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1 Players as finite state automata

In our daily life, we have to make our decisions with our restricted abilities
(bounded rationality), which may be developed through learning and evolution
that utilize our past experiences. Recently, such evolutionary phenomena have
been studied by many researchers using evolutionary game settings, where re-
peated games are played by finite state automata (players), especially after the
analysis and computer experiment on the repeated prisoners dilemma by [?].

In this work, we discuss the effective memory size of finite automata to re-
member past experiences, and show that if fthere exist a Neutral Stable Strategy
of the effective memory size that is also in Pareto optimal state, then it cannot
be invaded by any players with longer memory size. We also discuss the possi-
bility of open-ended evolution when there isn’t any effective memory size for a
game.

2 Memory, strategy, game structure and social
phenomena

Let us consider a game whose payoff matrix is shown in Table ??. (The Avatam-
saka Game [?] In this game, a player’s point depends only on the other’s behav-
ior. If player 2 chooses behavior D (defect), the point player 1 can gain is only
1.0 no mater what behavior he or she chooses. If player 2 chooses behavior C
(cooperation), the point for player 1 is always 2.0. Therefore, the game theoreti-
cal conclusion is that there is no motive for each player to change his/her current
behavior in this game. In other words, any choice of any player is best response
to the other’s choice in every situation, and a set of the mixed strategies of all
the players should always be a Nash Equilibrium. However, if we consider the
case where palyers’ have memories of past behaviors, the result will be quite
different one line the prisoner’s dilemma case, which will be discussed later.
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Table 1: Payoff matrix for the “Avatamsaka game”: Two matrices below show
the points gained by Player 1 (left) and Player 2 (right). The columns indicate
the actions Player 1 would choose and the rows Player 2. As we only deal with
symmetric games (i.e. the payoff structures from the viewpoint of Player 1 and
of Player 2 are identical), such as the game in this table, we will show the payoff
matrices only for Player 1 in the rest of this paper.

The payoff for player 1 The payoff for player 2

D C
D 1 2
C 1 2

D C
D 1 1
C 2 2

Besides the Avatamsaka game, we introduce typical four 2x2 symmetric
dilemma games, Prisoner’s dilemma, Chicken, Leader’s and Hero’s dilemma
games (following the classification of [?]) to see the effect of game stractures on
the evolutionary dynamics. The payoff matrices are given in Table ??. While
Avatamsaka game has a non-generic1payoff matrix, Rapoport classified generic
and symmetric 2x2 games and found out only four games are non-trivial.

Let us explain briefly about the games (c) and (d). (We assume (a) Prisoner’s
dilemma and (b) Chicken game are well known.)

(c) In the Leader’s dilemma game, D represents “to act positively and to
wish to be a leader,” while C represents “to act passively and to follow the
leader.” If both can successfully differentiate their roles into the leader and the
follower, the productivity of the entire society will be improved. However, it
should be noted that the leader can get more profit than the follower can in this
game. On the other hand, if the both insist on becoming the leader, it turns out
to be the worst result. The Leader’s dilemma game can be applied as a model
for power struggles.

(d) Also in the Hero’s dilemma game, D is “to act positively” and C is “to
act passively.” However, the follower (passive) is more advantageous than the
leader (positive) in this game. Here, action D represents “to contribute actively
to the society with self-sacrifice,” which should be called the heroic behavior.
However, if both of them try to act heroically, it turns out to be a waste. The
Hero’s dilemma game may be applied as a model for the president election in a
residents’ association, in which nobody is willing to be elected, but somebody
has to.

3 The model

We deal with multi-stage (or repeated, iterated) games of the above five 2x2
games (Avatamsaka + 4 dilemma games) in this paper, and we call one play

1There exist payoff ties.
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Table 2: 2x2 dilemma games (based on the classification of [?])

(a)Prisoner’s dilemma (b)Chicken game
D C

D 1 5
C 0 3

D C
D 0 5
C 1 3

(c)Leader’s dilemma (d)Hero’s dilemma
D C

D 0 5
C 3 1

D C
D 0 3
C 5 1

in the repetition a stage game. Furthermore, we refer to C or D in a stage
game as an action, while a complete plan in a multi-stage game for a player to
decide his/her action based on the past information as a strategy. We investigate
the evolutionary phenomena in these five games using an evolutionary model
presented by [?].

3.1 Dynamics of the frequencies of the strategies

Suppose that there are infinitely many agents in a population of a game world.
Two of the Agents living in the game world are chosen randomly from the
population to play an infinitely repeated 2x2 game. They decide their actions
according to their own strategies during the course of the repetition. Their
strategies can be classified into several categories in the game world. Suppose
that the total population of the agents in the game world is 1.0 and the fraction
of the agents having strategy i (i = 0, 1, . . . , n − 1) in a specific generation t
is xi. The fitness fi of strategy i acquired in the game world (the expected
value of the payoffs in all the games in which strategy i is involved), of course,
depends on the strategy distribution x = (x0, x1, . . . , xn−1). (e.g. The fitness of
a strategy would be decreased if many unfavorable strategies should dominate
the game world.)

