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これまで学んだ直交多項式が物理学の中でどの様に利用されるか紹介する．特に，ルジャンドル
多項式，エルミート多項式，ラゲール多項式は量子力学において重要であり，時間に依存しない
シュレディンガー方程式の解を構成するために必要であることを示す．また，ベッセル関数や球面
調和関数などは球対称な中心力ポテンシャルを伴うシュレディンガー方程式の解を構成するために
不可欠であることを説明する．

1 シュレディンガー方程式
量子力学において，粒子の状態は波動関数によって記述される．波動関数を位置 r = (x, y, z)と
時間 tの関数として ψ(r, t)と表せば，その時間発展の様子は
シュレディンガー方程式� �

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V (r)ψ (1)� �

によって記述される [1]．但し，プランク定数を hとして ℏ = h/2π であり，mは粒子の質量であ
る．また，上式の右辺の V (r)は位置 r におけるポテンシャルエネルギーであり，

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

はラプラシアンである．式 (1)は左辺に時間微分を含むため，波動関数の時間発展を記述するが，
波動関数の r と tを変数分離して

ψ(r, t) = φ(r)f(t) (2)

とすると，式 (1)は
iℏφ(r)

∂f

∂t
= f(t)

{
− ℏ2

2m
∇2 + V (r)

}
φ(r)

∴ iℏ
f(t)

∂f

∂t
=

1

φ(r)

{
− ℏ2

2m
∇2 + V (r)

}
φ(r)

1
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となる．上式の左辺は tのみ，右辺は r のみを含むから，いずれも r と tに依らない定数でなけれ
ばならない*1．この定数を E とすると，

iℏ
f(t)

df

dt
=

1

φ(r)

{
− ℏ2

2m
∇2 + V (r)

}
φ(r) = E

である．なお，f(t)は tのみの関数なので，∂f/∂t = df/dtとした．上式の時間に関する式より

iℏ
f(t)

df

dt
= E , ∴ df

dt
= −iE

ℏ
f(t)

が得られる．この 1階微分方程式は直ちに解くことができ，積分定数を除いて

f(t) = e−i(E/ℏ)t (3)

となる．一方，位置に関する式から
時間に依存しないシュレディンガー方程式� �{

− ℏ2

2m
∇2 + V (r)

}
φ(r) = Eφ(r) (4)� �

が得られる．従って，式 (4)を解いて φ(r)を求めれば，式 (2), (3)より，式 (1)の解は

ψ(r, t) = φ(r)e−i(E/ℏ)t

となる．つまり，波動関数 ψ(r, t)を求める計算は式 (4)を解くことに帰着し，式 (4)は φ(r)に関
する 2階線型微分方程式である．さらに，ポテンシャルエネルギー V (r)は一般には r の関数なの
で，式 (4) は変数係数の 2階線型微分方程式であり，まさに微分積分学 D の授業で扱ってきたタ
イプの微分方程式であることが解る*2．

2 調和ポテンシャルの問題
系が 1次元であれば，φ(r)は xのみの 1変数関数 φ(x)であり，式 (4)は 2階常微分方程式

− ℏ2

2m

d2φ

dx2
+ V (x)φ(x) = Eφ(x) (5)

になる．左辺のポテンシャルエネルギーが区間毎に一定である井戸型ポテンシャル

V (x) =


V0 (x < −a)
0 (−a ≤ x ≤ a)

V0 (x > a)

*1 偏微分方程式を解くための変数分離法と呼ばれる手順である．
*2 式 (4)は 3変数 r = (x, y, z)の偏微分方程式であるから，常微分方程式として扱うにはもう少し工夫が必要である．
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の場合，式 (5)の解は境界条件を満たす三角関数や指数関数の組み合わせで与えられる [1]．一方，
ポテンシャルエネルギーが原点 x = 0を中心とする調和ポテンシャル

V (x) =
mω2

2
x2

の場合，式 (5)は
ℏ2

2m

d2φ

dx2
+

(
E − mω2

2
x2

)
φ(x) = 0 (6)

