Beyond the Standard Model in Multi-Spinor Field Formalism

Ikuo S. Sogami

6th Joint Symposium 16 October 2016 Campus Plaza Kyoto

PTEP (2013) 123B02 IJMP **A31** (2016) 16300271 We are still at phenomenological stage

We have to look for new key concepts and formalism step by step

Remind the era of "Eightfold Way"

Rich spectra of quarks & leptons

Tree of fermionic master field

Multi-spinor local field A substitute for composite scheme **Basic postulate**

Dirac's spinor field for electron

 ψ_a

1

Multi-spinor local field

 $\Psi_{abc} \propto \psi_a \psi_b \psi_c$ 4x4x4 = 64

4

Local field behaving as triple-tensor-products of Dirac's spinor fields

Naïve extension of WS to triplet fields

Chiral spinor fields

Chiral triplet fields

EW doublet
$$\Psi_L = \begin{pmatrix} \Psi_u \\ \Psi_d \end{pmatrix}_L$$
EW singlets
$$U = (\Psi_u)_R$$
$$D = (\Psi_d)_R$$

Sequential 4 family scheme : Excluded!

 $\psi \psi$ 4 + 4 = 8 $\Psi \Psi$

64 + 64 = 128

L-R twisted scheme with (3+1) families

4th family for dark matter

$$\Psi_L = {}^t \left(egin{array}{c} \Psi_{(v)} : & egin{array}{c} U_{(d)} \ D_{(d)} \end{array}
ight)_L \ \Psi_R = {}^t \left(egin{array}{c} U_{(v)} \ D_{(v)} \end{array} : egin{array}{c} \Psi_{(d)} \ D_{(d)} \end{array}
ight)_R \end{array}$$

Visible $G = SU_c(3) \times SU_L(2) \times U_Y(1)$

Dark $G_{\star} = SU_{c^*}(3) \times SU_R(2) \times U_{Y^*}(1)$

$$2 \times 2 \times (3+1) \times (3+1) = 64$$

 $2 \times 2 \times (3+1) \times (3+1) = 64$

Triplet algebra for triplet field

Dirac algebra

$$A\gamma \;=\; \{1,\,\gamma_{\mu},\,\sigma_{\mu
u},\,\gamma_{5}\gamma_{\mu},\,\gamma_{5}\}\;=\; \langle\gamma_{\mu}
angle \,,$$

Triplet algebra

$$egin{aligned} A_T &= \set{p \otimes q \otimes r: p, \, q, \, r \in A_\gamma} \ &= \langle \, \gamma_\mu \otimes 1 \otimes 1, \, 1 \otimes \gamma_\mu \otimes 1, \, 1 \otimes 1 \otimes \gamma_\mu \,
angle \end{aligned}$$

Criterion for physical subalgebra

Closed and irreducible under permutation group S_3

 $p\otimes q\otimes r \ o \ q\otimes r\otimes p \ ext{ etc}$

A_{Γ} algebra $A_{\Gamma} = \langle \gamma_{\mu} \otimes \gamma_{\mu} \otimes \gamma_{\mu} \rangle$ spacetime $\Gamma_{\mu} = \gamma_{\mu} \otimes \gamma_{\mu} \otimes \gamma_{\mu} \iff x^{\mu}$ $\Gamma_{\mu}\Gamma_{ u}+\Gamma_{ u}\Gamma_{\mu}=2\eta_{\mu u}I$ $I = 1 \otimes 1 \otimes 1$ $\Sigma_{\mu u}=-rac{i}{2}(\Gamma_{\mu}\Gamma_{ u}-\Gamma_{ u}\Gamma_{\mu})=\sigma_{\mu u}\otimes\sigma_{\mu u}\otimes\sigma_{\mu u}$

$$\Gamma_5 = -i\Gamma^0\Gamma^1\Gamma^2\Gamma^3 = \gamma_5\otimes\gamma_5\otimes\gamma_5$$

 $\Gamma^{\mu} = \eta^{\mu
u}\Gamma_{
u}$

 $A_{\Gamma}=~\{1,\,\Gamma_{\mu},\,\Sigma_{\mu
u},\,\Gamma_{5}\Gamma_{\mu},\,\Gamma_{5}\}=~\langle\Gamma_{\mu}
angle\leftrightarrow A\gamma$

Lorentz transformation for triplet field $\Psi(x) \equiv (\Psi_{abc})(x)$

$$x^{\prime\mu} = \Omega^{\mu}{}_{
u}x^{
u}: \ \Omega_{\lambda\mu}\Omega^{\lambda}{}_{
u} = \eta_{\mu
u}$$

Dirac spinor field

 $\psi'(x')=s(\Omega)\psi(x) \hspace{0.5cm} s(\Omega)=\exp\left(-rac{i}{4}\sigma_{\mu
u}\omega^{\mu
u}
ight)$

