
Computable Analysis via Representations

Peter Hertling
Institut für Theoretische Informatik und Mathematik

Universität der Bundeswehr München, Germany

Overview

1. Computing over countable sets with notations
I Notations, e.g., of natural numbers
I Reducibility and equivalence
I Relative computability

2. Computing over uncountable sets with representations
I Representations, e.g., of real numbers
I Reducibility and equivalence
I Relative computability
I The role of continuity
I Admissible representations
I Representations of functions
I Computable metric spaces

3. Some results for illustration
I A result by Pour-El and Richards
I . . . for the wave equation
I Results by Weihrauch and Zhong for the wave equation

1 Computing over countable sets with notations
Notations, e.g., of natural numbers

Example

Given: a digital computer.
Task: perform some computation
involving natural numbers n ∈ {0, 1, 2, 3, . . .}.

Necessary: one has to encode natural numbers via bits 0, 1.
Possibilities:

I unary encoding: e.g. number 9 ∼= encoded as 111111111.

I binary encoding: e.g. number 9 ∼= encoded as 101.

Notations, e.g., of natural numbers

Now, let’s be more formal.
In the following

I f :⊆ X → Y means: f is a function
I defined on some subset of X
I with range in Y .

I Σ, Σ′, etc. are finite, non-empty sets, i.e., alphabets, e.g., Σ = {0, 1}.
I Σ∗ is the set of all finite strings over Σ.

Definition
A notation of a set X is a surjective function ν :⊆ Σ∗ → X .

(surjective
= onto
= for every x ∈ X there is some w ∈ Σ∗ with ν(w) = x)

Then any w with ν(w) = x is a ν-name for x .

Examples

I Unary notation: νunary :⊆ Σ∗ → N with

νunary(1
n) := n.

I Binary notation: νbinary :⊆ Σ∗ → N with

νbinary(ak . . . a0) :=

∑k

i=0 ai · 2i if ak , . . . , a0 ∈ {0, 1}, ak 6= 0

or if k = 0 and ak = 0,

undefined otherwise

Notations: Reducibility and Equivalence

Definition
Let ν1 :⊆ Σ∗ → X and ν2 :⊆ Σ′∗ → X be notations. Then

I ν1 is reducible to ν2, written ν1 ≤ ν2, if there is a computable
“translator” T :⊆ Σ∗ → Σ′∗ with

ν1(w) = ν2(T (w))

for all w ∈ dom ν1.

I ν1 is equivalent to ν2, written ν1 ≡ ν2, if ν1 ≤ ν2 and ν2 ≤ ν1.

Example

νunary and νbinary are equivalent.

Notations: Complexity Considerations

The reducibility and equivalence relations just introduced are quite rough.
For practice also important: complexity considerations.

Example

νunary and νbinary are not “polynomial time equivalent”:
there is no translator from νbinary to νunary that works in polynomial time!

Relative Computability: Functions

Definition
Let νX :⊆ Σ∗ → X and νY :⊆ Σ′∗ → Y be notations. A function
f :⊆ X → Y is (νX , νY)-computable or computable with respect to νX and
νY if there is a computable “realizer” F :⊆ Σ∗ → Σ′∗ with

f νX (w) = νY F (w)

for all w ∈ dom f νX .

Examples

I Addition of natural numbers: + : N2 → N, (n,m) → n + m, is
(νbinary

2, νbinary)-computable, i.e., computable with respect to νbinary.

I Addition of natural numbers is computable with respect νunary as well.

Here νbinary
2 is defined by

νbinary
2(w1#w2) = (νbinary(w1), νbinary(w2))

if w1,w2 ∈ dom νbinary.

Lemma
Let νX , ν ′X :⊆ Σ∗ → X and νY , ν ′Y :⊆ Σ′∗ → Y be notations.
If νX ≡ ν ′X and νY ≡ ν ′y , then for any function f :⊆ X → Y :

f is (νX , νY)-computable ⇐⇒ f is (ν ′X , ν ′Y)-computable.

Relative Computability: Sets

For subsets A ⊆ N important notions:

I computability (decidability)

I computable enumerability (recursive enumerability).

They can also be relativised in a natural way.

(Omitted).

Notations: Another Example

Example

A notation νQ of rational numbers can be defined by:

νQ(s w1#w2) = s
νbinary(w1)

νbinary(w2)

if s ∈ {+,−}, w1,w2 ∈ dom νbinary, νbinary(w2) 6= 0.

Notations: Three Remarks

Remarks

1. For all countable sets over which one usually performs computations, a
natural choice of a notation is usually “good”.

