Computable Analysis via Representations

Peter Hertling Institut für Theoretische Informatik und Mathematik Universität der Bundeswehr München, Germany

Overview

- 1. Computing over countable sets with notations
 - Notations, e.g., of natural numbers
 - Reducibility and equivalence
 - Relative computability
- 2. Computing over uncountable sets with representations
 - ▶ Representations, e.g., of real numbers
 - Reducibility and equivalence
 - Relative computability
 - The role of continuity
 - Admissible representations
 - Representations of functions
 - Computable metric spaces
- 3. Some results for illustration
 - A result by Pour-El and Richards
 - ... for the wave equation
 - Results by Weihrauch and Zhong for the wave equation

1 Computing over countable sets with notations Notations, e.g., of natural numbers

Example

Given: a digital computer. Task: perform some computation involving natural numbers $n \in \{0, 1, 2, 3, ...\}$.

Necessary: one has to encode natural numbers via bits 0, 1. Possibilities:

- unary encoding: e.g. number $9 \cong$ encoded as 111111111.
- ▶ binary encoding: e.g. number $9 \cong$ encoded as 101.

Notations, e.g., of natural numbers

Now, let's be more formal. In the following

- $f :\subseteq X \to Y$ means: f is a function
 - defined on some subset of X
 - with range in Y.

▶ Σ , Σ' , etc. are finite, non-empty sets, i.e., alphabets, e.g., $\Sigma = \{0, 1\}$.

• Σ^* is the set of all finite strings over Σ .

Definition

A notation of a set X is a surjective function $\nu :\subseteq \Sigma^* \to X$.

(surjective

- = onto
- = for every $x \in X$ there is some $w \in \Sigma^*$ with u(w) = x)

Then any w with $\nu(w) = x$ is a ν -name for x.

Examples

• Unary notation: $\nu_{unary} :\subseteq \Sigma^* \to \mathbb{N}$ with

 $u_{\text{unary}}(1^n) := n.$

• Binary notation: $\nu_{\text{binary}} :\subseteq \Sigma^* \to \mathbb{N}$ with

$$u_{ ext{binary}}(a_k \dots a_0) := egin{cases} \sum_{i=0}^k a_i \cdot 2^i & ext{if } a_k, \dots, a_0 \in \{0,1\}, \ a_k
eq 0 \\ & ext{ or if } k = 0 \ ext{and } a_k = 0, \\ & ext{undefined} & ext{otherwise} \end{cases}$$

Notations: Reducibility and Equivalence

Definition

Let $\nu_1 :\subseteq \Sigma^* \to X$ and $\nu_2 :\subseteq {\Sigma'}^* \to X$ be notations. Then

▶ ν_1 is reducible to ν_2 , written $\nu_1 \leq \nu_2$, if there is a computable "translator" $T :\subseteq \Sigma^* \to {\Sigma'}^*$ with

$$\nu_1(w) = \nu_2(T(w))$$

for all $w \in \operatorname{dom} \nu_1$.

• ν_1 is equivalent to ν_2 , written $\nu_1 \equiv \nu_2$, if $\nu_1 \leq \nu_2$ and $\nu_2 \leq \nu_1$.

Example

 ν_{unary} and ν_{binary} are equivalent.

Notations: Complexity Considerations

The reducibility and equivalence relations just introduced are quite rough. For practice also important: complexity considerations.

Example

 ν_{unary} and ν_{binary} are *not* "polynomial time equivalent": there is *no* translator from ν_{binary} to ν_{unary} that works in polynomial time!

Relative Computability: Functions

Definition

Let $\nu_X :\subseteq \Sigma^* \to X$ and $\nu_Y :\subseteq {\Sigma'}^* \to Y$ be notations. A function $f :\subseteq X \to Y$ is (ν_X, ν_Y) -computable or computable with respect to ν_X and ν_Y if there is a computable "realizer" $F :\subseteq \Sigma^* \to {\Sigma'}^*$ with

$$f\nu_X(w) = \nu_Y F(w)$$

for all $w \in \operatorname{dom} f \nu_X$.

