Fine-computable functions

In this section, we discuss the effective computability of integrals for Fine-computable func-
tions on the Fine space. The main objective is the effectivization of Theorems 5 and 6.
A Fine-continuous function is E-continuous at every dyadic irrational, and so the Lebesgue
measure of the set of all discontinuous points is zero, and hence Theorems 5 and 6 are valid
for Fine-computable functions. Therefore the proofs of effectivizations of these theorems are
reduced to effective convergence. Since the Fine space does not include the point 1, we write
the integral of f on [0,1) as f[o,l) f(z)dz rather than fol f(z)dx or fol’o f(z)dx.

Effective integrability of a Fine-computable function is defined as follows. We note that
ft=fvo0and f~ = (—f) V0 are Fine-computable if f is Fine-computable.

Definition 3.1 (Effective integrability of a function)

(i) A bounded Fine-computable function f is called effectively integrable if f[o,l) f(x)dx
15 an E-computable number.

(ii) A nonnegative Fine-computable function f is said to be effectively integrable if it is
integrable and f[[],l) f(x)dx is an E-computable number.

(iii) A Fine-computable function f is called effectively integrable if it is integrable and
f[O,l) ft(z)dx and f[O,l) f~(z)dx are E-computable numbers.

5



We also need these definitions for a sequence of functions.

Definition 3.2 (Effective integrability of a sequence of functions)

(i) A sequence of bounded Fine-computable functions {f,} is said to be effectively in-
tegrable if each fy is integrable and the sequence {f[o 0 fn(x)dz} forms an E-computable
sequence of reals.

(ii) A sequence of nonnegative Fine-computable functions is said to be effectively inte-
grable if each f, is integrable and {f[o 1 fn(z)dz} is an E-computable sequence of reals.

(iii) A sequence of Fine-computable functions {f,} is called effectively integrable if each
fn is integrable and {f[o 0 i (z)dx} and {fo 0 fn (x)dx} are E-computable sequences of real
numbers.

Definition 3.3 (i) Let E be a finite union of of dyadic intervals. Then, a Fine- computable
function f is said to be effectively integrable on E if f is integrable on E and [, f(z)dz =
f[o,l) xe(x)f(x)dz is an E-computable number.

(ii) Suppose that {E,,} is a computable sequence of finite unions of dyadic intervals, that
is, there exists a recursive function a(m) and recursive sequences of dyadic rationals {a(m, 1)}
and {b(m,i)} such that E,, = U?(T) [a(m,i),b(m,i)). Then, a Fine-computable function fis
said to be effectively integrable on {E,,} if f is integrable on each E,, and {fE x)dzx} is
an E-computable sequence of reals.

(iii) Effective integrability of a sequence of Fine-computable functions on E and {E,}
are defined similarly.

For a computable dyadic step function ¢ of the form p(z) = Z?kal CiXJiz—*,(i+1)2—+) (@),
its integral f (z)dz is equal to 27F Z? o i {fo 1y n(@)dz} is hence an E-computable
sequence of reals 1f {¢n} is a computable sequence of dyadlc step functions due to Definition
2.7.

For a uniformly Fine-computable function, the following theorem is essentially proved in
the proof of Proposition 4.5 in [8].

Theorem 7 A uniformly Fine-computable function is effectively integrable.

The proof goes as follows. Let f be uniformly Fine-computable and let {¢,} be an
approximating computable sequence of dyadic step functions defined by Equation (2). Then
f is bounded and integrable. In addition, f[o 1) on(x)dx converges effectively uniformly to

f[0,1) f(z)dz, since
| fo.1) Pn(@)dz — [io1) f(2)dz| < [l 1) lon(@) = f(2)|dr < suppep ) |on(@) — f(2)]-

Therefore f x)dz is computable.

For a locally uniformly Fine-computable function, we have the following counter-example.

Example 3.1 (Brattka [1]) Let « be an injective recursive function whose range is not
recursive. Define

o) =2F272®) jf 12D <pc1—2F k=12, ..



Then ¢ is locally uniformly Fine-computable but f[o 0 o(x)yde = > 02, 2-ak) is not E-
computable.
Let us further note the following. Define

(@) okg—alk) it 12~k <pr <1 -2k k=12...,n
xTr) =
on 0 it r>1-2"

Then {p,} is effectively integrable.
Classically, { f[o 1 ©n} converges to f[o 1 o(z)dz, but the convergence is not effective.

This counter-example shows that the requirement on the computability of the integral is
not redundant in the definition of effective integrability of a Fine-computable function.

The next example shows that the computability of f[o,l) f(x)dx is generally not sufficient
for effective integrability.

