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Abstract

We de�ne the e�ective integrability of Fine�computable functions and e�ectivize some

fundamental limit theorems in the theory of Lebesgue integral such as Bounded Con�

vergence Theorem and Dominated Convergence Theorem� It is also proved that the

Walsh�Fourier coe�cients of an e�ectively integrable Fine�computable function form an

E �computable sequence of reals and converge e�ectively to zero� The latter fact is the

e�ectivization of Walsh�Riemann�Lebesgue Theorem� The article is closed with the e�ec�

tive version of Dirichlet�s test�

keyword� Fine�computable function� Fine convergence� Walsh Fourier series� e�ective

integrability� Dirichlet�s test

� Introduction

In this article� we make an introductory step to reconstruct e�ectively the theory of Walsh�

Fourier series ����� �	
��� Although Walsh�Fourier series and Haar wavelets have become

important tools in digital processing nowadays� it seems that Haar� Rademacher� Walsh�

Fine and others had already investigated these subjects in the middle of the twentieth century

from mathematical interest� The theory of Walsh�Fourier series is treated similarly to that

of Fourier series by replacing trigonometric functions with Walsh functions�

Let Sn�f� be the nth partial sum of the Walsh�Fourier series of a function f � A major

problem concerning Sn�f� is to 
nd a su�cient condition for the convergence of fSn�f�g to

f � Many types of convergence� such as pointwise convergence� uniform convergence� almost

everywhere convergence and Lp�convergence� are treated in ��� and �	
��

From the standpoint of computable analysis� it is more appropriate if the pointwise con�

vergence of fSn�f�g to f be replaced by some kind of e�ective convergence� which is stronger

than pointwise convergence� We have adopted �e�ective Fine convergence� in �	�� for Fine�

computable functions�

Our present objective is to e�ectivize Dirichlet�s test for Fine�computable functions with

respect to e�ective Fine convergence� For this purpose� we need to reformulate integration
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theory in an e�ective way and prove e�ective versions of some fundamental theorems such as

Bounded Convergence Theorem and Dominated Convergence Theorem of Lebesgue �Theo�

rems �� 	��� These are treated in Section �� A Fine�computable function is Fine continuous�

and hence is Euclidean continuous at dyadic irrationals� This means that such a function

is measurable� and so the classical theorems hold for it� Therefore� the e�ectivization of

integration theory is reduced essentially to the replacement of �convergence� by �e�ective

convergence��

In Section �� we prove E �computability of the inde
nite integral and the second mean value

theorem �Theorem 	�� for an e�ectively integrable Fine�computable function �Theorem 
���

In Section �� we prove the e�ectivizations of Walsh Riemann Lebesgue Theorem �Theorem

	�� and Dirichlet�s Test�

For the reader�s convenience� we review some basics of Fine metric� Fine�computable

functions and Fine convergence� and some fundamental theorems of integration�

We assume the knowledge of computability of the real number sequences and the real

function sequences with respect to the Euclidean topology� See �		� for details�

� Preliminaries

The Fine�metric on ��� 	� was introduced in �
�� It is de
ned by

dF �x� y� �

�X

k��

j�k � �kj

�k� �	�

where� ���� � � � and ���� � � � are dyadic expansions of x and y respectively with in
nitely many

��s�

A left�closed right�open interval with dyadic rational end points is called a dyadic interval�

It is easy to see that a dyadic interval is open with respect to the Fine metric�

We use the following notations for special dyadic intervals�

I�n� k� � �k 
�n� �k � 	�
�n�� � � k � 
n � 	�

J�x� n� � such I�n� k� that includes x�

We call I�n� k� a fundamental dyadic interval �of order n� and J�x� n� a dyadic neighbor�

hood of x �of order n��

The topology generated by fJ�x� n� jx � ��� 	�� n � 	� 
� �� � � �g is equivalent to that in�

duced by the Fine metric� We call this topological space the Fine space� We put �Fine�� to

the topological notions with respect to this topology� For topological notions with respect to

the usual Euclidean metric� we put pre
x �E ���

We cite the following lemma from �	�� concerning I�n� k� and J�x� n��

Lemma ��� ��	��� The following three conditions are equivalent for any x� y � ��� 	� and

any positive integer n�

�i� y � J�x� n��

�ii� x � J�y� n��

�iii� J�x� n� � J�y� n��






A sequence of dyadic rationals frng in ��� 	� is called recursive if there exist recursive

functions ��n� and ��n� which satisfy rn � ��n�
���n�� A double sequence fxm�ng in ��� 	�

is said to Fine�converge e�ectively to a sequence fxmg from ��� 	� if there exists a recursive

function ��m� k� such that� for all m� k� xm�n � J�xm� k� for all n � ��m� k��

A sequence fxmg in ��� 	� is said to be Fine�computable if there exists a recursive sequence

of dyadic rationals frm�ng which Fine�converges e�ectively to fxmg�

De�nition ��� �Uniformly Fine�computable sequence of functions� ���� A sequence of func�

tions ffng is said to be uniformly Fine�computable if �i� and �ii� below hold�

�i� �Sequential Fine�computability� The double sequence ffn�xm�g is E �computable for

any Fine�computable sequence fxmg�

�ii� �E�ectively uniform Fine�continuity� There exists a recursive function ��n� k� such

that� for all n� k and all x� y � ��� 	�� y � J�x� ��n� k�� implies jfn�x�� fn�y�j � 
�k�

The Fine�computability of a single function f is de
ned by that of the sequence ff� f� � � �g�

Notice that the computability of the sequence ffn�xm�g in �i� is E �computability�

Throughout this article� we 
x an e�ective enumeration of all dyadic rationals in ��� 	�

and denote it with feig�

De�nition ��� �E�ectively uniform convergence of functions� ����� A double sequence of

functions fgm�ng is said to converge e�ectively uniformly to a sequence of functions ffmg if

there exists a recursive function ��m� k� such that� for all m�n and k�

n � ��m� k� implies jgm�n�x�� fm�x�j � 
�k for all x�

Theorem � ����� If a uniformly Fine�computable sequence of functions ffng Fine�converges

e�ectively uniformly to a function f � then f is also uniformly Fine�computable�

We can treat weakened notions of computability and convergence as follows�

De�nition ��� �Locally uniformly Fine�computable sequence of functions� ���� A sequence

of functions ffng is said to be locally uniformly Fine�computable if the following �i� and �ii�

hold�

�i� ffng is sequentially Fine�computable�

�ii� �E�ectively locally uniform Fine�continuity� There exist recursive functions ��n� i� k�

and ��n� i� which satisfy the following �ii�a� and �ii�b��

�ii�a� For all i� n and k� jfn�x��fn�y�j � 
�k if x� y � J�ei� ��n� i�� and y � J�x� ��n� i� k���

�ii�b�
S�
i�� J�ei� ��n� i�� � ��� 	� for each n�

De�nition ��� �E�ectively locally uniform Fine�convergence� ����� A double sequence of

functions fgm�ng is said to Fine�converge e�ectively locally uniformly to a sequence of func�

tions ffmg if there exist recursive functions ��m� i� and ��m� i� k� such that

�a� jgm�n�x�� fm�x�j � 
�k for x � J�ei� ��m� i�� and n � ��m� i� k��

�b� ��i��J�ei� ��m� i�� � ��� 	��

Theorem � ����� If a locally uniformly Fine�computable sequence of functions ffng Fine�

converges e�ectively locally uniformly to f � then f is locally uniformly Fine�computable�

�



De�nition ��� �Fine�computable sequence of functions� A sequence of functions ffng is

said to be Fine�computable if it satis�es the following�

�i� ffng is sequentially Fine�computable�

�ii� �E�ective Fine�Continuity� There exists a recursive function ��n� k� i� such that

�ii�a� x � J�ei� ��n� k� i�� implies jfn�x�� fn�ei�j � 
�k�

�ii�b�
S�
i�� J�ei� ��n� k� i�� � ��� 	� for each n� k�

De�nition ��	 �E�ective Fine�convergence of functions� We say that a double sequence

of functions fgm�ng Fine�converges e�ectively to a sequence of functions ffmg if there exist

recursive functions ��m� k� i� and ��m� k� i�� which satisfy

�a� x � J�ei� ��m� k� i�� and n � ��m� k� i� imply jgm�n�x�� fm�x�j � 
�k�

�b�
S�
i�� J�ei� ��m� k� i�� � ��� 	� for each m and k�

De�nition ��
 �Computable sequence of dyadic step functions� ���� A sequence of functions

f	ng is called a computable sequence of dyadic step functions if there exist a recursive function

��n� and a E �computable sequence of reals fcn�jg �� � j � 
��n�� n � 	� 
� � � �� such that

	n�x� �
���n���X

j��

cn�j
I���n��j��x��

where 
A denotes the indicator �characteristic� function of A�

Proposition ��� Let f be a Fine�computable function� De�ne a computable sequence of

dyadic step functions f	ng by

	n�x� �

�n��X

j��

f�j
�n�
I�n�j��x�� �
�

Then f	ng Fine�converges e�ectively to f �

Remark ��� If f is uniformly Fine�computable or locally uniformly Fine�computable� then

the convergence can be replaced by the e�ectively uniform Fine�convergence or the e�ectively

locally uniform Fine�convergence respectively���� ����

Theorem � ��	��� If a Fine�computable sequence of functions ffng Fine�converges e�ec�

tively to f � then f is Fine�computable�

Now� we review the theory of Lebesgue integral for functions on ��� 	�� In the following� we

will say simply �measurable� or �integrable� instead of �Lebesgue measurable� or �Lebesgue

integrable� respectively�

A function 	�x� is called a simple function if it is represented as a 
nite linear combination

of indicator functions of some measurable sets� that is� if 	�x� �
Pn��

i�� ai
Ei
�x�� where ai�s

are real numbers and Ei�s are mutually disjoint measurable sets satisfying
Sn��
i�� Ei � ��� 	��

The integral
R �
� 	dx is de
ned by

Pn��
i�� aijEij� where jEij is the Lebesgue measure of the set

Ei�

�



For a bounded measurable function f � there exists a sequence of simple functions f�ng

which converges pointwise to f � In this case�
R �
� �ndx converges and we denote this limit asR �

� fdx� It holds that� if f�ng is another approximating sequence of simple functions of f �

then limn��

R �
� �ndx � limn��

R �
� �ndx and hence the above de�nition is sound�

For a positive function f � we say that f is integrable if the limit limn��

R �
� f � �ndx

exists� and we denote this limit as
R �
� fdx� where �f � �n��x� � minff�x�� �ng� A general

measurable function f is called integrable if f� � f�	 and f� � ��f��	 are both integrable�

We de�ne
R �
� fdx �

R �
� f

�dx�
R �
� f

�dx�

For the reader
s convenience� we cite two fundamental theorems from ��
 and ��
�

Theorem � A bounded function f is Riemann integrable if and only if the Lebesgue measure

of the set of all discontinuous points is zero� In this case� f is also Lebesgue integrable and

the both integrals have the same value�

From Theorem �� a bounded Fine�computable function is Riemann integrable and also

Lebesgue integrable�

Theorem � �Bounded convergence theorem� Let ffng be a uniformly bounded sequence

of measurable functions which converges pointwise to a function f � Then limn��

R �
� fndx �R �

� fdx� �Uniformly boundedness means that there exists a constant M such that jfn�x�j �M

for all n and x��

Theorem � �Dominated convergence theorem� Let ffng be a sequence of integrable func�

tions which converges pointwise to a function f � Suppose further that there exists an in�

tegrable function g such that jfn�x�j � g�x� for all n and x� Then� f is integrable and

limn��

R �
� fndx �

R �
� fdx�

� E�ective integrability of Fine�computable functions

In this section� we discuss the e�ective computability of integrals for Fine�computable func�

tions on the Fine space� The main objective is the e�ectivization of Theorems � and ��

A Fine�continuous function is E �continuous at every dyadic irrational� and so the Lebesgue

measure of the set of all discontinuous points is zero� and hence Theorems � and � are valid

for Fine�computable functions� Therefore the proofs of e�ectivizations of these theorems are

reduced to e�ective convergence� Since the Fine space does not include the point �� we write

the integral of f on �	� �� as
R
����� f�x�dx rather than

R �
� f�x�dx or

R �
��

� f�x�dx�

E�ective integrability of a Fine�computable function is de�ned as follows� We note that

f� � f � 	 and f� � ��f� � 	 are Fine�computable if f is Fine�computable�

De�nition ��� �E�ective integrability of a function�

�i� A bounded Fine�computable function f is called e�ectively integrable if
R
����� f�x�dx

is an E �computable number�

�ii� A nonnegative Fine�computable function f is said to be e�ectively integrable if it is

integrable and
R
����� f�x�dx is an E �computable number�

�iii� A Fine�computable function f is called e�ectively integrable if it is integrable andR
����� f

��x�dx and
R
����� f

��x�dx are E �computable numbers�

�



We also need these de�nitions for a sequence of functions�

De�nition ��	 �E�ective integrability of a sequence of functions�

�i� A sequence of bounded Fine�computable functions ffng is said to be e�ectively in�

tegrable if each fn is integrable and the sequence f
R
����� fn�x�dxg forms an E �computable

sequence of reals�

�ii� A sequence of nonnegative Fine�computable functions is said to be e�ectively inte�

grable if each fn is integrable and f
R
����� fn�x�dxg is an E �computable sequence of reals�

�iii� A sequence of Fine�computable functions ffng is called e�ectively integrable if each

fn is integrable and f
R
����� f

�
n �x�dxg and f

R
����� f

�
n �x�dxg are E �computable sequences of real

numbers�

De�nition ��� �i� Let E be a �nite union of of dyadic intervals� Then� a Fine�computable

function f is said to be e�ectively integrable on E if f is integrable on E and
R
E
f�x�dx �R

����� �E�x�f�x�dx is an E �computable number�

�ii� Suppose that fEmg is a computable sequence of �nite unions of dyadic intervals� that

is� there exists a recursive function ��m� and recursive sequences of dyadic rationals fa�m� i�g

and fb�m� i�g such that Em �
S��m�
i�� �a�m� i�� b�m� i��� Then� a Fine�computable function f is

said to be e�ectively integrable on fEmg if f is integrable on each Em and f
R
Em

f�x�dxg is

an E �computable sequence of reals�

�iii� E�ective integrability of a sequence of Fine�computable functions on E and fEng

are de�ned similarly�

For a computable dyadic step function � of the form ��x� �
P�k��

i�� ci��i��k��i�����k��x��

its integral
R
����� ��x�dx is equal to ��k

P�k��
i�� ci� f

R
����� �n�x�dxg is hence an E �computable

sequence of reals if f�ng is a computable sequence of dyadic step functions due to De�nition

����

For a uniformly Fine�computable function� the following theorem is essentially proved in

the proof of Proposition ��� in ��
�

Theorem 
 A uniformly Fine�computable function is e�ectively integrable�

The proof goes as follows� Let f be uniformly Fine�computable and let f�ng be an

approximating computable sequence of dyadic step functions de�ned by Equation ���� Then

f is bounded and integrable� In addition�
R
����� �n�x�dx converges e�ectively uniformly toR

����� f�x�dx� since

j
R
����� �n�x�dx�

R
����� f�x�dxj �

R
����� j�n�x�� f�x�jdx � supx������ j�n�x�� f�x�j�

Therefore
R
����� f�x�dx is computable�

For a locally uniformly Fine�computable function� we have the following counter�example�

Example ��� �Brattka ��
� Let � be an injective recursive function whose range is not

recursive� De�ne

��x� � �k����k� if �� ���k���
� x � �� ��k� k � �� �� � � � �

�



Then � is locally uniformly Fine�computable but
R
����� ��x�dx �

P�
k�� �

���k� is not E �

computable�

Let us further note the following� De�ne

�n�x� �

�
�k����k� if �� ���k��� � x � �� ��k� k � �� �� � � � � n

	 if x � �� ��n

Then f�ng is e�ectively integrable�

Classically� f
R
����� �ng converges to

R
����� ��x�dx� but the convergence is not e�ective�

This counter�example shows that the requirement on the computability of the integral is

not redundant in the de�nition of e�ective integrability of a Fine�computable function�

The next example shows that the computability of
R
����� f�x�dx is generally not su�cient

for e�ective integrability�

Example ��	 Let � be an injective recursive function whose range is not recursive� Put

��x� �

�
�k����k� if �� ����k��� � x � �� ����k���

��k����k� if �� ����k��� � x � �� ���k �k � �� �� � � ���

Then �� and �� are not e�ectively integrable but
R
����� ��x�dx � 	�

We need the following lemmas�

Lemma ��� �Monotone convergence ���
� Let fxn�kg be an E �computable sequence of reals

which E �converges monotonically to fxng as k tends to in�nity for each n� Then fxng is

E �computable if and only if the E �convergence is e�ective�

Lemma ��	 jAj will denote the Lebesgue measure of a set A�

Let f�ak� bk�g be a recursive sequence of dyadic intervals� that is� fakg and fbkg are re�

cursive sequence of dyadic rationals� If we de�ne En �
Sn
k���ak� bk�� then fjEnjg is an E �

computable sequence of reals� Assume that fEng converges to �	� ��� i�e�
S�
k���ak� bk� � �	� ���

Then fjEnjg E �converges e�ectively� i�e�� there exists a recursive function ��p� such that

jEnj 	 � � ��p �or jE C
n j � ��p� for n � ��p�� where AC denotes the complement of a set

A�

Proof For a dyadic interval �a� b�� j�a� b�j � b� a� En can be represented as the union of

�nite mutually disjoint dyadic intervals whose ends�points are determined e�ectively from ak
s

and bk
s� Therefore� fjEnjg is an E �computable sequence of reals and converges monotonically

to ��

Theorem � �E�ective bounded convergence theorem� Let fgng be a bounded Fine�computable

sequence of functions which is e�ectively integrable and Fine�converges e�ectively to f � Then�

f is Fine�computable and f
R
����� gn�x�dxg E �converges e�ectively to

R
����� f�x�dx� As a con�

sequence� f is integrable�

�



Proof Suppose that fgng Fine�converges e�ectively to f with respect to ��i� k� and


�i� k� and� for some integer M � jgn�x�j � M � Then Theorem � yields that f is Fine�

computable� Since fgn�x�g converges to f�x�� jf�x�j � M holds� and f
R
����� gn�x�dxg con�

verges to
R
����� f�x�dx by virtue of Theorem ��

We denote
Sm
i�� J�ei� ��i� k�� with Ek�m� By De�nition ����

S�
m��Ek�m � �	� ��� So� for

each k� we can �nd e�ectively an m � m�k� such that jEk�mj 	 �������k���M� from Lemma

���� If we take n � ��k� � maxf���� k � ��� ���� k � ��� � � � � ��m�k�� k � ��g� thenR
����� jgn�x�� f�x�jdx �

R
Ek�m

jgn�x�� f�x�jdx�
R
E C
k�m

jgn�x�j�
R
E C
k�m

jf�x�jdx

� ���k��� � ���k��� � ���k��� � ��k�

If f is a bounded Fine�computable function� then the sequence of dyadic step functions

f�ng de�ned by Equation � is also bounded� So� the assumption of Theorem � holds for f

and f�ng� and we obtain the following theorem�

Theorem � A bounded Fine�computable function is e�ectively integrable�

From the de�nition of Lebesgue integral and Lemma ���� we obtain the following propo�

sition�

Let us here note that� if f is Fine�computable� then ff��ng is a Fine�computable sequence

of functions�

Proposition ��� Let f be a nonnegative integrable Fine�computable function� Then f is

e�ectively integrable if and only f
R
����� f � �ng E �converges e�ectively to f

R
����� f�x�dxg�

Proposition ��	 Let f be an e�ectively integrable Fine�computable function and let In be a

sequence of dyadic intervals such that
S�
n�� In � �	� ��� Put En �

Sn
i�� Ii� Then�

R
En

f�x�dx

converges e�ectively to
R
����� f�x�dx� or equivalently�

R
E C
n
f�x�dx converges e�ective to zero�

Proof� Since j
R
E
f�x�dxj �

R
E
f��x�dx �

R
E
f��x�dx� it is su�cient to prove the case

where f is nonnegative� Put fn � f � �n� Then
R
����� fn�x�dx converges e�ectively toR

����� f�x�dx due to Proposition ���� Hence� there exists a recursive function 
�k� such that

n � 
�k� implies 	 �
R
����� f�x�dx�

R
����� fn�x�dx � ��k� In particular� we get

	 �
R
����� f�x�dx�

R
����� f��k����x�dx � ���k����

By virture of Lemma ���� there exists a recursive function ��k� such that m � ��k� implies

jE C
m j � ��k� If we take m � ��
�k � �� � k � ��� then

R
����� f�x�dx�

R
Em

f�x�dx �
R
EC
m
f�x�dx

�
R
EC
m
�f�x�� f��k����x��dx �

R
E C
m
f��k����x�dx

�
R
������f�x�� f��k����x��dx�

R
E C
m
f��k����x�dx

� ���k��� � ���k��������k����k��� � ��k�

�



Theorem �
 �E�ective dominated convergence theorem� Let fgng be an e�ectively inte�

grable Fine�computable sequence� which Fine converges e�ectively to f � Suppose that there

exists an e�ectively integrable Fine�computable function h such that jgn�x�j � h�x�� Then�

f
R
����� gn�x�dxg converges e�ectively to

R
����� f�x�dx�

Proof� From Theorem �� f is integrable and f
R
����� gn�x�dxg converges to

R
����� f�x�dx�

It also holds that jf�x�j � h�x��

Suppose that fgng Fine converges e�ectively to f with respect to ��k� i� and 
�k� i��

Then�

x � J�ei� ��k� i�� and n � 
�k� i� imply jgn�x�� f�x�j � ��k�S�
i�� J�ei� ��k� i�� � �	� �� for each k�

Put Ii � J�ei� ��k � �� i�� and Em �
Sm
i�� Ii� From Proposition ���� we can obtain a

recursive function ��k� which satis�es that
R
E C
m
h�x�dx � ��k for m � ��k��

Suppose that n � maxf
�k � �� ��� � � � � 
�k � �� ��k � ���g� Then

j
R
����� gn�x�dx�

R
����� f�x�dxj

�
R
E��k���

jgn�x�� f�x�jdx�
R
�E��k����C

jgn�x�jdx�
R
�E��k����C

jf�x�jdx

� ���k��� � ����k��� � ��k

We have stated and proved the theorems and the propositions for a single Fine�computable

function up to now� We can easily extend them to the case of a Fine�computable sequence

of functions�

The sequentializations of Theorems �� � and �	 can be stated as follows�

Theorem �� �Sequential e�ective bounded convergence theorem� Let ffng be a Fine�

computable sequence and let fgn�mg be a bounded Fine�computable sequence of functions which

is e�ectively integrable and Fine�converges e�ectively to ffng� Assume also that there exists

an E �computable sequence of reals fMng such that jgn�m�x�j �Mn� Then� f
R
����� gn�m�x�dxg