Examples

- Addition of natural numbers: + : N² → N, (n, m) → n + m, is (ν_{binary}², ν_{binary})-computable, i.e., computable with respect to ν_{binary}.
- > Addition of natural numbers is computable with respect ν_{unary} as well.

Here ν_{binary}^2 is defined by

$$u_{\text{binary}}^2(w_1 \# w_2) = (
u_{\text{binary}}(w_1),
u_{\text{binary}}(w_2))$$

if $w_1, w_2 \in \operatorname{dom} \nu_{\text{binary}}$.

Lemma Let $\nu_X, \nu'_X :\subseteq \Sigma^* \to X$ and $\nu_Y, \nu'_Y :\subseteq \Sigma'^* \to Y$ be notations. If $\nu_X \equiv \nu'_X$ and $\nu_Y \equiv \nu'_y$, then for any function $f :\subseteq X \to Y$:

f is (ν_X, ν_Y) -computable \iff f is (ν'_X, ν'_Y) -computable.

Relative Computability: Sets

- For subsets $A \subseteq \mathbb{N}$ important notions:
 - computability (decidability)
 - computable enumerability (recursive enumerability).

They can also be relativised in a natural way.

(Omitted).

Notations: Another Example

Example

A notation $\nu_{\mathbb{Q}}$ of rational numbers can be defined by:

$$u_{\mathbb{Q}}(s w_1 \# w_2) = s rac{
u_{\text{binary}}(w_1)}{
u_{\text{binary}}(w_2)}$$

 $\text{ if } s \in \{+,-\} \text{, } w_1, w_2 \in \operatorname{dom} \nu_{\text{binary}} \text{, } \nu_{\text{binary}}(w_2) \neq 0. \\$

Notations: Three Remarks

Remarks

- 1. For all countable sets over which one usually performs computations, a natural choice of a notation is usually "good".
- 2. More care is required if complexity is also an issue (in practice always).
- 3. For many structures (= sets with operations on them) the wish to perform the operations effectively already determines which notation one should use, up to equivalence.

All this applies, e.g., to \mathbb{N} and \mathbb{Q} . Therefore, we fix "good" notations for these sets and simply say that we are *computing with natural and rational numbers*.

2 Computing over uncountable sets with representations

Example

Given: a digital computer. Task: perform some computation involving real numbers $r \in \mathbb{R}$.

Necessary: one has to encode real numbers via bits 0,1. Problem:

There are only countably many binary strings, but there are uncountably many real numbers! Idea:

Encode real numbers by infinite binary strings!

Representations, e.g., of Real Numbers

 $\Sigma^{\omega} := \{p \mid p : \mathbb{N} \to \Sigma\} = \text{set of one-way infinite sequences over } \Sigma.$ Definition

A representation of a set X is a surjective function $\rho :\subseteq \Sigma^{\omega} \to X$. Then any w with $\rho(w) = x$ is a ρ -name for x.

Examples

► Decimal representation: defined in the usual way, e.g., $\rho_{\text{decimal}}(0.5000...) = 1/2$, $\rho_{\text{decimal}}(-3.1415927...) = -\pi$, ...

Representation via rational intervals:

$$\begin{split} \rho_{\mathsf{interval}}(p) &= x \iff p = a_0 \# b_0 \# a_1 \# b_1 \# a_2 \# b_2 \# \dots \\ & \text{and } \nu_{\mathbb{Q}}(a_0) < \nu_{\mathbb{Q}}(a_1) < \nu_{\mathbb{Q}}(a_2) < \dots < x \\ & < \dots < \nu_{\mathbb{Q}}(b_2) < \nu_{\mathbb{Q}}(b_1) < \nu_{\mathbb{Q}}(b_0) \\ & \text{and } \lim_{n \to \infty} \nu_{\mathbb{Q}}(a_n) = x = \lim_{n \to \infty} \nu_{\mathbb{Q}}(b_n). \end{split}$$

More Representations of Real Numbers

We say that p encodes a rational sequence $a_0, a_1, a_2, ...$ if $p = w_0 \# w_1 \# w_2 \# ...$ with $\nu_{\mathbb{Q}}(w_i) = a_i$ for all i.