と変形でき，φ(x)に関する変数係数の 2階線型常微分方程式となる．調和ポテンシャルは粒子が
平衡位置 x = 0の周りで束縛される（振動する）様子を表しており，ω は角振動数である．

2.1 変数変換
式 (6)を解くために，新しい変数

ξ ≡
√
mω

ℏ
x

を導入する．このとき，xに関する微分は

d

dx
=

√
mω

ℏ
d

dξ
,

d2

dx2
=
mω

ℏ
d2

dξ2

と変換されるから，式 (6)は

ℏω
2

d2φ

dξ2
+

(
E − ℏω

2
ξ2
)
φ(ξ) = 0

∴ d2φ

dξ2
+

(
λ− ξ2

)
φ(ξ) = 0 (7)

となる．但し，定数 λを次式で定義した．

λ ≡ 2E

ℏω

2.2 解の関数形
φ(x)の関数形をある程度限定するため，|ξ|が十分大きく，

ξ2 ≫ λ

となる場合を考えよう．このとき，式 (7)の λは無視することができ，

d2φ

dξ2
− ξ2φ(ξ) ≃ 0 , ∴ d2φ

dξ2
≃ ξ2φ(ξ)

が成り立つ．つまり，|ξ|が十分大きければ，解は

φ(ξ) ∝ e±ξ2/2
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を満たす*3．また，粒子は調和ポテンシャルによって平衡位置 x = 0（つまり ξ = 0）の周りに束
縛されているため，|ξ| → ∞で発散する解は非物理的であり，φ(ξ) ∝ e−ξ2/2 だけが考えられる．
さらに，多項式は指数関数より発散が遅いため，ξ の大きさに制限のない式 (7)の解の関数形を

φ(ξ) = H(ξ)e−ξ2/2 (8)

と仮定することができる．但し，H(ξ)は ξ の多項式である．式 (8)の 2階導関数を計算すると

dφ

dξ
=
dH

dξ
e−ξ2/2 − ξH(ξ)e−ξ2/2

=

{
dH

dξ
− ξH(ξ)

}
e−ξ2/2

∴ d2φ

dξ2
=

{
d2H

dξ2
−H(ξ)− ξ

dH

dξ

}
e−ξ2/2 − ξ

{
dH

dξ
− ξH(ξ)

}
e−ξ2/2

=

{
d2H

dξ2
− 2ξ

dH

dξ
−H(ξ) + ξ2H(ξ)

}
e−ξ2/2

となるから，式 (8)を (7)に代入し，両辺を e−ξ2/2 で割ると

d2H

dξ2
− 2ξ

dH

dξ
−H(ξ) + ξ2H(ξ) +

(
λ− ξ2

)
H(ξ) = 0

∴ d2H

dξ2
− 2ξ

dH

dξ
+ (λ− 1)H(ξ) = 0

が得られる．上式で λ ≡ 2n+ 1としたものが
エルミートの微分方程式� �

d2H

dξ2
− 2ξ

dH

dξ
+ 2nH(ξ) = 0� �

であり，n = 0, 1, 2, · · · の値に応じたエルミート多項式Hn(ξ)が解である．従って，式 (7)の解は

φ(ξ) = Hn(ξ)e
−ξ2/2

で与えられる．

*3 実際，
d

dξ
e±ξ2/2 = ±ξe±ξ2/2 ,

d2

dξ2
e±ξ2/2 =

d

dξ

(
±ξe±ξ2/2

)
=

(
ξ2 ± 1

)
e±ξ2/2

なので，|ξ| ≫ 1であれば
d2

dξ2
e±ξ2/2 ≃ ξ2e±ξ2/2

が成り立つ．よって，φ(ξ) ∝ e±ξ2/2 は d2φ/dξ2 ≃ ξ2φ(ξ)を満たす．



3 中心力ポテンシャルの問題 5

3 中心力ポテンシャルの問題
系が 3次元であり，式 (4)のポテンシャルエネルギーが中心力ポテンシャル

V (r) = V (r)

で与えられる場合を考える．但し，r = |r|は原点から測った動径距離である．このとき，系は原
点を中心として球対称であるから，デカルト座標より球座標を用いた方が便利である．そこで，
球座標におけるラプラシアン� �

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
Λ� �

を用いる．但し，
Λ ≡ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
(9)

は
:::::::::::
2つの角度 θ,

::::::::::::::::::::::::
ϕにのみ作用する微分演算子である．このとき，式 (4)は

− ℏ2

2m

{
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
Λ

}
φ(r) + V (r)φ(r) = Eφ(r)

∴ ∂

∂r

(
r2
∂

∂r

)
φ(r) +

2mr2

ℏ2
{E − V (r)}φ(r) + Λφ(r) = 0

と変形でき，解を動径距離 r と 2つの角度 θ, ϕに変数分離して

φ(r) = R(r)Y (θ, ϕ)

とすると，上式は

Y (θ, ϕ)
∂

∂r

(
r2
∂

∂r

)
R(r) +

2mr2

ℏ2
{E − V (r)}R(r)Y (θ, ϕ) +R(r)ΛY (θ, ϕ) = 0

となる．さらに，両辺を R(r)Y (θ, ϕ)で割って式を整理すると

1

R(r)

∂

∂r

(
r2
∂

∂r

)
R(r) +

2mr2

ℏ2
{E − V (r)} = − 1

Y (θ, ϕ)
ΛY (θ, ϕ)

となる．上式の左辺は r のみ，右辺は θ, ϕ のみ含むから，いずれも r, θ, ϕ に依らない定数であ
る．この定数を l(l + 1)とすると，左辺からは

1

R(r)

d

dr

(
r2
d

dr

)
R(r) +

2mr2

ℏ2
{E − V (r)} = l(l + 1) (10)

が得られ，右辺からは
− 1

Y (θ, ϕ)
ΛY (θ, ϕ) = l(l + 1) (11)

が得られる．
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3.1 動径方向の方程式
式 (10)を解くには，V (r)の関数形を具体的に与えなければならない．そこで，図 1の様に V (r)

が井戸型ポテンシャルの場合とクーロンポテンシャルの場合に分けて説明しよう．

0

0

0

(a) (b)

0

図 1：(a)井戸型ポテンシャルと (b)クーロンポテンシャル．

3.1.1 井戸型ポテンシャルの場合
図 1(a)の様に，中心力ポテンシャルが井戸型ポテンシャル

V (r) =

{
−V0 (0 ≤ r ≤ a)

0 (a < r)
(12)

で与えられる場合を考える．まず，式 (10)を整理して

1

r2
d

dr

(
r2
dR

dr

)
+

2m

ℏ2
{E − V (r)}R(r)− l(l + 1)

r2
R(r) = 0 (13)

とする．上式の左辺第 1項を
1

r2
d

dr

(
r2
dR

dr

)
=

1

r2

(
2r
dR

dr
+ r2

d2R

dr2

)
=
d2R

dr2
+

2

r

dR

dr

と変形すると，式 (13)は

d2R

dr2
+

2

r

dR

dr
+

2m

ℏ2
{E − V (r)}R(r)− l(l + 1)

r2
R(r) = 0

となる．これに式 (12)を代入すると，0 ≤ r ≤ aのとき

d2R

dr2
+

2

r

dR

dr
+

2m

ℏ2
(E + V0)R(r)−

l(l + 1)

r2
R(r) = 0 (14)

となる．ここで，E + V0 > 0であることに注意して

k2 ≡ 2m

ℏ2
(E + V0)
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と置く．また，新しい変数
ρ ≡ kr

を導入すると
d2

dr2
= k2

d2

dρ2
,

2

r

d

dr
=

2k2

ρ

d

dρ

となるので，式 (14)は

k2
d2R

dρ2
+

2k2

ρ

dR

dρ
+ k2R− k2

l(l + 1)

ρ2
R(ρ) = 0

となる．従って，両辺を k2 で割ると
球ベッセルの微分方程式� �

d2R

dρ2
+

2

ρ

dR

dρ
+

{
1− l(l + 1)