Example 3.2 Let a be an injective recursive function whose range is not recursive. Put

(k=1,2,...).

kg-alk) if 12 (kD) g2 @D
(p(%’) = _2k27a(k) if 1= 2*(2]“*1) <z < 1-— 272]C

Then ¢ and ¢~ are not effectively integrable but f[o 0 o(z)dr = 0.
We need the following lemmas.

Lemma 3.1 (Monotone convergence [11]) Let {x, } be an E-computable sequence of reals
which E-converges monotonically to {xn} as k tends to infinity for each n. Then {x,} is
E-computable if and only if the E-convergence is effective.

Lemma 3.2 |A| will denote the Lebesque measure of a set A.

Let {[ag,br)} be a recursive sequence of dyadic intervals, that is, {ar} and {bx} are re-
cursive sequence of dyadic rationals. If we define E,, = Up_,|ak,bi), then {|Eyn|} is an E-
computable sequence of reals. Assume that {Ey} converges to [0,1), i.e. Jp—ylak,br) = [0,1).
Then {|E,|} E-converges effectively, i.e., there exists a recursive function «(p) such that
|E,| > 1—27P (or |E,C] < 27P) for n > a(p), where AC denotes the complement of a set
A.

Proof For a dyadic interval [a,b), |[a,b)| = b — a. E, can be represented as the union of
finite mutually disjoint dyadic intervals whose ends-points are determined effectively from a;’s
and by’s. Therefore, {|E,|} is an E-computable sequence of reals and converges monotonically
to 1. 0

Theorem 8 (Effective bounded convergence theorem) Let {g,} be a bounded Fine-computable
sequence of functions which is effectively integrable and Fine-converges effectively to f. Then,
f is Fine-computable and {f[o,1) gn(x)dz} E-converges effectively to f[o,l) f(x)dx. As a con-
sequence, [ is integrable.



Proof Suppose that {g,} Fine-converges effectively to f with respect to «(i, k) and
B(i, k) and, for some integer M, |gn(z)| < M. Then Theorem 3 yields that f is Fine-
computable. Since {gn(z)} converges to f(x), |f(z)] < M holds, and {f[O,l) gn(x)dz} con-
verges to f[O,l) f(z)dz by virtue of Theorem 5.

We denote J" J(e;,a(i, k)) with Ej,,. By Definition 2.6, J;._, Em = [0,1). So, for
each k, we can find effectively an m = m(k) such that |Ej ,,| > 1—1/(2%+2 M) from Lemma
3.2. If we take n > 0(k) = max{a(l,k +1),(2,k + 1),...,a(m(k),k + 1)}, then

Jo lon(@) = f@)ldz < i, 190(@) = [ (@)ldz + [ lon(@) + [pe 1f(@)lde
< 9-(kt1) 4 o= (k+2) 4 9=(k+2) _ o~k [

If f is a bounded Fine-computable function, then the sequence of dyadic step functions
{¢n} defined by Equation 2 is also bounded. So, the assumption of Theorem 8 holds for f
and {p,}, and we obtain the following theorem.

Theorem 9 A bounded Fine-computable function is effectively integrable.

From the definition of Lebesgue integral and Lemma 3.1, we obtain the following propo-
sition.

Let us here note that, if f is Fine-computable, then { f A2™} is a Fine-computable sequence
of functions.

Proposition 3.1 Let f be a nonnegative integrable Fine-computable function. Then f is
effectively integrable if and only {f[o 1 f A2™} E-converges effectively to {f[o 1 f(x)dx}.

Proposition 3.2 Let f be an effectively integrable Fine-computable function and let I,, be a
sequence of dyadic intervals such that \J;~, I, = [0,1). Put E, =J;_,I;. Then, fEn f(z)dzx
converges effectively to f[o 1 f(x)dx, or equivalently, [,c f(x)dx converges effective to zero.

Proof. Since | [, f(x)dz| < [ fT(x)dx + [ f~(x)dz, it is sufficient to prove the case
where f is nonnegative. Put f, = f A 2". Then f[o 1 fn(x)dx converges effectively to
f[o 1 f(z)dz due to Proposition 3.1. Hence, there exists a recursive function (k) such that

n > B(k) implies 0 < f[o y f@)de — f[o 1y ful@)dz < 2%, In particular, we get

0< Joo1) F@)dw = fo 1) Fan(@)dw < 27D,

By virture of Lemma 3.2, there exists a recursive function d(k) such that m > §(k) implies
|EC| < 27k, If we take m > 6(B(k + 1) + k + 1), then

dr — fEm f(x)dx = ng f(x)dx
— fa+1)(®))dr + ng faer1)()de

Joy(F (@) = Fo4n)(@))de + [0 faetr) (@)de
< 2*(]“’1) + 25(k+1)2*(5(k+1)+k+1) — 9k



Theorem 10 (Effective dominated convergence theorem) Let {g,} be an effectively inte-
grable Fine-computable sequence, which Fine converges effectively to f. Suppose that there
exists an effectively integrable Fine-computable function h such that |g,(x)| < h(z). Then,

{f[o 1 gn(x)dz} converges effectively to f[o 0 f(x)dzx.