Examples

 $\rho_{\text{naiveCauchy}}(p) = x \iff p \text{ encodes a rational sequence } a_0, a_1, a_2, \dots$ with $\lim a_n = x$. $\rho_{\text{normedCauchy}}(p) = x \iff p \text{ encodes a rational sequence } a_0, a_1, a_2, \dots$ with $\lim_{n\to\infty} a_n = x$ and $|a_n - a_m| \le 2^{-\min\{m,n\}}$ for all n, m. $\rho_{\text{increasing}}(p) = x \iff$ p encodes a rational sequence a_0, a_1, a_2, \ldots with $\lim_{n \to \infty} a_n = x$ and $a_0 < a_1 < a_2 < \dots$ $\rho_{\text{decreasing}}(p) = x \iff p \text{ encodes a rational sequence } a_0, a_1, a_2, \dots$ with $\lim a_n = x$ and $\ldots < a_2 < a_1 < a_0$.

Which of these representations are useful?

Take care to choose a representation so that, using a digital computer, you can perform useful computations on these infinite descriptions of real numbers!

Relative Computability with Respect to Representations

Let $\rho :\subseteq \Sigma^{\omega} \to X$ and $\sigma :\subseteq \Sigma'^{\omega} \to Y$ be representations.

We want useful notions:

- 1. ρ -computable elements of X,
- 2. (ρ,σ) -computable (multi-valued) functions from X to Y,
- 3. computability notions for subsets of X, relative to ρ (this will be omitted).
- Need: Useful computability notions for
 - 1. $p\in\Sigma^{\omega}$,
 - 2. $F:\subseteq \Sigma^{\omega} \to {\Sigma'}^{\omega}$,
 - 3. subsets of Σ^{ω} (omitted).

Computable elements

A sequence $p \in \Sigma^{\omega}$ is computable if either of the two following equivalent conditions is fulfilled:

- There is a Turing machine that, given any n, computes p(n).
- There is a Turing machine that outputs p(0), p(1), p(2), and so on, without ever halting.

Definition

Let $\rho_X :\subseteq \Sigma^{\omega} \to X$ be a representation. An element $x \in X$ is ρ -computable if there is a computable $p \in \Sigma^{\omega}$ with $\rho_X(p) = x$.

Relations between Computability Notions for Real Numbers

An arrow from ρ to σ means: ρ -computability implies σ -computability.

Computable Real Numbers

Definition

A real number is called computable if it is ρ_{interval} -computable. $\mathbb{R}_{c} :=$ the set of computable real numbers.

Theorem

 \mathbb{R}_{c} is a field, real-algebraically closed, and closed under "effective" limit.

Computable Functions on Infinite Strings Turing machine

Computable Functions on Infinite Strings

Definition

A function $F :\subseteq \Sigma^{\omega} \to {\Sigma'}^{\omega}$ is computable if there exists a Turing machine M which on input $p \in {\Sigma}^{\omega}$ behaves as follows:

- ▶ if p ∈ dom F, then M writes F(p)(0), F(p)(1), F(p)(2), ... step by step on the output tape without ever going backwards on the output tape.
- if $p \notin \operatorname{dom} F$, the *M* does not produce an infinite output.

Remark

Note that each output bit F(p)(i) must have been written after finitely many steps.

And until then, *M* can have read only finitely many input bits p(0), p(1), p(2),

Representations: Reducibility and Equivalence

Definition

Let $\rho_1 :\subseteq \Sigma^{\omega} \to X$ and $\rho_2 :\subseteq \Sigma'^{\omega} \to X$ be representations. Then

▶ ρ_1 is reducible to ρ_2 , written $\rho_1 \leq \rho_2$, if there is a computable "translator" $T :\subseteq \Sigma^{\omega} \to \Sigma'^{\omega}$ with

$$\rho_1(p) = \rho_2(T(p))$$

for all $p \in \operatorname{dom} \rho_1$.