ρ2

}
R(ρ) = 0� �

となり，l = 0, 1, 2, · · · の値に応じた球ベッセル関数

jl(ρ) =

(
π

2ρ

)1/2

Jl+1/2(ρ)

が解である*4．但し，Jν(ρ)は通常のベッセル関数であり，
ベッセルの微分方程式� �

d2Jν
dρ2

+
1

ρ

dJν
dρ

+

(
1− ν2

ρ2

)
Jν(ρ) = 0� �

の解である*5．以上より，井戸型ポテンシャルの場合の波動関数は（規格化定数を除いて）次式で
与えられる．

R(r) = jl(kr) , ∴ φ(r) = jl(kr)Y (θ, ϕ)

3.1.2 クーロンポテンシャルの場合
式 (10)の解を

R(r) ≡ χ(r)

r
(15)

*4 これ以外に球ノイマン関数
nl(ρ) = (−1)l+1

(
π

2ρ

)1/2

J−l−1/2(ρ)

も解となるが，ρ = 0（つまり r = 0）で特異的なので，ここでは省略する．
*5 ベッセルの微分方程式はラプラス方程式やヘルムホルツ方程式などを円筒座標系で解く場合に現れる．
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として，動径距離の関数 χ(r)を導入すると

r2
dR

dr
= r2

d

dr

(χ
r

)
= χ′r − χ

∴ d

dr

(
r2
dR

dr

)
=

d

dr
(χ′r − χ)

= χ′′r + χ′ − χ′

= χ′′r

である．但し，χ′ = dχ/dr, χ′′ = d2χ/dr2 とした．従って，式 (10)は

χ′′r +
2mr2

ℏ2
{E − V (r)} χ(r)

r
= l(l + 1)

χ(r)

r

∴ d2χ

dr2
+

[
2m

ℏ2
{E − V (r)} − l(l + 1)

r2

]
χ(r) = 0 (16)

となる．これは χ(r)に関する変数係数の 2階線形常微分方程式である．

図 1(b)の様に，中心力ポテンシャルがクーロンポテンシャル

V (r) = − e2

4πϵ0r

で与えられる場合を考えると，式 (16)は

d2χ

dr2
+

{
2m

ℏ2

(
E +

e2

4πϵ0r

)
− l(l + 1)

r2

}
χ(r) = 0 (17)

となる．E < 0なので，
β2 ≡ −8mE

ℏ2
, n ≡ me2

2πϵ0βℏ2

を導入する．また，新しい変数
ρ ≡ βr

を用いると
d2

dr2
= β2 d

2

dρ2

なので，式 (17)は

β2 d
2χ

dρ2
+

{
2mE

ℏ2
+

me2

2πϵ0ℏ2r
− l(l + 1)

r2

}
χ(ρ) = 0

∴ β2 d
2χ

dρ2
+

{
−β

2

4
+
β2n

ρ
− β2 l(l + 1)

ρ2

}
χ(ρ) = 0

∴ d2χ

dρ2
+

{
n

ρ
− 1

4
− l(l + 1)

ρ2

}
χ(ρ) = 0 (18)
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と変形できる．ここで，解の関数形を

χ(ρ) = e−ρ/2L(ρ) (19)

と仮定すると*6，

d2χ

dρ2
=

d2

dρ2

(
e−ρ/2L

)
=

d

dρ

(
−1

2
e−ρ/2L+ e−ρ/2L′

)
=

(
−1

2

)2

e−ρ/2L− 1

2
e−ρ/2L′ − 1

2
e−ρ/2L′ + e−ρ/2L′′

=

(
L′′ − L′ +

L

4

)
e−ρ/2

となる．但し，L(ρ)は ρの多項式であり，L′ = dL/dρ, L′′ = d2L/dρ2 とした．上式を式 (18)に
代入し，両辺を e−ρ/2 で割ると

L′′ − L′ +
L

4
+

{
n

ρ
− 1

4
− l(l + 1)

ρ2

}
L = 0

∴ ρ2L′′ − ρ2L′ + {nρ− l(l + 1)}L = 0 (20)

となる．さらに，L(ρ)に対して
L(ρ) ≡ ρl+1f(ρ) (21)