Proof. From Theorem 6, f is integrable and {f[o 0 gn(x)dx} converges to f[o 0 f(z)dz.
It also holds that |f(z)| < h(z).
Suppose that {g,} Fine converges effectively to f with respect to «(k,i) and ((k,1).
Then,
x € J(e;, a(k,i)) and n > B(k,i) imply |gn(z) — f(z)| < 27F,
U2, J(ei,afk,i)) = [0,1) for each k.
Put I; = J(ej,a(k + 1,i)) and E,, = |J“, I;. From Proposition 3.2, we can obtain a
recursive function §(k) which satisfies that [}, o h(z)dz < 27F for m > §(k).
Suppose that n > max{8(k + 1,1),...,8(k +1,0(k + 2))}. Then

| f[O,l) gn(z)dz — f[o,1) f(z)dz|
< Sy l9n(@) — @l [ clan(@)lde+ [, o 17 @)ds
< 9—(k+1) + 99— (k+2) _ 9~k q

Es(kt2)

We have stated and proved the theorems and the propositions for a single Fine-computable
function up to now. We can easily extend them to the case of a Fine-computable sequence
of functions.

The sequentializations of Theorems 8, 9 and 10 can be stated as follows.

Theorem 11 (Sequential effective bounded convergence theorem) Let {f,} be a Fine-
computable sequence and let {g, m} be a bounded Fine-computable sequence of functions which
is effectively integrable and Fine-converges effectively to {f,}. Assume also that there exists
an E-computable sequence of reals {My} such that |gnm(z)| < M,. Then, {f[Uyl) Gn,m (z)dx}
E-converges effectively to {f[O,l) fn(x)dz}.

Theorem 12 Let {f,} be Fine-computable and effectively bounded, that is, there exists
an E-computable sequence of reals {My} such that |fn(x)] < My. Then {f,} is effectively
integrable.

Theorem 13 (Sequential effective dominated convergence theorem) Let {gyn} be an ef-
fectively integrable Fine-computable sequence which Fine converges effectively to {fm}. Sup-

pose that there exists an effectively integrable Fine-computable sequence {hy,} such that
|gmn (2)| < hyn(z). Then, {f[O,l) Gm.n(z)dx} converges effectively to f[O,l) fm(x)dz.

4 Indefinite integral and mean value theorem

In this section, we consider E-computability of the indefinite integral [ f(xz)dz (x € [0,1])
and the second mean value theorem for a Fine-computable and effectively integrable function
f. We will first establish a fundamental fact.



Theorem 14 Suppose {fn} is a Fine-computable and effectively integrable sequence of func-
tions. Define F,( fo fu(x)dx. Then {F,} is a uniformly E-computable sequence of
functions on [0, 1].

Proof. We prove the theorem for the case of a single function f. It is only a mater
of routine to modify the proof to the case of a function sequence. We note that F(1) =
f[O,l) f(z)dx.

(i) (Effective uniform E-continuity): If f is bounded, then there is an integer N such
that |f(z)| < 2V. So, if |z — y| < 2=*+N) | then

|F(z) — F(y)| < [Y2Ndz =2V |z —y| < 27"

Suppose that f is nonnegative. Then, {f[O,l) gn(z)dz} E-converges effectively to f[O,l) f(z)dz
by Proposition 3.1, where g, = f A 2". So, there exists a recursive function « such that
n > «a(k) implies |f[0 3 f(z)dz — f[o 0 gn(x)dz| < 278, If |z — y| < 2~ (bHalk+1)+1) then

F@) = FO) < | Sy F@de — fio) gagesn @del + | [2 gages (@)dal

<
< 2—(k+1) + |$ o y|2a(k+1) < 2—](:‘

The general case follows from the inequality |F(z) — F(y)| < [ |f(z)|dz and the nonneg-
ative case.

(ii) (Sequential computability): Let {z,} be any E-computable sequence of reals in
[0,1). Then, there exists a recursive sequence of dyadic rationals {r, ,,} which E-converges
effectively to {z,}.