2. More care is required if complexity is also an issue (in practice always).

3. For many structures (= sets with operations on them) the wish to
perform the operations effectively already determines which notation
one should use, up to equivalence.

All this applies, e.g., to N and Q. Therefore, we fix “good” notations for
these sets and simply say that we are computing with natural and rational
numbers.

2 Computing over uncountable sets with representations

Example

Given: a digital computer.
Task: perform some computation
involving real numbers r ∈ R.

Necessary: one has to encode real numbers via bits 0, 1.
Problem:
There are only countably many binary strings,
but there are uncountably many real numbers!
Idea:
Encode real numbers by infinite binary strings!

Representations, e.g., of Real Numbers

Σω := {p | p : N → Σ} = set of one-way infinite sequences over Σ.

Definition
A representation of a set X is a surjective function ρ :⊆ Σω → X .
Then any w with ρ(w) = x is a ρ-name for x .

Examples

I Decimal representation: defined in the usual way, e.g.,
ρdecimal(0.5000 . . .) = 1/2, ρdecimal(−3.1415927 . . .) = −π, . . .

I Representation via rational intervals:

ρinterval(p) = x ⇐⇒ p = a0#b0#a1#b1#a2#b2# . . .
and νQ(a0) < νQ(a1) < νQ(a2) < . . . < x

< . . . < νQ(b2) < νQ(b1) < νQ(b0)
and limn→∞ νQ(an) = x = limn→∞ νQ(bn).

More Representations of Real Numbers

We say that p encodes a rational sequence a0, a1, a2, . . . if
p = w0#w1#w2# . . . with νQ(wi) = ai for all i .

Examples

ρnaiveCauchy(p) = x ⇐⇒ p encodes a rational sequence a0, a1, a2, . . .

with lim
n→∞

an = x .

ρnormedCauchy(p) = x ⇐⇒ p encodes a rational sequence a0, a1, a2, . . .

with lim
n→∞

an = x and |an − am| ≤ 2−min{m,n}

for all n,m.

ρincreasing(p) = x ⇐⇒ p encodes a rational sequence a0, a1, a2, . . .

with lim
n→∞

an = x and a0 < a1 < a2 <

ρdecreasing(p) = x ⇐⇒ p encodes a rational sequence a0, a1, a2, . . .

with lim
n→∞

an = x and . . . < a2 < a1 < a0.

Which of these representations are useful?

Take care to choose a representation so that, using a digital computer, you
can perform useful computations on these infinite descriptions of real
numbers!

Relative Computability with Respect to Representations

Let ρ :⊆ Σω → X and σ :⊆ Σ′ω → Y be representations.

We want useful notions:

1. ρ-computable elements of X ,

2. (ρ, σ)-computable (multi-valued) functions from X to Y ,

3. computability notions for subsets of X , relative to ρ (this will be
omitted).

Need: Useful computability notions for

1. p ∈ Σω,

2. F :⊆ Σω → Σ′ω,

3. subsets of Σω (omitted).

Computable elements

A sequence p ∈ Σω is computable if either of the two following equivalent
conditions is fulfilled:

I There is a Turing machine that, given any n, computes p(n).

I There is a Turing machine that outputs p(0), p(1), p(2), and so on,
without ever halting.

Definition
Let ρX :⊆ Σω → X be a representation. An element x ∈ X is ρ-computable
if there is a computable p ∈ Σω with ρX (p) = x .

Relations between Computability Notions for Real Numbers

An arrow from ρ to σ means: ρ-computability implies σ-computability.

ρnaiveCauchy

↗ ↖
ρincreasing ρdecreasing

↖ ↗
ρnormedCauchy

l
ρinterval

l
ρdecimal

Computable Real Numbers

Definition
A real number is called computable if it is ρinterval-computable.
Rc := the set of computable real numbers.

Theorem
Rc is a field, real-algebraically closed, and closed under “effective” limit.

Computable Functions on Infinite Strings
Turing machine

... ...

��
��
M

... ...

... ...

...

...

...

...

-�

-

-�

 n input tapes

 working tapes

...

...

?

�
�

�
�

�
�

A
A
AAU

�
?

6

y1

yn

y output tape

fM(y1, ..., yn) = y

Computable Functions on Infinite Strings

Definition
A function F :⊆ Σω → Σ′ω is computable if there exists a Turing machine
M which on input p ∈ Σω behaves as follows:

I if p ∈ dom F , then M writes F (p)(0), F (p)(1), F (p)(2), . . . step by
step on the output tape without ever going backwards on the output
tape.