を導入すると，

L′ =
d

dρ

(
ρl+1f

)
= (l + 1)ρlf + ρl+1f ′ ,

L′′ =
d

dρ

{
(l + 1)ρlf + ρl+1f ′

}
= l(l + 1)ρl−1f + (l + 1)ρlf ′ + (l + 1)ρlf ′ + ρl+1f ′′

= ρl+1f ′′ + 2(l + 1)ρlf ′ + l(l + 1)ρl−1f

*6 先程と同様，χ(ρ)の関数形をある程度限定するため，ρが十分大きい場合を考える．ρ ≫ 1のとき，式 (18)は
d2χ

dρ2
−

1

4
χ(ρ) ≃ 0 , ∴ d2χ

dρ2
≃

1

4
χ(ρ)

となり，
χ(ρ) ∝ e±ρ/2

が成り立つ．従って，ρ → ∞で発散しない解として

χ(ρ) = e−ρ/2L(ρ)

を仮定できる．但し，L(ρ)は ρの多項式である．
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となるので，式 (20)の左辺は

l.h.s. = ρl+3f ′′ + 2(l + 1)ρl+2f ′ + l(l + 1)ρl+1f

−
{
(l + 1)ρl+2f + ρl+3f ′

}
+ {nρ− l(l + 1)} ρl+1f

= ρl+3f ′′ + ρl+2 {2(l + 1)− ρ} f ′ + ρl+2 {n− (l + 1)} f

と変形できる．よって，式 (20)の両辺を ρl+2 で割って

ρf ′′ + {2(l + 1)− ρ} f ′ + {n− (l + 1)} f = 0 (22)

が得られる．ここで，
p ≡ 2l + 1 , q ≡ n+ l

を定義すると，式 (22)は
ラゲールの陪微分方程式� �

ρ
d2f

dρ2
+ (p+ 1− ρ)

df

dρ
+ (q − p) f(ρ) = 0 (23)� �

となり，p, q の値に応じたラゲール陪多項式

Lp
q(ρ) =

dp

dρp
Lq(ρ)

が解となる [2]．但し，Lq(ρ)は通常のラゲール多項式であり，式 (23)で p = 0とした
ラゲールの微分方程式� �

ρ
d2Lq

dρ2
+ (1− ρ)

dLq

dρ
+ qLq(ρ) = 0� �

の解である．以上より，

f(ρ) = Lp
q(ρ)

= L2l+1
n+l (ρ)

であるから，式 (15), (19), (21) によって，クーロンポテンシャルの場合の波動関数は（規格化定
数を除いて）次式で与えられる．

R(r) =
e−ρ/2

r
ρl+1f(ρ)

= βe−ρ/2ρlL2l+1
n+l (ρ)

∴ φ(r) ∝ e−ρ/2ρlL2l+1
n+l (ρ)Y (θ, ϕ)
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3.2 角度方向の方程式
式 (11)の解 Y (θ, ϕ)を求める前に，その物理的な意味を考える．まず，式 (11)を

ΛY (θ, ϕ) = −l(l + 1)Y (θ, ϕ) (24)

と変形すると，Y (θ, ϕ)は微分演算子 Λの固有関数であり，−l(l + 1)が固有値になることが解る．
ところで，（演算子としての）角運動量を lとすると，その 2乗は

l2 = −ℏ2
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}
で与えられる [3]．上式を式 (9)と比べると

l2 = −ℏ2Λ

であるから，式 (24)の両辺に −ℏ2 を掛けて

l2Y (θ, ϕ) = ℏ2l(l + 1)Y (θ, ϕ)

となる．つまり，Y (θ, ϕ)は角運動量の 2乗 l2 の固有関数であり，固有値は ℏ2l(l + 1)である．同
様に，l = (lx, ly, lz)とすれば，

lzY (θ, ϕ) = ℏmY (θ, ϕ)