Assume that the population share of a strategy increases or decreases accord-
ing to the fitness of the strategy and that a small fraction of newborn agents
appear as mutants of other strategies. Considering the fact that the average
fitness of all agents is xifi

Σixifi
, the population share x′

i of strategy i in the next
generation would be:

x′
i =

(
fi

Σixifi
xi + u

)
/(1 + nu), i = 0, . . . , n − 1.

where u is the constant term to represent the effect of the uniform and time-
independent mutation (i.e. mutation rate). In this paper, we choose two cases
u = 0 (no mutation) and u = 0.0004 in order to see the effect of the mutation.
(The change of u does not affect the results essentially as long as 0 < u << 1
in most cases.
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3.2 Iterated game with action-noise and the strategies
with past memory

In the game world, agents play iterated 2x2 games where infinitely many rounds
of stage games are repeated. Each agent has the strategy to decide the actions
in the next stage game based on the memory of the actions that he and the
opponent did in previous rounds. We investigate the following three cases: (1)
Agents decide their actions without memory. (This condition is denoted as
“m = 0” case.) (2) Agents decide the action referring to the previous action of
the opponent (“m = 1”) (3) Agents decide the action referring to the actions of
himself and of the opponent (“m = 2”).

The number of possible pure strategies in this repeated game depends on
the agents’ memory size. In the case of no memory (m = 0), there are only two
possible pure strategies: “Always D (which we denote as “AIID” or “S0

0”)” and
“Always C (AIIC= S0

1).” 2 In the case of m = 1, we denote a strategy of an
agent as p0p1 (p0, p1 ∈ [0, 1]) where p0(p1) is the probability to play “C” when
the opponent’s last move was “C” (“D”). For example, the strategy “00” (i.e.
p0 = 0, p1 = 0) always play “D.” There are four possible pure strategies for
m = 1 such as 00, 01, 10, 11, which we denote as S1

0 S1
1 S1

2 , S1
3 respectively.

Note that 00=S1
0 , 11=S1

3 are same as AIID and AIIC. 10=S1
2 means that the

agents act the same as the opponent did previously, which is so-called “Tit-For-
Tat (TFT)”. 01=S1

1 means the opposite action from the opponent’s previous
action, and this is “Anti-TFT (ATFT)”.

The strategy in the case of m = 2 can also be described as p0 p1 p2 p3

(pi ∈ [0, 1]). p0, p1, p2 and p3 represent the probability to play “C” when, in
the previous round, (the agent’s move, the opponent’s move) = (C, C), (C, D),
(D, C) and (D, D), respectively. There are 16 possible pure strategies such as
0000, . . . , 1111 = S2

0 .S2
15. Thus, the number of possible pure strategies in

total is 2m for the memory size m of an agent.
To make it simple, we assume that each game would be repeated infinitely

between two agents chosen from the population. Moreover, agents would make
mistakes with probability p during the repetition. (The agent with the strategy
to play “C” may sometimes play “D” by mistake against his/her will.) This
means that the uncertainty (action-noise) exists in agents’ cognitive functioning.
Taking into account the fact that the transition of the probability distribution
for the 2m states above is a Markov process, the transition matrix can be defined
uniquely depending on the two agents’ strategies. The probability distribution
in the steady state corresponds to the eigenvector with the eigenvalue 1 of the
transition matrix as long as p > 0. The average payoff in an iterated infinitely
game can be given from the probability distribution of the steady state and the
stage game payoff matrix. A slight change of p does not essentially affect the
analysis result introduced in the next section as long as p << 1. (The theoretical
values found in the next section such as the equilibria of game dynamics are the
values at p → 0 limit. We use p = 0.01 for the computer simulations.)

2Sm
n means the nth strategy with memory size of m.
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As a short note for strategies at m = 2, S2
0=0000 and S2

15=1111 mean
AIID, AIIC and S2

10=1010 corresponds to TFT, S2
5=0101 to ATFT. Moreover,

S2
8=1000 is “GRIM” (that play “C” only when the previous choices of the both

players were “C”), S2
9=1001 is so-called “PAVROV” [?]. The last two strategies

can be formed only if m ≥ 2. Note that the nomenclature used in the above is
the one usually used in the “Prisoners’ dilemma” researches, and so, it might
be sometimes misleading to use the above strategy names in other games than
Prisoner’s Dilemma, although we do basically use the above names in this paper
to avoid confusion.

4 Brief summary of the results

Let us briefly sum up the results.
In case of Avatamsaka game and of Chicken game, the effective memory size

is m = 2. That is, m = 2 strategy PAVROV is a neutrally stable strategy (NSS)
and does not allow the prevalence of ANY strategy including those with longer
memory size. In case of Leader’s or Hero’s dilemma game with action noise, the
effective memory size is m = 4. That is, there is a m = 4 strategy that is NSS
and does not allow the prevalence of any strategy including those with longer
memory size.

It can be shown that if there exists, for some memory size, a NSS that is
in a Pareto optimal state, then it should be NSS for any strategy with any
memory size. This result implies that further evolutions that increase memory
size are meaningless, and evolutionary phenomena for such games always have
some end-points at NSSs.

On the other hand, such NSS cannot be found for prisoner’s dilemma with
action noise, and actually we can observe open-ended evolution with the increase
of the memory size in the computer simulation of this game.
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