• ρ_1 is equivalent to ρ_2 , written $\rho_1 \equiv \rho_2$, if $\rho_1 \leq \rho_2$ and $\rho_2 \leq \rho_1$.

Example

 ρ_{interval} and $\rho_{\text{normedCauchy}}$ are equivalent. ρ_{interval} and ρ_{decimal} are not equivalent.

Relations between Real Number Representations

An arrow from ρ to σ means: $\rho \leq \sigma$.

Reducibility and Computable Elements

Lemma

- 1. If $F :\subseteq \Sigma^{\omega} \to {\Sigma'}^{\omega}$ is computable and $p \in \text{dom } F$ is computable, then also F(p) is computable.
- 2. If $\rho_1 \leq \rho_2$, then for $x \in X$: ρ_1 -computable $\Rightarrow \rho_2$ -computable.
- 3. If $\rho_1 \equiv \rho_2$, then for $x \in X$: ρ_1 -computable $\iff \rho_2$ -computable.

The inverse of the 2nd statement is not true!

Example

On the one hand:

 $\rho_{decimal} \leq \rho_{interval}, \text{ but } \rho_{interval} \not\leq \rho_{decimal}.$ On the other hand for real numbers: $\rho_{decimal}$ -computable $\iff \rho_{interval}$ -computable!

Relative Computability: Functions

Definition

Let $\rho_X :\subseteq \Sigma^{\omega} \to X$ and $\rho_Y :\subseteq \Sigma'^{\omega} \to Y$ be representations. A function $f :\subseteq X \to Y$ is (ρ_X, ρ_Y) -computable or computable with respect to ρ_X and ρ_Y if there is a computable "realizer" $F :\subseteq \Sigma^{\omega} \to \Sigma'^{\omega}$ with

$$f\nu_X(p)=\nu_YF(p)$$

for all $p \in \operatorname{dom} f \nu_X$.

Lemma

Let $\rho_X, \rho'_X :\subseteq \Sigma^{\omega} \to X$ and $\rho_Y, \rho'_Y :\subseteq \Sigma'^{\omega} \to Y$ be representations. If $\rho_X \equiv \rho'_X$ and $\rho_Y \equiv \rho'_y$, then for any function $f :\subseteq X \to Y$:

f is (ρ_X, ρ_Y) -computable \iff f is (ρ'_X, ρ'_Y) -computable.

Relative Computability w.r.t. $\rho_{decimal}$

For a representation ρ , define ρ^2 by

 $\rho^{2}(p) := (\rho(p(0)p(2)p(4)\ldots), \rho(p(1)p(3)p(5)\ldots)).$

Is addition on real numbers: $+ : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \to x + y$ a $(\rho^2_{decimal}, \rho_{decimal})$ -computable function?

Let us look at input .44444 ... and .55555.... How should the output start: .9 or 1.0? Impossible to decide after reading only finitely many input digits! So, addition is *not* computable w.r.t. ρ_{decimal} !

Similar observation for multiplication.

Relative Computability w.r.t. $\rho_{interval}$

Theorem

The following functions over the real numbers are computable with respect to $\rho_{interval}$.

- \blacktriangleright +, -, *, / : $\subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$,
- $x \to |x|$ and min, max : $\mathbb{R}^2 \to \mathbb{R}$,
- the constant function $x \rightarrow c$ if c is a computable real number,
- ▶ exp, sin, cos, log, $\sqrt{}$.

The representations equivalent to ρ_{interval} are the most useful representations of $\mathbb R$ (w.r.t to computability; w.r.t complexity one still has to be more selective).

We call a real function computable if it is computable with respect to $\rho_{\text{interval}}.$

The Role of Continuity

Lemma

The function $d:\Sigma^\omega\times\Sigma^\omega\to\mathbb{R}$ defined by

$$d(p,q) := egin{cases} 2^{-\min\{i|p(i)
eq q(i)\}} & \textit{if } p
eq q \ 0 & \textit{otherwise} \end{cases}$$

is a metric on Σ^{ω} .