I if p 6∈ dom F , the M does not produce an infinite output.

Remark
Note that each output bit F (p)(i) must have been written after finitely
many steps.
And until then, M can have read only finitely many input bits p(0), p(1),
p(2),

Representations: Reducibility and Equivalence

Definition
Let ρ1 :⊆ Σω → X and ρ2 :⊆ Σ′ω → X be representations. Then

I ρ1 is reducible to ρ2, written ρ1 ≤ ρ2, if there is a computable
“translator” T :⊆ Σω → Σ′ω with

ρ1(p) = ρ2(T (p))

for all p ∈ dom ρ1.

I ρ1 is equivalent to ρ2, written ρ1 ≡ ρ2, if ρ1 ≤ ρ2 and ρ2 ≤ ρ1.

Example

ρinterval and ρnormedCauchy are equivalent.
ρinterval and ρdecimal are not equivalent.

Relations between Real Number Representations

An arrow from ρ to σ means: ρ ≤ σ.

ρnaiveCauchy

↗ ↖
ρincreasing ρdecreasing

↖ ↗
ρnormedCauchy

l
ρinterval

↑
ρdecimal

Reducibility and Computable Elements

Lemma

1. If F :⊆ Σω → Σ′ω is computable and p ∈ dom F is computable, then
also F (p) is computable.

2. If ρ1 ≤ ρ2, then for x ∈ X: ρ1-computable ⇒ ρ2-computable.

3. If ρ1 ≡ ρ2, then for x ∈ X: ρ1-computable ⇐⇒ ρ2-computable.

The inverse of the 2nd statement is not true!

Example

On the one hand:
ρdecimal ≤ ρinterval, but ρinterval 6≤ ρdecimal.
On the other hand for real numbers:
ρdecimal-computable ⇐⇒ ρinterval-computable!

Relative Computability: Functions

Definition
Let ρX :⊆ Σω → X and ρY :⊆ Σ′ω → Y be representations. A function
f :⊆ X → Y is (ρX , ρY)-computable or computable with respect to ρX and
ρY if there is a computable “realizer” F :⊆ Σω → Σ′ω with

f νX (p) = νY F (p)

for all p ∈ dom f νX .

Lemma
Let ρX , ρ′X :⊆ Σω → X and ρY , ρ′Y :⊆ Σ′ω → Y be representations. If
ρX ≡ ρ′X and ρY ≡ ρ′y , then for any function f :⊆ X → Y :

f is (ρX , ρY)-computable ⇐⇒ f is (ρ′X , ρ′Y)-computable.

Relative Computability w.r.t. ρdecimal

For a representation ρ, define ρ2 by

ρ2(p) := (ρ(p(0)p(2)p(4) . . .), ρ(p(1)p(3)p(5) . . .)).

Is addition on real numbers: + : R2 → R, (x , y) → x + y a
(ρ2

decimal, ρdecimal)-computable function?

Let us look at input .44444 . . . and .55555
How should the output start: .9 or 1.0?
Impossible to decide after reading only finitely many input digits! So,
addition is not computable w.r.t. ρdecimal!

Similar observation for multiplication.

Relative Computability w.r.t. ρinterval

Theorem
The following functions over the real numbers are computable with respect
to ρinterval.

I +, −, ∗, / :⊆ R2 → R,

I x → |x | and min,max : R2 → R,

I the constant function x → c if c is a computable real number,

I exp, sin, cos, log,
√

.

The representations equivalent to ρinterval are the most useful
representations of R
(w.r.t to computability; w.r.t complexity one still has to be more selective).

We call a real function computable if it is computable with respect to
ρinterval.

The Role of Continuity

Lemma
The function d : Σω × Σω → R defined by

d(p, q) :=

{
2−min{i |p(i) 6=q(i)} if p 6= q

0 otherwise

is a metric on Σω.

Lemma
The representation ρinterval is continuous,
as is every representation equivalent to it.
Furthermore, all representations equivalent to it have an open and
surjective restriction.

Continuity of Computable Functions on Strings

Theorem
Every computable function F :⊆ Σω → Σ′ω is continuous.

Proof.
Remember that each output bit F (p)(i) must have been written after
finitely many steps. And until then, M can have read only finitely many
input bits p(0), p(1), p(2),

... ...

���
M

... ...

... ...

...

...

...

...

-�

-

-�

}
n input tapes

}
working tapes

...

...

?