By definition, F(ry ) fo 1) X[0,7 ) (z)f(x)dz, {X[0,r,...)(®) f(x)} is a Fine-computable
sequence of functions and |x[o, ) ( V(@) < |f(z)]. {F(rnm)} is hence an E-computable
sequence of reals by Theorem 13. From the effective uniform E-continuity proved in (i),
{F(rpm)} E-converges effectively to {F(x,)}. Therefore {F(z,)} is an E-computable se-
quence of reals. []

Remark 4.1 From (i) of the proof above, the following effective absolute continuity holds:
if f is Fine-computable and effectively integrable, then there exists a recursive function such
that | [, f(z)dz| < 27 for a measurable set E with |E| < 272(),

Theorem 15 (Effective intermediate value theorem, Theorem 8 in Section 0.6 of [11]) Let
[a,b] be an interval with E-computable endpoints, and let f be an E-computable function
onla,b] such that f(a) < f(b). Let s be an E-computable real with f(a) < s < f(b). Then
there exists an E-computable point c in (a,b) such that f(c) = s.

It is pointed out in [11] that the sequential version of Theorem 15 does not hold.
We can prove the following variation of Theorem 15.

Theorem 15" Let [a,b] be an interval with rational endpoints, and let f be E-computable
and non-constant on [a,b]. Put m = mingcp,y f(z) and M = max,cqy f(z). For an E-
computable real number s with m < s < M, there exists a E-computable point c in [a,b] such

that f(c) =
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Proof. Define
My = minggi<n—1{f(a +i(b —a)/n} and M, = maxogicn—1{f(a+i(b—a)/n}.
Then {m,} E-converges effectively to m and {M, } E-converges effectively to M ([11]).
Suppose s is a computable real number such that m < s < M. Then one can find
effectively n; and ng such that m,, < s < M,,. For such n; and ng, there exist i; < n
and i2 < ngo satisfying the following conditions. If we put z,, = a + i1(b — a)/ny and
Yn, = a + i2(b — a)/ng, then f(zp,) = my,, and f(y,,) = My, hold. If we apply Theorem 15
to the interval [z, , Yn,] (OF [Yny, Tn,]), We obtain the desired c. (Notice that z,, and y,, are
computable, although i; and iy may not be effectively found.) []

Since a Fine-computable function may be E-discontinuous, the (first) mean value theorem
does not hold. On the other hand, the second mean value theorem applies to E-discontinuous
functions. To effectivize this theorem, we need the following proposition, which can be proved
easily following the classical proof.

Proposition 4.1 Let f be Fine-computable and effectively integrable, and let g be bounded
and Fine-computable. Then fg is also effectively integrable.

Theorem 16 (Effective second mean value theorem) Let f be Fine-computable and effec-
tively integrable. Suppose that a and b are dyadic rationals satisfying 0 < a < b < 1.

(i) Let g be Fine-computable, nonnegative and strictly decreasing. Then, there exists an
E-computable point ¢ € [a,b] which satisfies

S g f(6)dt = gla) [ f(#)dt. (3)

(ii) If g is Fine-computable and strictly monotone, then there exists an E-computable
point ¢ € [a,b] which satisfies

29 f()dt = g(a) [£ f(t)d +g(b) [2 F(t)dt. (4)

Proof. Let us note that g is bounded on [a, b].
(i) Define F(z) = [’ f(t)dt. Then F is E-computable by Theorem 14. Put M =
max,¢(qp5 () and m = mingc[, 5 F(7).
The following holds by integration by parts and the absolute continuity of F' ([13]).
b b
Jo f)g(t)dt = F(b)g(b) — [, F(t)dg(t), (5)

where [ F(t)dg(t) denotes Lebesgue-Stieltjes integral.

If m = M, then F is constant, and hence f(z) = 0 for all z € [a,b]. So, Equation (3)
holds for all ¢ € [a,b]. Now, we assume that m < M.

From the assumption on g and the definitions of m and M, we obtain

m [P dg(t) > [P F(t)dg(t) > M [’ dg(t). (6)

From Equation (5) and Inequality (6),

S F@®g(0)de > F(b)g(b) —m [ dg(t) = F(b)g(b) — m(g(b) - g(a)
= (F(b) —m)g(b) +mg(a) = mg(a).
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In the same way, we can prove fabg(t)f(t)dt < Mg(a). Since g(a) > 0, we obtain
b
m < ﬁ [, f(t)g(t)dt < M.
If we apply Theorem 15" to F, there exists an E-computable point ¢ in [a, b] such that

F(c) = 5t [y 90 f(t)dt.

This implies Equation (3).