Lemma

The representation $\rho_{interval}$ is continuous,

as is every representation equivalent to it.

Furthermore, all representations equivalent to it have an open and surjective restriction.

Continuity of Computable Functions on Strings

Theorem

Every computable function $F :\subseteq \Sigma^{\omega} \to {\Sigma'}^{\omega}$ is continuous.

Proof.

Remember that each output bit F(p)(i) must have been written after finitely many steps. And until then, M can have read only finitely many input bits p(0), p(1), p(2),

Continuity of Computable Functions over the Real Numbers

Theorem

Every (w.r.t. $\rho_{interval}$) computable function $f :\subseteq \mathbb{R}^n \to \mathbb{R}$ is continuous.

Proof.

Consider n = 1 and some TM computing a realizer for f.

Fix some $x \in \operatorname{dom} f$ and some $\varepsilon > 0$.

Let p be a ρ_{interval} -name of x. After finitely many steps, the TM must have produced an output interval J with length $< \varepsilon$.

But during these finitely many steps, the TM has read only a finite prefix of

p. This prefix is also the prefix of ρ_{interval} -names of all real numbers y in some open interval I containing x.

Hence, $y \in I \Longrightarrow f(y) \in J$.

That means: *f* is continuous.

Admissible Representations

Definition

A representation ρ of a topological space X is called admissible if every representation σ of X is *continuously reducible* to ρ , i.e. there exists a continuous "translator" T with $\rho(p) = \sigma T(p)$ for all $p \in \text{dom } \rho$.

Theorem (Kreitz, Weihrauch)

Let $\rho_X :\subseteq \Sigma^{\omega} \to X$ and $\rho_Y :\subseteq \Sigma'^{\omega} \to Y$ be admissible representations of T_0 -spaces with countable base. Then a function $f :\subseteq X \to Y$ is continuous if, and only if, f is (ρ_X, ρ_Y) -continuous, i.e. there exists a continuous realizer $F :\subseteq \Sigma^{\omega} \to \Sigma'^{\omega}$ with $f \rho_X(p) = \rho_Y F(p)$ for all $p \in \text{dom } f \rho_X$.

Remark

Further generalised by Schröder to admissibly represented "weak limit spaces": there consider *sequential continuity*.

Representation of Continuous Real Functions f

 $\rho_{\text{cont}}(p) = f \iff p$ enumerates a list of pairs of open rational intervals (I_i, I'_i) with $f(\text{closure}(I_i)) \subseteq I'_i$ and such that for any $x \in \text{dom}(f)$ there exist arbitrarily small I'_i with $x \in I_i$.

In a similar way a one can define a representation of continuous functions $F :\subseteq \Sigma^{\omega} \to \Sigma'^{\omega}$ (with G_{δ} -domains).

Representations of Continuous Functions

From a suitable representation of (certain) continuous functions $F :\subseteq \Sigma^{\omega} \to \Sigma'^{\omega}$ one obtains:

Theorem

Let $\rho_X :\subseteq \Sigma^{\omega} \to X$ and $\rho_Y :\subseteq \Sigma'^{\omega} \to Y$ be representations. Then there exist representations $[\rho_X, \rho_Y]$ of $X \times Y$ and $[\rho_X \to \rho_Y]$ of the space of (ρ_X, ρ_Y) -continuous functions with the following properties:

(evaluation) the function

$$(f,x) \rightarrow f(x)$$

is $[[\rho_X \rightarrow \rho_Y], \rho_X], \rho_Y)$ -computable,

• (type conversion) any function $f : Z \times X \rightarrow Y$ is $[\rho_Z, \rho_X], \rho_Y$)-computable if, and only if, the function

$$z \rightarrow (x \rightarrow f(z, y))$$

is $(\rho_Z, [\rho_X \to \rho_Y])$ -computable.

Representations of Continuous Functions

Theorem

Let $\rho_X :\subseteq \Sigma^{\omega} \to X$ and $\rho_Y :\subseteq \Sigma'^{\omega} \to Y$ be representations. For a function $f : X \to Y$ the following conditions are equivalent:

- f is (ρ_X, ρ_Y) -computable.
- *f* is a [ρ_X → ρ_Y]-computable element of the space of (ρ_X, ρ_Y)-continuous functions.