E �converges e�ectively to f
R
����� fn�x�dxg�

Theorem �	 Let ffng be Fine�computable and e�ectively bounded� that is� there exists

an E �computable sequence of reals fMng such that jfn�x�j � Mn� Then ffng is e�ectively

integrable�

Theorem �� �Sequential e�ective dominated convergence theorem� Let fgm�ng be an ef�

fectively integrable Fine�computable sequence which Fine converges e�ectively to ffmg� Sup�

pose that there exists an e�ectively integrable Fine�computable sequence fhmg such that

jgm�n�x�j � hm�x�� Then� f
R
����� gm�n�x�dxg converges e�ectively to

R
����� fm�x�dx�

� Inde�nite integral and mean value theorem

In this section� we consider E �computability of the inde�nite integral
R x
� f�x�dx �x � �	� �
�

and the second mean value theorem for a Fine�computable and e�ectively integrable function

f � We will �rst establish a fundamental fact�

�



Theorem �� Suppose ffng is a Fine�computable and e�ectively integrable sequence of func�

tions� De�ne Fn�x� �
R x
� fn�x�dx� Then fFng is a uniformly E �computable sequence of

functions on �	� �
�

Proof� We prove the theorem for the case of a single function f � It is only a mater

of routine to modify the proof to the case of a function sequence� We note that F ��� �R
����� f�x�dx�

�i� �E�ective uniform E �continuity�� If f is bounded� then there is an integer N such

that jf�x�j � �N � So� if jx� yj � ���k�N�� then

jF �x�� F �y�j �
R y
x
�Ndx � �N jx� yj � ��k�

Suppose that f is nonnegative� Then� f
R
����� gn�x�dxg E �converges e�ectively to

R
����� f�x�dx

by Proposition ���� where gn � f � �n� So� there exists a recursive function � such that

n � ��k� implies j
R
����� f�x�dx�

R
����� gn�x�dxj � ��k� If jx� yj � ���k���k������ then

jF �x�� F �y�j � j
R
����� f�x�dx�

R
����� g��k����x�dxj � j

R y
x
g��k����x�dxj

� ���k��� � jx� yj���k��� � ��k�

The general case follows from the inequality jF �x��F �y�j �
R y
x
jf�x�jdx and the nonneg�

ative case�

�ii� �Sequential computability�� Let fxng be any E �computable sequence of reals in

�	� ��� Then� there exists a recursive sequence of dyadic rationals frn�mg which E �converges

e�ectively to fxng�

By de�nition� F �rn�m� �
R
����� ����rn�m��x�f�x�dx� f����rn�m��x�f�x�g is a Fine�computable

sequence of functions and j����rn�m��x�f�x�j � jf�x�j� fF �rn�m�g is hence an E �computable

sequence of reals by Theorem ��� From the e�ective uniform E �continuity proved in �i��

fF �rn�m�g E �converges e�ectively to fF �xn�g� Therefore fF �xn�g is an E �computable se�

quence of reals�

Remark ��� From �i� of the proof above� the following e�ective absolute continuity holds�

if f is Fine�computable and e�ectively integrable� then there exists a recursive function such

that j
R
E
f�x�dxj � ��k for a measurable set E with jEj � ����k��

Theorem �� �E�ective intermediate value theorem� Theorem � in Section 	�� of ���
� Let

�a� b
 be an interval with E �computable endpoints� and let f be an E �computable function

on�a� b
 such that f�a� � f�b�� Let s be an E �computable real with f�a� � s � f�b�� Then

there exists an E �computable point c in �a� b� such that f�c� � s�

It is pointed out in ���
 that the sequential version of Theorem �� does not hold�

We can prove the following variation of Theorem ���

Theorem ��� Let �a� b
 be an interval with rational endpoints� and let f be E �computable

and non�constant on �a� b
� Put m � minx��a�b	 f�x� and M � maxx��a�b	 f�x�� For an E �

computable real number s with m � s � M � there exists a E �computable point c in �a� b
 such

that f�c� � s�

�	



Proof� De�ne

mn � min��i�n��ff�a� i�b� a��ng and Mn � max��i�n��ff�a� i�b� a��ng�

Then fmng E �converges e�ectively to m and fMng E �converges e�ectively to M ����
��

Suppose s is a computable real number such that m � s � M � Then one can �nd

e�ectively n� and n� such that mn� � s � Mn� � For such n� and n�� there exist i� � n�

and i� � n� satisfying the following conditions� If we put xn� � a � i��b � a��n� and

yn� � a� i��b� a��n�� then f�xn�� � mn� and f�yn�� � Mn� hold� If we apply Theorem ��

to the interval �xn� � yn� 
 �or �yn� � xn� 
�� we obtain the desired c� �Notice that xn� and yn� are

computable� although i� and i� may not be e�ectively found��

Since a Fine�computable function may be E �discontinuous� the ��rst� mean value theorem

does not hold� On the other hand� the second mean value theorem applies to E �discontinuous

functions� To e�ectivize this theorem� we need the following proposition� which can be proved

easily following the classical proof�

Proposition ��� Let f be Fine�computable and e�ectively integrable� and let g be bounded

and Fine�computable� Then fg is also e�ectively integrable�

Theorem �� �E�ective second mean value theorem� Let f be Fine�computable and e�ec�

tively integrable� Suppose that a and b are dyadic rationals satisfying 	 � a � b � ��

�i� Let g be Fine�computable� nonnegative and strictly decreasing� Then� there exists an

E �computable point c � �a� b
 which satis�esR b
a
g�t�f�t�dt � g�a�

R c
a
f�t�dt� ���

�ii� If g is Fine�computable and strictly monotone� then there exists an E �computable

point c � �a� b
 which satis�esR b
a
g�t�f�t�dt � g�a�

R c
a
f�t�dx� g�b�

R b
c
f�t�dt� ���

Proof� Let us note that g is bounded on �a� b
�

�i� De�ne F �x� �
R x
a
f�t�dt� Then F is E �computable by Theorem ��� Put M �

maxx��a�b	 F �x� and m � minx��a�b	 F �x��

The following holds by integration by parts and the absolute continuity of F ����
��R b
a
f�t�g�t�dt � F �b�g�b� �

R b
a
F �t�dg�t�� ���

where
R
F �t�dg�t� denotes Lebesgue�Stieltjes integral�

If m � M � then F is constant� and hence f�x� � 	 for all x � �a� b
� So� Equation ���

holds for all c � �a� b
� Now� we assume that m � M �

From the assumption on g and the de�nitions of m and M � we obtain

m
R b
a
dg�t� 	

R b
a
F �t�dg�t� 	 M

R b
a
dg�t�� ���

From Equation ��� and Inequality ����R b
a
f�t�g�t�dt 	 F �b�g�b� �m

R b
a
dg�t� � F �b�g�b� �m�g�b� � g�a�

� �F �b��m�g�b� �mg�a� � mg�a��

��



In the same way� we can prove
R b
a
g�t�f�t�dt � Mg�a�� Since g�a� 	 	� we obtain

m � �
g�a�

R b
a
f�t�g�t�dt � M�

If we apply Theorem ��� to F � there exists an E �computable point c in �a� b
 such that

F �c� � �
g�a�

R b
a
g�t�f�t�dt�

This implies Equation ����

�ii� If g is strictly decreasing� then g � g�b� is nonnegative and strictly decreasing� So�

we obtain from �i� an E �computable point c in �a� b� such thatR b
a
�g�x� � g�b��f�x�dx � �g�a� � g�b��

R c
a
f�x�dx�

From this� we obtain R b
a
g�x�f�x�dx � g�a�

R c
a
f�x�dx� g�b�

R b
c
f�x�dx�

If g is strictly increasing� we can obtain the same result by applying the above result to

�g�

� E�ective Fine convergence of Walsh Fourier series

The system of Walsh functions fwng is de�ned on �	� �� by

wn�x� � ����
Pk

i�� �i��n�i � ���

where� 
�
� � � � is the dyadic expansion of x with in�nitely many 	�s and n � n� � n��� �

� � �� n�k�
k is the dyadic expansion of a positive integer n�

It can be easily shown that fwng is a Fine�computable sequence of functions� and that�

if f is Fine�computable and e�ectively integrable� then so is the sequence ffwng�

Theorem �
 �Computability of Walsh Fourier coe	cients� If f is Fine�computable and

e�ectively integrable� then the sequence of Walsh Fourier coe	cients f
R
����� f�x�wn�x�dxg

�
n��

is an E �computable sequence of reals�

Proof� Put fn�x� � �f�x� � �n� � ���n��

The sequence of Fine�computable functions ffnwmg satis�es the assumption of Theorem

��� So f
R
����� fn�x�wm�x�dxg is an E �computable �double� sequence of reals�

Then� fgm�ng � ffnwmg satis�es the assumption of Theorem �� with hm�x� � f�x�

and Fine�coverges e�ectively to fwm� So� f
R
����� fn�x�wm�x�dxg E �converges e�ectively to

f
R
����� f�x�wm�x�dxg and hence the latter is an E �computable sequence of reals�

De�nition ��� The partial sum Sn�f� and modi�ed Dirichlet kernel Dn�x� t� are de�ned by

Sn�f��x� �
n��X
i��

ciwi�x�� Dn�x� t� �
n��X
i��

wi�x�wi�t��

where fcig is the Walsh Fourier coe	cients of f � i�e� ci �
R
����� f�t�wi�t�dt�

��



It is well known that

Sn�f��x� �
R
����� f�t�Dn�x� t�dt� ���

Remark ��� In the theory of classical Walsh Fourier series� Dn�x�t� is usually used instead

of Dn�x� t�� where Dn�x� � Dn�x� 	� � Dn�	� x� ���
� ���
�� Since the dyadic sum x� t is not

de�ned for all x and t in �	� ��� we do not use the dyadic sum x� t�

Lemma ��� �Paley� ���
�

D�n�x� t� �

�
�n if t � J�x� n�

	 otherwise
�

We can prove the following Theorems in a manner similar to the proof of Proposition ���

in ��
� The Fine�convergence of fS�nfg can be proved similarly to the proof of Proposition

��� in ��
 using the Paley
s lemma�

Theorem �� If f is Fine�computable and e�ectively integrable� then S�nf Fine�converges

e�ectively to f �

Proof� Recall that

S�nf�x� �
R
����� f�t�D�n�x� t�dt �

R
J�x�n� f�t�D�n�x� t�dt�

Now� from Paley
s Lemma�

S�nf�x�� f�x� �
R
J�x�n��f�t�D�n�x� t�� �nf�x��dt � �n

R
J�x�n��f�t�� f�x��dt�

Suppose that f is Fine continuous with respect to ��k� i�� If x � J�ei� ��k � �� i�� and

n � ��k � �� i�� then t � J�ei� ��k � �� i�� for t � J�x� n�� In this case� we obtain

jf�t�� f�x�j � jf�t�� f�ei�j� jf�ei�� f�x�j � ��k�

Hence� we obtain jS�nf�x� � f�x�j � ��k� If we de�ne ��k� i� � ��k � �� i� and 
�k� i� �

��k � �� i�� then S�n�f� Fine converges e�ectively to f with respect to � and 
�

The e�ective version of the Walsh Riemann Lebesgue theorem ����
� can be stated and

proved as follows�

Theorem �� �E�ective Walsh Riemann Lebesgue theorem� If f is Fine�computable and

e�ectively integrable� then its Walsh�Fourier coe	cients fcng converges e�ectively to zero�

Proof� �i� First� we assume that f is bounded� Let f�mg be the approximating sequence

of dyadic step functions de�ned by Equation ��� and put dm�n �
R
����� �m�x�wn�x�dx� Then

fdm�ng is E �computable by Theorem �� and

jdm�n � cnj � j
R
�������m�x�� f�x��wn�x�dxj �

R
����� j�m�x�� f�x�jdx�

The right�hand side E �converges e�ectively to zero by Theorem �� So� fdm�ng E �converges

e�ectively to fcng as m tends to in�nity uniformly in n� This means that there exists a

recursive function � such m � ��k� implies jdm�n � cnj � ��k for all n�

��



The sign of wn�x� on ��j���n���� ��j � �����n���� and that on ���j � �����n���� ��j �

�����n���� are opposite to each other with absolute value � for j � 	� �� � � � � �n � �� On the

other hand� �m�x� is constant on each �i��m� �i� ����m�� So� dm�n � 	 if n � m�

From the discussion above� if n � ��k�� then we obtain that d��k��n � 	 and hence

jcnj � ��k� This proves that fcng E �converges e�ectively to zero�

�ii� For a general f � f � f� � f� and cn �
R �
� f��x�wn�x�dx �

R �
� f

��x�wn�x�dx�

Therefore� it is su�cient to prove the case where f is nonnegative�

Put f� � f � �� and c��n �
R
����� f��x�wn�x�dx� ff�wng is Fine�computable and e�ectively

integrable as a double sequence of functions and jf�wnj � �� fc��ng is E �computable by an

extended version of Theorem ���

Notice that the proof of �i� can be modi�ed for e�ectively bounded sequence of functions

ff�g� This means that there exists a recursive function ���� k� such that n � ���� k� implies

jc��nj � ��k� Similarly to �i�� we obtain

jc��n � cnj � j
R
������f��x�� f�x��wn�x�dxj �

R
������f�x�� f��x��dx�

The right�hand side E �converges e�ectively to zero by Proposition ���� So� fc��ng E �converges

e�ectively to fcng as � tends to in�nity uniformly in n� Let 
 be the modulus of this

convergence� Then it holds that � � 
�k� implies jc��n � cnj � ��k for all n�

If n � ��
�k � ��� k � ��� then

jcnj � jc��k����n � cnj� jc��k����nj � ���k��� � ���k��� � ��k�

This proves that fcng E �converges e�ectively to zero with respect to ��k� � ��
�k �

��� k � ���

To prove an e�ective version of Dirichlet
s test� we need the following two lemmas� The

second one is the e�ectivization of the fundamental lemma which is used in proving pointwise

convergence of the partial sums Sn�f� to f �cf� ���
��

Lemma ��	 ����
� Dn�x� t� � wn�x�wn�t�
PN

j�� n�j�j�x��j�t�D�j �x� t��

where �j�x� is the j�th Radmacher function and n � n� � n�� � � � � � nN�N is the dyadic

expansion of n�

Prior to the next lemma� let us make the following remark� In the classical case� one can

use wj�x� t� instead of wj�x�wj�t�� and this fact leads us to the desired conclusion quickly�

Here� however� we cannot use wj�x� t�� and hence we need some elaborate work�

Lemma ��� �Key lemma� If f is Fine�computable and e�ectively integrable� then FM�n�x� �R
�����nJ�x�M� f�t�Dn�x� t�dt Fine converges e�ectively to zero e�ectively in M uniformly in x�

This means that there exist a recursive function ��M�k� which satis�es that n � ��M�k�

implies jFM�n�x�j � ��k�

Proof� �i� Let f be bounded Fine�computable� f�mg be the approximating sequence of

dyadic step functions de�ned by Equation ��� and �M�m�n�x� be
R
�����nJ�x�M� �m�t�Dn�x� t�dt�

�i�a� First� we show that f�M�m�ng is Fine�computable� Let fx�g be a Fine�computable se�

quence in �	� ��� Then� ������nJ�x��M��t��m�t�Dn�x�� t� is a bounded Fine�computable �quadru�

ple� sequence of dyadic step functions of t� So� f�M�m�n�x��g is E �computable by Theorem

��� This proves the sequential computability of f�M�m�ng�

��



By the de�nition of Dn�x� t�� it is constant on a rectangle I��� j� 	 I���� j�� if n � �

and n � �� as a function of x and t� where I��� j� � �j���� �j � ������� For such an n�

Dn�x� t� � Dn�y� t� if y � J�x� ���

If � � M and y � J�x� ��� then J�x�M� � J�y�M�� It also holds that I��� j� 
 J�x�M�

or I��� j� 
 �	� ��nJ�x�M�� Therefore� if � � maxf�log� n
�Mg and y � J�x� ��� then

�M�m�n�x� � �M�m�n�y��

�i�b� f�M�m�ng converges e�ectively to zero as n tends to in�nity uniformly in x e�ectively

in m �M � First� we have

Dn�x� t� � D�M �x� t� �
Pn��

j��Mwj�x�wj�t�

if n � �M � and D�M �x� t� � 	 on �	� ��nJ�x�M� by Paley
s Lemma�

On the other hand� �m is constant on �i��m� �i�����m� for each i� If n � �m�� �M �� the

sign of wn�t� on ��j����log� n	���� ��j �������log� n	���� and that on ���j �������log� n	���� ��j �

������log� n	���� are opposite with absolute value �� ��x
 denotes the integer part of x�� There�

fore� �M�m�n�x� � 	 if n � �m � �M � In other words� �M�m�n�x� � 	 if n � �m and m �M �

�i�c� f�M�m�ng converges to FM�n as m tends to in�nity uniformly in n e�ectively in M �

By Lemma ����

�M�m�n�x�� FM�n�x� �
R
�����nJ�x�M���m�t�� f�t��Dn�x� t�dt

�
PM��

j�� n�jwn�x��j�x�
R
�����nJ�x�M���m�t�� f�t��wn�t��j�t�D�j �x� t�dt�

and so

j�M�m�n�x�� FM�n�x�j �
PM��

j�� �j
R
�����nJ�x�M� j�m�t�� f�t�jdt

� �M
R
����� j�m�t�� f�t�jdt�

By Theorem ��
R
����� j�m�t�� f�t�jdt E �converges e�ectively to zero� Let � be the modulus of

this convergence� Then j�M�m�n�x�� FM�n�x�j � ��k if m � ��k �M��

�i�d� FM�n Fine converges e�ectively to zero as n tends to in�nity e�ectively in M

uniformly in x� De�ne ��M�k� � ���k�M��M and put m� � ��k �M� �M � Then� by virtue

of �i�c�� j�M�m��n�x��FM�n�x�j � ��k for all n and x� On the other hand� �M�m��n�x� � 	 if

n � ��M�k�� So� for n � ��M�k��

jFM�n�x�j � j�M�m��n�x�� FM�n�x�j� j�M�m��n�x�j � ��k�

�ii� The case where f is Fine�computable� nonnegative and e�ectively integrable� Put

f� � f � �� and FM���n�x� �
R
�����nJ�x�M� f��t�Dn�x� t�dt� Then� ff�g is Fine�computable and

e�ectively bounded� As in the proof of �i�d�� there exists a recursive function ��M� �� k� such

that n � ��M� �� k� implies jFM���n�x�j � ��k� We have also

jFM���n�x�� FM�n�x�j � j
R
�����nJ�x�M��f�t�� f��t��Dn�x� t�dtj

� �M
R
������f�t�� f��t��dt�R

������f�t� � f��t��dt E �converges e�ectively to zero by Proposition ���� Let ��k� be the

modulus of this convergence� If n � 
�M�k� � ��M���k �M � ��� k � ��� then

��



jFM�n�x�j � jFM���k�M����n�x�� FM�n�x�j� jFM���k�M����n�x�j � ���k��� � ���k��� � ��k�

This proves that fFM�ng converges to zero e�ectively as n tends to in�nity e�ectively in

M uniformly in x�

�iii� For a general f � f � f� � f� holds� and hence the lemma follows from �ii��

Before we treat the �nal objective� the e�ectivization of the Dirichlet
s test� we study the

computability of the variation of a Fine�computable function�

Zheng� Rettinger and Braunm�uhl investigated functions of bounded variation and Jordan

decomposability ����
�� They showed an example that is e�ectively absolutely continuous but

not e�ectively Jordan decomposable�

Subsequently V x
� �f� denotes the variation of f in �	� x
 �	 � x � ��� V �

� �x� is de�ned to

be sup��x	� V
x
� �f��

The following example is a modi�cation of Proposition ��� in ��	
�

Example ��� Let � be an injective recursive function whose range is not recursive� De�ne

f�x� � e���n� if �
� � ��n � x � �

� � ���n��� �n � �� �� � � ���

Then V x
� �f� �

P�
n�� e

���n� for x � �
� � and

P�
n�� e

���n� is not E �computable�

According to Example ���� sequential computability of the variation fails� However� we

can prove easily e�ective Fine continuity of V x
� �f� if it is �nite�

De�nition ��	 A Fine�computable function is said to be e�ectively Jordan decomposable if

there exist monotone increasing Fine�computable functions �� and �� such that f � ������

Theorem 	
 �E�ective Dirichlet
s test� Let f be Fine�computable� e�ectively integrable

and e�ectively Jordan decomposable� Then fSn�f�g Fine converges e�ectively to f �

Proof� It is su�cient to prove the case where f is monotone increasing and Fine�

computable�

According to ���
� the following holds classically� Put ��x�M� � supt�J�x�M� jf�t��f�x�j�

� � supx�y�������n j
R
���y�Dn�x� t�dtj and Un�M�x� f� �

R
J�x�M��f�t�� f�x��Dn�x� t�dt� Then

jUn�M �x� f�j � ����x�M� and j�j � �

holds� We remark that the right�hand side of the above inequality does not depend on n�

If n � �M � then

Sn�f��x�� f�x� �
R
������f�t�� f�x��Dn�x� t�dt

� Un�M�x� f� �
R
�����nJ�x�M� f�t�Dn�x� t�dt � f�x�

R
�����nJ�x�M�Dn�x� t�dt�

If f is Fine�computable with respect to ��k� i�� then x � J�ei� ��k� i�� implies jf�x� �

f�ei�j � ��k� If x � J�ei�M�� then J�x�M� � J�ei�M�� and t � J�x�M� is equivalent to

t � J�ei�M�� So� ��x� ��k�� � � � ��k�

By Lemma ���� we obtain recursive functions 
�M�k� and ��M�k� which satisfy

��



n � ��M�k� implies
R
�����nJ�x�M� f�t�Dn�x� t�dt � ��k

and

n � 
�M�k� implies
R
�����nJ�x�M�Dn�x� t�dt � ��k�

If x � J�ei� ��k � ��� and n � maxf
���k � ��� k � ��� ��k � ��� k � ��g� then from the

equations and inequalities above� we obtain

jSn�f��x�� f�x�j � � � ���x� ��k � ��� � � � ���k��� � ��k�

So the e�ective Fine convergence is proved�

In Theorems �� and �	� we can replace �Fine convergence� to �uniform Fine convergence�

if f is uniformly Fine�computable� and to �locally uniform Fine convergence� if f is locally

uniformly Fine�computable�

Theorems ��� �� and Lemmas ���� ��� are e�ectivizations of corresponding classical The�

orems and Lemmas� So the following classical version of Theorem �	 holds� �See ��	
 for

terminologies��

Theorem 	� If f is Fine continuous� integrable and of bounded variation� then Sn�f� Fine

converges to f �

It is pointed out in ��	
 that Fine convergence is weaker than locally uniform Fine�

convergence and stronger than point wise convergence� For a sequence of Fine continuous

functions� Fine convergence is equivalent to continuous convergence�
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