が成り立ち [3]，Y (θ, ϕ)は角運動量の z 成分 lz の固有関数でもあり，固有値は ℏmであることが
解る．但し，mは次式で与えらえる整数である．

m = −l,−l + 1,−l + 2, · · · , l − 2, l − 1, l

また，式 (11)あるいは (24)は中心力ポテンシャル V (r)を含んでいないため，Y (θ, ϕ)の関数形は
V (r)に依らず，

:::::::::::::::::::::::::::::::::::::
球対称な系に普遍的に用いられる関数となる．

3.2.1 角度変数の分離
式 (11)または (24)を解くため，解を θ と ϕに変数分離して

Y (θ, ϕ) = Θ(θ)Φ(ϕ) (25)

とする．このとき，式 (24)に (9)を代入すると，

Φ(ϕ)

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

Θ(θ)

sin2 θ

∂2Φ

∂ϕ2
= −l(l + 1)Θ(θ)Φ(ϕ)

∴ sin θ

Θ(θ)

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ l(l + 1) sin2 θ = − 1

Φ(ϕ)

∂2Φ

∂ϕ2
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と変形できる．上式の左辺は θ のみ，右辺は ϕのみ含むから，いずれも θ と ϕに依らない定数で
ある．この定数をm2 とすると，左辺からは

sin θ

Θ(θ)

d

dθ

(
sin θ

dΘ

dθ

)
+ l(l + 1) sin2 θ = m2

∴ 1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

{
l(l + 1)− m2

sin2 θ

}
Θ(θ) = 0 (26)

が得られ，右辺からは

− 1

Φ(ϕ)

d2Φ

dϕ2
= m2 , ∴ ∂2Φ

∂ϕ2
= −m2Φ(ϕ) (27)

が得られる．

3.2.2 ϕ方向の解
式 (27)は直ちに解くことができ，mの値に応じて

Φm(ϕ) =
1√
2π
eimϕ (28)

が解となる．ここで，定数 1/
√
2π は Φm(ϕ)の規格化条件∫ 2π

0

Φ∗
m(ϕ)Φn(ϕ)dϕ = δmn

を満たすための規格化定数である．

3.2.3 θ 方向の解
式 (26)を解くため，新しい変数

ζ ≡ cos θ

を導入する．このとき
d

dθ
=
dζ

dθ

d

dζ
= − sin θ

d

dζ

なので，式 (26)は

− d

dζ

(
− sin2 θ

dΘ

dζ

)
+

{
l(l + 1)− m2

sin2 θ

}
Θ(ζ) = 0

∴ d

dζ

{(
1− ζ2

) dΘ
dζ

}
+

{
l(l + 1)− m2

1− ζ2

}
Θ(ζ) = 0

となる．上式の左辺第 1項を少し計算すると
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ルジャンドルの陪微分方程式� �
(
1− ζ2

) d2Θ
dζ2

− 2ζ
dΘ

dζ
+

{
l(l + 1)− m2

1− ζ2

}
Θ(ζ) = 0 (29)� �

となり，l,mの値に応じたルジャンドル陪関数

Pm
l (ζ) =

(
1− ζ2

)|m|/2 d|m|

dζ |m|Pl(ζ)

が解となる*7．但し，Pl(ζ)は通常のルジャンドル多項式であり，式 (29)でm = 0とした
ルジャンドルの微分方程式� �

(
1− ζ2

) d2Pl

dζ2
− 2ζ

dPl

dζ
+ l(l + 1)Pl(ζ) = 0� �

の解である．以上より，次式が得られる．

Θ(θ) = Pm
l (ζ)

= Pm
l (cos θ) (30)

3.2.4 球面調和関数
式 (25)に式 (28), (30)を代入すると Y (θ, ϕ)が求められる．但し，式 (28)はm，式 (30)は l,m

に依存するため，Y (θ, ϕ)も Y m
l (θ, ϕ) と表すことにすると，適切な規格化定数を含めて

球面調和関数� �
Y m
l (θ, ϕ) = (−1)(m+|m|)/2

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
P

|m|
l (cos θ)eimϕ

� �
となる．ここで，右辺のルジャンドル陪関数は

Pm
l (cos θ) = P−m

l (cos θ) = P
|m|
l (cos θ)

を満たすので，mの絶対値を用いて表した．
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