(ii) If g is strictly decreasing, then g — g(b) is nonnegative and strictly decreasing. So,
we obtain from (i) an E-computable point ¢ in (a,b) such that

2 9(@) — (b)) f(z)dz = (g(a) — g(b)) [ f(x)da.

From this, we obtain

12 g(@) f(@)de = ga) [£ f(z)dz + g(b) [} f(z)dz.

If g is strictly increasing, we can obtain the same result by applying the above result to

—g- [

5 Effective Fine convergence of Walsh Fourier series

The system of Walsh functions {wy,} is defined on [0, 1) by
wp () = (—l)zf:o Ti1n—i (7)

where, o109 -+ is the dyadic expansion of x with infinitely many 0's and n = ng +n_12 +
.-+ 4+ n_;2F is the dyadic expansion of a positive integer n.

It can be easily shown that {w,} is a Fine-computable sequence of functions, and that,
if f is Fine-computable and effectively integrable, then so is the sequence { fw,}.

Theorem 17 (Computability of Walsh Fourier coefficients) If f is Fine-computable and
effectively integrable, then the sequence of Walsh Fourier coefficients {f[o 1 f(z)wy,(z)dz}22,
15 an E-computable sequence of reals.

Proof. Put f,(xz) = (f(x) A2") Vv (=2").

The sequence of Fine-computable functions { f,w,,} satisfies the assumption of Theorem
12. So {f[o,l) fn(z)wp, (x)dx} is an E-computable (double) sequence of reals.

Then, {gmn} = {fnwn} satisfies the assumption of Theorem 13 with h,(z) = f(z)
and Fine-coverges effectively to fwp,. So, {f[O,l) fn(z)wy, (x)dx} E-converges effectively to
{ f[o 1) f(x)wp,(z)dx} and hence the latter is an E-computable sequence of reals. []

Definition 5.1 The partial sum S,(f) and modified Dirichlet kernel Dy (x,t) are defined by

|
-

n

n—1
S(F)(@) =Y ciwi(x), Du(z,t) = wilx)uw;(t),
=0

3

Il
o

where {c;} is the Walsh Fourier coefficients of f, i.e. ¢; = f[o 0 f(t)w;(t)dt.
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It is well known that

Sn(f)(x) = f[071) f(t)Dn(xa t)dt' (8)

Remark 5.1 In the theory of classical Walsh Fourier series, D, (z®t) is usually used instead
of Dy (z,t), where D, (z) = Dy,(x,0) = D, (0, ) ([3], [12]). Since the dyadic sum x & t is not
defined for all z and ¢ in [0, 1), we do not use the dyadic sum z @ ¢.

Lemma 5.1 (Paley) ([3])

2" if te J(z,n)
D n t =
2 (2,1) { 0 otherwise

We can prove the following Theorems in a manner similar to the proof of Proposition 4.5
in [6]. The Fine-convergence of {So» f} can be proved similarly to the proof of Proposition
4.5 in [6] using the Paley’s lemma.

Theorem 18 If f is Fine-computable and effectively integrable, then Son f Fine-converges
effectively to f.

Proof. Recall that

Son f(z) = f[o,1) f(t)Dan (z,t)dt = fJ (&) (t) Don (z, t)dt.
Now, from Paley’s Lemma,

Son f (@) = F(@) = [y (FODan (2,8) = 22F (@)t = 27 [, (F(8) — f(a))dt.

Suppose that f is Fine continuous with respect to v(k,i). If x € J(e;,vy(k + 1,i)) and
n > y(k+1,i), then t € J(e;,y(k + 1,7)) for t € J(x,n). In this case, we obtain

1f(t) = f(2)] < |F(8) = Fle)| + | f(e:) — f(a)] < 27F.

Hence, we obtain |Son f(z) — f(2)| < 27%. If we define a(k,i) = vy(k + 1,i) and B(k,i) =
~v(k + 1,i), then Son (f) Fine converges effectively to f with respect to « and /. []

The effective version of the Walsh Riemann Lebesgue theorem ([12]) can be stated and
proved as follows.

Theorem 19 (Effective Walsh Riemann Lebesgue theorem) If f is Fine-computable and

effectively integrable, then its Walsh-Fourier coefficients {c,} converges effectively to zero.

Proof. (i) First, we assume that f is bounded. Let {¢,,} be the approximating sequence
of dyadic step functions defined by Equation (2) and put d, , = f[o 0 ©m(x)wy (z)dz. Then
{dmn} is E-computable by Theorem 12 and

| = enl = | [ig.1y(m (@) = f(@))wn(x)dz| < [ 1) lom (@) — f(2)ldz.