Computable Metric Space

A triple (X, d, α) is a computable metric space if

- 1. $d: X \times X \to \mathbb{R}$ is a metric on the set X,
- 2. $\alpha : \mathbb{N} \to X$ is a sequence dense in X,
- 3. $d \circ (\alpha \times \alpha) : \mathbb{N}^2 \to \mathbb{R}$ is a computable double sequence of real numbers.

Example

 $(\mathbb{R}, |\cdot|, \nu_{\mathbb{Q}})$, where $\nu_{\mathbb{Q}} : \mathbb{N} \to \mathbb{Q}$ is some standard numbering of the rational numbers.

Example

 $(C[a, b], (f, g) \rightarrow ||f - g||_{\infty}, \alpha)$, where a < b are computable real numbers and $\alpha : \mathbb{N} \rightarrow C[a, b]$ is some standard numbering of spline functions on a, bwith rational breakpoints.

Computable Metric Space: a Representation

Definition

Let (X, d, α) be a computable metric space. Then the representation $\rho_{X,\text{normedCauchy}}$ of X is defined as for \mathbb{R} :

$$\rho_{X,\text{normedCauchy}}(p) = x \iff p = w_0 \# w_1 \# w_2 \# \dots$$

and $\lim_{n \to \infty} \alpha(w_n) = x$
and $d(\alpha(w_n), \alpha(w_m)) \le 2^{-\min\{n,m\}}$
for all n, m .

Let a < b be computable real numbers.

Lemma

Consider the computable metric space $(C[a, b], (g, h) \rightarrow ||g - h||_{\infty}, \alpha)$. Its two representations $[\rho_{interval}|^{[a,b]} \rightarrow \rho_{interval}]$ and $\rho_{C[a,b],normedCauchy}$ are equivalent.

Corollary

For a function $f : [a, b] \rightarrow \mathbb{R}$ the following conditions are equivalent:

- f is computable w.r.t. $\rho_{interval}$ resp. its restriction to names of [a, b].
- f is a $[\rho_{interval}|^{[a,b]} \rightarrow \rho_{interval}]$ -computable element of C[a,b].
- f is a $\rho_{C[a,b],normedCauchy}$ -computable element of C[a,b].

3 Some Results for Illustration

Computable normed space, computable Banach space

In the following we assume that $(\mathbb{F}, d, \alpha_{\mathbb{F}})$ is either $(\mathbb{R}, |\cdot|, \nu_{\mathbb{Q}})$ or $(\mathbb{C}, d, \nu_{\mathbb{Q}[i]})$.

A tuple $(X, || \cdot ||, e)$ is a computable normed space over \mathbb{F} if $(X, || \cdot ||)$ is a normed linear space over \mathbb{F} with

- 1. e is a fundamental sequence, i.e., its linear span is dense in X,
- 2. (X, d, α_e) with d(x, y) := ||x y|| and $\alpha_e \langle k, \langle n_1, \dots, n_k \rangle \rangle := \sum_{i=1}^k \alpha_{\mathbb{F}}(n_i) \cdot e_i$ is a computable metric space,
- 3. 0 is a computable element,

 $\cdot : \mathbb{F} \times X \to X$, $(a, x) \mapsto a \cdot x$ is computable,

 $+: X \times X \rightarrow X$, $(x, y) \mapsto x + y$ is computable

If such a space is complete then it is a computable Banach space.

First Main Theorem of Pour-El and Richards

Theorem

Let $(X, || \cdot ||, e)$ and Y be computable Banach spaces, $T : \operatorname{dom}(T) \subseteq X \to Y$ a closed linear operator with $\{e_n \mid n \in \mathbb{N}\} \subseteq \operatorname{dom}(T)$ and such that the sequence $(T(e_n))_n$ is a computable sequence in Y. Then

- 1. if T is bounded, then T preserves computability,
- 2. if T is unbounded, then T does not preserve computability, i.e., there is some computable $x \in dom(f)$ such that $f(x) \in Y$ is not computable.