�
�

�
��

A
AAU

�
?6

y1

yn

y output tape

fM(y1, ..., yn) = y

Continuity of Computable Functions over the Real
Numbers

Theorem
Every (w.r.t. ρinterval) computable function f :⊆ Rn → R is continuous.

Proof.
Consider n = 1 and some TM computing a realizer for f .
Fix some x ∈ dom f and some ε > 0.
Let p be a ρinterval-name of x . After finitely many steps, the TM must have
produced an output interval J with length < ε.
But during these finitely many steps, the TM has read only a finite prefix of
p. This prefix is also the prefix of ρinterval-names of all real numbers y in
some open interval I containing x .
Hence, y ∈ I =⇒ f (y) ∈ J.
That means: f is continuous.

Admissible Representations

Definition
A representation ρ of a topological space X is called admissible if every
representation σ of X is continuously reducible to ρ, i.e. there exists a
continuous “translator” T with ρ(p) = σT (p) for all p ∈ dom ρ.

Theorem (Kreitz, Weihrauch)

Let ρX :⊆ Σω → X and ρY :⊆ Σ′ω → Y be admissible representations of
T0-spaces with countable base. Then a function f :⊆ X → Y is continuous
if, and only if, f is (ρX , ρY)-continuous, i.e. there exists a continuous
realizer F :⊆ Σω → Σ′ω with f ρX (p) = ρY F (p) for all p ∈ dom f ρX .

Remark
Further generalised by Schröder to admissibly represented “weak limit
spaces”: there consider sequential continuity.

Representation of Continuous Real Functions f

ρcont(p) = f ⇐⇒ p enumerates a list of pairs of open rational intervals
(Ii , I

′
i) with f (closure(Ii)) ⊆ I ′i and such that for any x ∈ dom(f) there exist

arbitrarily small I ′i with x ∈ Ii .

Computable functions f :⊆ Rn → Rm

A function f :⊆ R → R is computable if there is a computable
sequence of rational intervals (Ii, I

′
i) with f(Ii) ⊆ I ′i and such that for

any x ∈ dom(f) there exist arbitrarily small I ′i with x ∈ Ii.

I1

I′2

I2

I′1

I′3

I3

Examples: +, −, ∗, /, exp, sin,In a similar way a one can define a representation of continuous functions
F :⊆ Σω → Σ′ω (with Gδ-domains).

Representations of Continuous Functions

From a suitable representation of (certain) continuous functions
F :⊆ Σω → Σ′ω one obtains:

Theorem
Let ρX :⊆ Σω → X and ρY :⊆ Σ′ω → Y be representations. Then there
exist representations [ρX , ρY] of X × Y and [ρX → ρY] of the space of
(ρX , ρY)-continuous functions with the following properties:

I (evaluation) the function

(f , x) → f (x)

is [[ρX → ρY], ρX], ρY)-computable,

I (type conversion) any function f : Z × X → Y is
[ρZ , ρX], ρY)-computable if, and only if, the function

z → (x → f (z , y))

is (ρZ , [ρX → ρY])-computable.

Representations of Continuous Functions

Theorem
Let ρX :⊆ Σω → X and ρY :⊆ Σ′ω → Y be representations. For a function
f : X → Y the following conditions are equivalent:

I f is (ρX , ρY)-computable.

I f is a [ρX → ρY]-computable element of the space of
(ρX , ρY)-continuous functions.

Computable Metric Space

A triple (X , d , α) is a computable metric space if

1. d : X × X → R is a metric on the set X ,

2. α : N → X is a sequence dense in X ,

3. d ◦ (α×α) : N2 → R is a computable double sequence of real numbers.

Example

(R, | · |, νQ), where νQ : N → Q is some standard numbering of the rational
numbers.

Example

(C [a, b], (f , g) → ||f − g ||∞, α), where a < b are computable real numbers
and α : N → C [a, b] is some standard numbering of spline functions on a, b
with rational breakpoints.

Computable Metric Space: a Representation

Definition
Let (X , d , α) be a computable metric space. Then the representation
ρX ,normedCauchy of X is defined as for R:

ρX ,normedCauchy(p) = x ⇐⇒ p = w0#w1#w2# . . .
and limn→∞ α(wn) = x

and d(α(wn), α(wm)) ≤ 2−min{n,m}

for all n,m.

Let a < b be computable real numbers.

Lemma
Consider the computable metric space (C [a, b], (g , h) → ||g − h||∞, α).
Its two representations [ρinterval|[a,b] → ρinterval] and ρC [a,b],normedCauchy are
equivalent.