The right-hand side E-converges effectively to zero by Theorem 8. So, {d,,} E-converges
effectively to {c,} as m tends to infinity uniformly in n. This means that there exists a
recursive function v such m > (k) implies |dp, , — ¢p| < 2% for all n.
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The sign of wy(z) on [252~(+1) (25 + 1)2=(*1) and that on [(2j + 1)2-(*D (25 +
2)2-(+1)) are opposite to each other with absolute value 1 for j = 0,1,...,2" — 1. On the
other hand, ¢, (x) is constant on each [i27™, (i +1)27™). So, dp,n, =0 if n > m.

From the discussion above, if n > v(k), then we obtain that d,4), = 0 and hence
lcn| < 27F. This proves that {c,} E-converges effectively to zero.

(ii) For a general f, f = fT — f and ¢, = fol [ (x)wy (z)dz — fol [ (2)wy(z)dz.
Therefore, it is sufficient to prove the case where f is nonnegative.

Put f, = f A2¢ and Con = f[o,l) fe(x)wp(z)dz. {fpwy} is Fine-computable and effectively
integrable as a double sequence of functions and |fyw,| < 1. {cg,} is E-computable by an
extended version of Theorem 12.

Notice that the proof of (i) can be modified for effectively bounded sequence of functions
{fe}. This means that there exists a recursive function 0(¢, k) such that n > 6(¢, k) implies
lcon| < 27F. Similarly to (i), we obtain

|cem — enl = | Jig 1) (fe(@) = f())wn(z)dz] < [ig ) (f (@) — fe(2))d.

The right-hand side E-converges effectively to zero by Proposition 3.1. So, {c¢,, } E-converges
effectively to {c,} as ¢ tends to infinity uniformly in n. Let [ be the modulus of this
convergence. Then it holds that ¢ > B(k) implies |cy,, — c,| < 27F for all n.

Ifn>0(B(k+1),k+1), then

lenl < g1y — Cnl + |Casr)n] < 27ETD 42700 — 97k,

This proves that {c,} E-converges effectively to zero with respect to a(k) = §(6(k +

1),k +1). []

To prove an effective version of Dirichlet’s test, we need the following two lemmas. The
second one is the effectivization of the fundamental lemma which is used in proving pointwise
convergence of the partial sums Sy, (f) to f (cf. [12]).

Lemma 5.2 ([12]) Dy(,t) = wy(z)wn (t) S5 o njj (2)é; (£) Dyi (2, 1),
where ¢;(x) is the j-th Radmacher function and n = ng +ni2+--- + nn2Y is the dyadic

expansion of n.

Prior to the next lemma, let us make the following remark. In the classical case, one can
use wj(x @ t) instead of wj(x)w;(t), and this fact leads us to the desired conclusion quickly.
Here, however, we cannot use w;j(z @ t), and hence we need some elaborate work.

Lemma 5.3 (Key lemma) If f is Fine-computable and effectively integrable, then Fyrp(x) =
f[O,l)\J(:L‘,M) f@)Dy(z,t)dt Fine converges effectively to zero effectively in M uniformly in x.
This means that there exist a recursive function a(M,k) which satisfies that n > «(M, k)
implies |Fyr ()] < 27F.

Proof. (i) Let f be bounded Fine-computable, {¢,,} be the approximating sequence of
dyadic step functions defined by Equation (2) and ® s, n(x) be f[o,l)\J(:p,M) ©m (t) Dy (z, t)dt.

(i-a) First, we show that {®asm 5} is Fine-computable: Let {2} be a Fine-computable se-
quence in [0, 1). Then, X{o,1)\ 7(z,,3)(t)Pm (t) Dn (e, t) is a bounded Fine-computable (quadru-
ple) sequence of dyadic step functions of t. So, {®psm n(2r)} is E-computable by Theorem
12. This proves the sequential computability of {® s, p}-
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By the definition of D, (z,t), it is constant on a rectangle I(¢,5) x I(¢',5') if n > ¢
and n > ¢ as a function of z and t, where I(¢,7) = [j27¢ (j + 1)27¢). For such an n,
D, (z,t) = Dy(y,t) ify € J(z,0).

If ¢ > M and y € J(z,¥), then J(z, M) = J(y,M). It also holds that I(¢,j) C J(x, M)
or I(¢,7) C [0,1)\J(z,M). Therefore, if ¢ > max{[logyn|,M} and y € J(x,¢), then
P armn(T) = Praymon ()

(i-b) {®nr,mn} converges effectively to zero as n tends to infinity uniformly in x effectively
in m > M: First, we have

D, t) = Dy (@,1) + X0 hyw (@) (1)

if n > 2™ and Dyum(z,t) = 0 on [0,1)\J (2, M) by Paley’s Lemma.