Remark

Claim 1 can be strengthened: "..., then ${\cal T}$ is computable w.r.t. the normed Cauchy representations".

Claim 2 is a stronger than the (trivial) claim: "..., then T is not computable w.r.t. the normed Cauchy representations".

Negative result for the wave equation

Three-dimensional wave equation:

$$\begin{cases} u_{tt} = \Delta u, \\ u(0,x) = f(x), \quad u_t(0,x) = 0, \quad t \in \mathbb{R}, \ x \in \mathbb{R}^3. \end{cases}$$
(1)

For $f \in C^1(\mathbb{R}^3)$ there is a unique solution $u \in C^0(\mathbb{R}^4)$.

Corollary (Pour-El and Richards)

There exists a computable function $f = u(0, \cdot) : \mathbb{R}^3 \to \mathbb{R}$ with $f \in C^1(\mathbb{R}^3)$ such that the function $u(1, \cdot) : \mathbb{R}^3 \to \mathbb{R}$ is not computable.

Reason for the negative result

Three-dimensional wave equation:

$$\begin{cases} u_{tt} = \Delta u, \\ u(0,x) = f(x), \quad u_t(0,x) = g(x), \quad t \in \mathbb{R}, \ x \in \mathbb{R}^3. \end{cases}$$
(2)

For $f \in C^1(\mathbb{R}^3)$ and $g \in C^0(\mathbb{R}^3)$ there is a unique solution $u \in C^0(\mathbb{R}^4)$ given by

$$u(t,x) = \int_{\text{unit sphere}} (tg(x+tn) + f(x+tn) + t(\text{grad } f)(x+tn)d\sigma(n).$$

Derivative causes loss of one degree of smoothness and causes unboundedness of the operator with respect to the $||\cdot||_{\infty}$ -norm.

Positive result for the wave equation

Theorem (Weihrauch, Zhong 2002)

Let $k \ge 1$. The solution operator $S : C^{k}(\mathbb{R}^{3}) \times C^{k-1}(\mathbb{R}^{3}) \rightarrow C^{k-1}(\mathbb{R}^{4})$ mapping (f,g) to the solution u is computable (with respect to suitable representations of the spaces $C^{k}(\mathbb{R}^{3}), C^{k-1}(\mathbb{R})!$)

Corollary (Pour-El/Richards, Weihrauch/Zhong 2002)

If f and f' are computable and g is computable, then u is computable.

Note:

Theorem (Myhill 1971)

There exists a computable function $f \in C^1(\mathbb{R})$ such that its derivative f' is not computable.

Another positive result for the wave equation

Theorem (Weihrauch, Zhong 2002) Let $s \in \mathbb{R}$. The solution operator

$$\begin{array}{rcl} S: H^{\mathfrak{s}}(\mathbb{R}^{3}) \times H^{\mathfrak{s}-1}(\mathbb{R}^{3}) \times \mathbb{R} & \to & H^{\mathfrak{s}}(\mathbb{R}^{3}) \times H^{k-1}(\mathbb{R}^{4}) \\ & (f,g,t) & \to & (u(t,\cdot),u'(t,\cdot)) \end{array}$$

is computable (with respect to the normed Cauchy representations induced by the respective norms of these Sobolev spaces!).

Not treated

- Computability notions for sets of real numbers.
- The importance of multi-valued functions.
- More about topological aspects of representations
- Representations and complexity theory.
- The relation of other computability notions for real number functions to the notion explained here (computability w.r.t. ρ_{interval}).

References

This talk presented the approach to computable analysis worked out in:

Weihrauch, Klaus: Computable Analysis. An Introduction. Springer, 2000.

Web

http://cca-net.de

Conclusion

Representation approach to computable analysis

- ▶ is a rather concrete approach to computability over the reals,
- stresses that one should not loosely speak about "computing with mathematical objects" but rather about

"computing with information about mathematical objects"