Corollary

For a function f : [a, b] → R the following conditions are equivalent:

I f is computable w.r.t. ρinterval resp. its restriction to names of [a, b].

I f is a [ρinterval|[a,b] → ρinterval]-computable element of C [a, b].

I f is a ρC [a,b],normedCauchy-computable element of C [a, b].

3 Some Results for Illustration
Computable normed space, computable Banach space

In the following we assume that (F, d , αF) is either (R, | · |, νQ) or
(C, d , νQ[i]).

A tuple (X , || · ||, e) is a computable normed space over F if (X , || · ||) is a
normed linear space over F with

1. e is a fundamental sequence, i.e., its linear span is dense in X ,

2. (X , d , αe) with d(x , y) := ||x − y || and
αe〈k, 〈n1, . . . , nk〉〉 :=

∑k
i=1 αF(ni) · ei is a computable metric space,

3. 0 is a computable element,
· : F× X → X , (a, x) 7→ a · x is computable,
+ : X × X → X , (x , y) 7→ x + y is computable

If such a space is complete then it is a computable Banach space.

First Main Theorem of Pour-El and Richards

Theorem
Let (X , || · ||, e) and Y be computable Banach spaces,
T : dom(T) ⊆ X → Y a closed linear operator with
{en | n ∈ N} ⊆ dom(T) and
such that the sequence (T (en))n is a computable sequence in Y .
Then

1. if T is bounded, then T preserves computability,

2. if T is unbounded, then T does not preserve computability,
i.e., there is some computable x ∈ dom(f) such that f (x) ∈ Y is not
computable.

Remark
Claim 1 can be strengthened: “. . ., then T is computable w.r.t. the normed
Cauchy representations”.
Claim 2 is a stronger than the (trivial) claim: “. . ., then T is not
computable w.r.t. the normed Cauchy representations”.

Negative result for the wave equation

Three-dimensional wave equation:{
utt = ∆u,
u(0, x) = f (x), ut(0, x) = 0, t ∈ R, x ∈ R3.

(1)

For f ∈ C 1(R3) there is a unique solution u ∈ C 0(R4).

Corollary (Pour-El and Richards)

There exists a computable function f = u(0, ·) : R3 → R with f ∈ C 1(R3)
such that the function u(1, ·) : R3 → R is not computable.

Reason for the negative result

Three-dimensional wave equation:{
utt = ∆u,
u(0, x) = f (x), ut(0, x) = g(x), t ∈ R, x ∈ R3.

(2)

For f ∈ C 1(R3) and g ∈ C 0(R3) there is a unique solution u ∈ C 0(R4)
given by

u(t, x) =

∫
unit sphere

(tg(x + tn) + f (x + tn) + t(grad f)(x + tn)dσ(n).

Derivative causes loss of one degree of smoothness
and causes unboundedness of the operator with respect to the || · ||∞-norm.

Positive result for the wave equation

Theorem (Weihrauch, Zhong 2002)

Let k ≥ 1. The solution operator S : C k(R3)× C k−1(R3) → C k−1(R4)
mapping (f , g) to the solution u is computable (with respect to suitable
representations of the spaces C k(R3), C k−1(R)!)

Corollary (Pour-El/Richards, Weihrauch/Zhong 2002)

If f and f ′ are computable and g is computable, then u is computable.

Note:

Theorem (Myhill 1971)

There exists a computable function f ∈ C 1(R) such that its derivative f ′ is
not computable.

Another positive result for the wave equation

Theorem (Weihrauch, Zhong 2002)

Let s ∈ R. The solution operator

S : Hs(R3)× Hs−1(R3)× R → Hs(R3)× Hk−1(R4)

(f , g , t) → (u(t, ·), u′(t, ·))

is computable (with respect to the normed Cauchy representations induced
by the respective norms of these Sobolev spaces!).

Not treated

I Computability notions for sets of real numbers.

I The importance of multi-valued functions.

I More about topological aspects of representations

I Representations and complexity theory.

I The relation of other computability notions for real number functions
to the notion explained here (computability w.r.t. ρinterval).

References

This talk presented the approach to computable analysis worked out in:

Weihrauch, Klaus: Computable Analysis. An Introduction. Springer, 2000.

Web

http://cca-net.de

Conclusion

Representation approach to computable analysis

I is a rather concrete approach to computability over the reals,

I stresses that one should not loosely speak about
“computing with mathematical objects” ,

but rather about
“computing with information about mathematical objects” !

	Computing over countable sets with notations
	Computing over uncountable sets with representations
	Some Results for Illustration