On the other hand, (,, is constant on [127™, (i4+1)27™) for each 3. If n > 2™ (> 2M), the
sign of wy, (t) on [272 (log2nl+1) (25 4 1)2- (g2 n[+1)y and that on [(25 4+ 1)2 (o2 nl+D) (25 4
2)2~ (g2 [+1)) are opposite with absolute value 1. ([z] denotes the integer part of z.) There-
fore, ® 1 mn(z) =0 if n > 2™ > 2M. Tn other words, @/ mn(z) = 0if n > 2™ and m > M.

(i-c) {®armn} converges to Far, as m tends to infinity uniformly in n effectively in M:
By Lemma 5.2,

(E'M,m,n(x) - FMn(x) = f[o 1)\J(x,M)(90m(t) — f(t))Dp(,t)dt
= 30t jwn(@)di (@) [io.1\ 5wy (Pm(t) = () wa(t)di(t) Do (a, t)dt,

and so

|(I)M,m,n(x)_FM,n(x)| ] 0 ' fOl\JxM lom (t) — f(t)|dt

2M f[o,1) |90m( ) - ( )|dt-

NN

By Theorem 8, f[o,l) |om () — f(t)|dt E-converges effectively to zero. Let § be the modulus of
this convergence. Then |® 1 mn(2) — Fun(z)| < 27%if m > §(k + M).

(i-d) Fum,, Fine converges effectively to zero as n tends to infinity effectively in M
uniformly in z: Define a(M, k) = 206+MVM and put mg = §(k + M) V M. Then, by virtue
of (i-¢), |®n1,men (%) — Farn(z)| < 2% for all n and 2. On the other hand, ® s o0 (z) = 0 if
n > a(M,k). So, for n > a(M, k),

ot ()] < 1@ 0rmo,n (#) = Farn ()] + @ as,mo,n ()] < 27,

(ii) The case where f is Fine-computable, nonnegative and effectively integrable: Put
fo=f A2 and Fyn(z) = f[O,l)\](m,M) fe(t)Dy,(x,t)dt. Then, {f,;} is Fine-computable and
effectively bounded. As in the proof of (i-d), there exists a recursive function «(M, /¢, k) such
that n > (M, £, k) implies |Fas o, ()| < 27F. We have also

Farn(2) = Fatn (@) = | oy senny (F(®) = Fo) Dalz, )|
< 2M f[o,l)(f(t) - fﬁ(t))dt

f[o 1)(f(t) — fe(t))dt E-converges effectively to zero by Proposition 3.1. Let (k) be the
modulus of this convergence. If n > (M, k) = a«(M,~v(k + M + 1),k + 1), then

15



|Frn (@) < P vk m+1)0 (2) = Frrn ()] + [Fag g e m41),0(2)] < - (FHL) 4 o= (hHl) = 9k,

This proves that {Fjs,,} converges to zero effectively as n tends to infinity effectively in
M uniformly in x.

(iii) For a general f, f = f™ — f~ holds, and hence the lemma follows from (ii). []

Before we treat the final objective, the effectivization of the Dirichlet’s test, we study the
computability of the variation of a Fine-computable function.

Zheng, Rettinger and Braunmiihl investigated functions of bounded variation and Jordan
decomposability ([15]). They showed an example that is effectively absolutely continuous but
not effectively Jordan decomposable.

Subsequently V{(f) denotes the variation of f in [0,2] (0 < 2 < 1). Vi (z) is defined to

be supgc <1 V' (f)-
The following example is a modification of Proposition 4.2 in [10].

Example 5.1 Let o be an injective recursive function whose range is not recursive. Define

flry=eoMif L_o2ngpcl 2= (n=12.)).

1
2
Then VE(f) = 320%™ for x > L, and 32 | (™ is not E-computable.

According to Example 5.1, sequential computability of the variation fails. However, we
can prove easily effective Fine continuity of V| (f) if it is finite.

Definition 5.2 A Fine-computable function is said to be effectively Jordan decomposable if
there exist monotone increasing Fine-computable functions 11 and 1o such that f = 1 —1)o.

Theorem 20 (Effective Dirichlet’s test) Let f be Fine-computable, effectively integrable
and effectively Jordan decomposable. Then {S,(f)} Fine converges effectively to f.

Proof. It is sufficient to prove the case where f is monotone increasing and Fine-
computable.
According to [12], the following holds classically: Put ©(z, M) = supsc o ar) | f(t) — f(2)],
A =8upg ycr0,1),n f[O,y) D, (z,t)dt| and Up pr(z, f) = fJ(:r,M)(f(t) — f(2))Dp(z,t)dt. Then
|Un,m(z, f)] < 4AO(x, M) and |A| < 2
holds. We remark that the right-hand side of the above inequality does not depend on n.
If n > 2™ then

Su(£)@) = f(2) = [0y (f(£) = f(2)) D (e, )t
< Upnlz, f)+ f[o,l)\J(xyM) f(t)Dy(z,t)dt — f(m)f[o,l)\J(LM) Dy (x,t)dt.

If f is Fine-computable with respect to «(k,i), then z € J(e;,a(k,i)) implies |f(z) —
fle))| < 27k If x € J(ej, M), then J(x, M) = J(e;, M), and t € J(z, M) is equivalent to
t € J(ei, M). So, O(z,a(k)) <2-27F,

By Lemma 5.3, we obtain recursive functions S(M, k) and (M, k) which satisfy
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n > a(M, k) implies f[o D\ (M) ft)Dy(x, t)dt < 27F
and
n > B(M, k) implies [i; 1\ 0, 1p) Dol t)dt < 275,

If © € J(ej,a(k + 6)) and n > max{B(a(k + 6),k +2),v(k + 6),k + 2)}, then from the
equations and inequalities above, we obtain

1S (f) (@) — f(2)] < 8- 20(z, a(k +6)) + 2 27*+2) < 27k,

So the effective Fine convergence is proved. []

In Theorems 18 and 20, we can replace “Fine convergence” to “uniform Fine convergence”
if f is uniformly Fine-computable, and to “locally uniform Fine convergence” if f is locally
uniformly Fine-computable.

Theorems 18, 19 and Lemmas 5.1, 5.3 are effectivizations of corresponding classical The-
orems and Lemmas. So the following classical version of Theorem 20 holds. (See [10] for
terminologies.)

Theorem 21 If f is Fine continuous, integrable and of bounded variation, then S, (f) Fine
converges to f.

It is pointed out in [10] that Fine convergence is weaker than locally uniform Fine-
convergence and stronger than point wise convergence. For a sequence of Fine continuous

functions, Fine convergence is equivalent to continuous convergence.

References

[1] V. Brattka. Some Notes on Fine Computability. Journal of Universal Computer Science,
8:382-395, 2002.

[2] N. J. Fine. On the Walsh Functions. Trans. Amen. Math. Soc., 65:373-414, 1949.

[3] B. Golubov, A. Efimov and V. Skvortsov. Walsh Series and Transforms, Kluwer Aca-
demic, 1991.

[4] R. A. Gordon, The Integrals of Lebesque, Denjoy, Perron, and Henstock. 1994, Am.
Math. Soc.

[5] K. Ito (ed.). Encyclopedic Dictionary of Mathematics. Second Edition. MIT Press, 1993.
[6] T. Mori. On the computability of Walsh functions. Th. Comp. Sci., 284:419-436, 2002.

[7] T. Mori. Computabilities of Fine continuous functions. Computability and Complexity
in Analysis, (4th International Workshop, CCA2000. Swansea), ed. by Blanck, J. et al.,
200-221. Springer, 2001.

[8] T. Mori. Computabilities of Fine continuous functions. Acta Humanistica et Scien-
tifica Universitatis Sangio Kyotiensis, Natural Science Series I, 31:163-220, 2002. (in
Japanese)

17



[9]

[10]

[11]
[12]
[13]
[14]

[15]

T. Mori, Y. Tsujii and M. Yasugi. Computability Structures on Metric Spaces. Combina-
torics, Complexity and Logic (Proceedings of DMTCS’96), ed. by Bridges et al., 351-362.
Springer, 1996.

T. Mori, Y. Tsujii and M. Yasugi. Fine-Computable Functions and Effective Fine-
Convergence. CCA2005, Informatik Berichte 326-7/2005, FernUniversitat in Hagen, 177-
197; revized version available at

http://www.cc.kyoto-su.ac.jp/~yasugi/page/recent.html

M.B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer, 1988.
F. Schipp, W.R. Wade and P. Simon. Walsh Series. Adam Hilger, 1990.

M. Tsuji. Theory of real Functions. Maki Shotenn, 1962. (in Japanese)

M. Yasugi, Y. Tsujii and T.Mori. Metrization of the Uniform Space and Effective Con-
vergence. Math. Log. Quart. 48 Suppl. 1:123-130, 2002.

X. Zheng, R. Rettinger and B. v. Braunmiihl. Effecttively Absolute Continuity and
Effective Jordan Decomposability. Proceedings of the 5th Workshop on Computability
and Complexity in Analysis, CCA 2002, Malaga. ed. by Brattka et al., 223-234.

18