Triplet fields

 $\Psi'(x') = S(\Omega)\Psi(x) \qquad S(\Omega) = \exp\left(-rac{i}{4}\Sigma_{\mu
u}\omega^{\mu
u}
ight)
onumber \ \Sigma_{\mu
u} = -rac{i}{2}(\Gamma_{\mu}\Gamma_{
u} - \Gamma_{
u}\Gamma_{\mu}) = \sigma_{\mu
u}\otimes\sigma_{\mu
u}\otimes\sigma_{\mu
u}$

External subalgebra $A_{ex} = \{ \Sigma_{\mu
u} \} \subset A_{\Gamma}$

Chirality for triplet fields

$$L = \frac{1}{2}(I - \Gamma_5), \quad R = \frac{1}{2}(I + \Gamma_5)$$

Centralizer of A_{Γ} algebra

 $C_{\Gamma} = \{X \in A_T : [X, \ \Gamma_{\mu}\,] = 0\} \qquad \Gamma_{\mu} \! = \! \gamma_{\mu} \! \otimes \! \gamma_{\mu} \! \otimes \! \gamma_{\mu}$

$$C_{\Gamma} = \langle \ 1 \otimes \gamma_{\mu} \otimes \gamma_{\mu}, \ \gamma_{\mu} \otimes 1 \otimes \gamma_{\mu} \
angle$$

$$A_{\Gamma} = \langle \ \gamma_{\mu} \otimes \gamma_{\mu} \otimes \gamma_{\mu} \ \rangle$$

$$A_T = A_\Gamma C_\Gamma, \ \ A_\Gamma \cap C_\Gamma = I$$

 A_T

Coleman-Mandula theorem

External subalgebra $A_{ex} = \{ \Sigma_{\mu
u} \} \subset A_{\Gamma}$ Internal subalgebra $A_{in} \subset C_{\Gamma}$

Model building with triplet fields

L-R twisted model

 $G = SU_c(3) imes SU_L(2) imes U_Y(1)$ for visible sector

 $G_{\star} = SU_{c^{\star}}(3) imes SU_{R}(2) imes U_{Y^{\star}}(1) \,\,$ for dark sector

Fundamental representation

L field $\Psi_L = {}^t \begin{pmatrix} \Psi_{(v)} & : & U_{(d)} \\ D_{(d)} \end{pmatrix}_L$ EW doublet EW* singlets R field $\Psi_R = {}^t \begin{pmatrix} U_{(v)} & : & \Psi_{(d)} \\ D_{(v)} & : & \Psi_{(d)} \end{pmatrix}_R$ EW singlets EW* doublet $G = G_{\star}$

L field

$$\Psi_L = {}^t \left(egin{matrix} U_{(v)} \ D_{(d)} \end{pmatrix} {}_L$$

Quark states

$$\Psi_{(v)}^{(q)} = \left(egin{array}{ccc} uuu & ccc & ttt\ ddd & sss & bbb\end{array}
ight)_L$$

Lepton states

$$\Psi_{(v)}^{(\ell)} = \left(egin{array}{ccc} oldsymbol{
u}_e & oldsymbol{
u}_\mu & oldsymbol{
u}_ au\ e & oldsymbol{\mu} & oldsymbol{ au} \end{array}
ight)_L$$

 \boldsymbol{G}

$$\Psi_R = {}^t \left(egin{array}{c} U_{(v)} \ D_{(v)} \end{array} : egin{array}{c} \Psi_{(d)} \ D_{(v)} \end{array}
ight)_R$$

Quark states

$$\begin{split} U_{(v)}^{(q)} &= \left(\begin{array}{ccc} uuu & ccc & ttt \end{array}\right)_R \\ D_{(v)}^{(q)} &= \left(\begin{array}{ccc} ddd & sss & bbb \end{array}\right)_R \end{split}$$

Lepton states

$$egin{aligned} U_{(v)}^{(\ell)} &= ig(egin{array}{ccc}
u_e &
u_\mu &
u_ au ig)_R \ \ D_{(v)}^{(\ell)} &= ig(egin{array}{cccc} e & \mu & au ig)_R \end{aligned}$$

 \boldsymbol{G}

 G_{\star}

Lagrangian density of L-R twisted model

Kinetic and gauge parts

$${\cal L}_{kg} = ar{\Psi}_L i \Gamma^\mu {\cal D}_\mu \Psi_L + ar{\Psi}_R i \Gamma^\mu {\cal D}_\mu \Psi_R$$

Yukawa parts

$$\mathcal{L}_Y \;\;=\;\; ar{\Psi}_L \mathcal{Y}(\,\mathrm{Higgs}\,) \Psi_R + \mathrm{h.c.}$$

 \mathcal{Y} : Kernel for Yukawa couplings of elements of family algebra

Two Higgs doublets

Extra Higgs singlet

 ϕ_{\star}

$$arphi = \left(egin{array}{c} arphi^+ \ arphi^0 \end{array}
ight) \ arphi_\star =$$

$$=\left(egin{array}{c} arphi^+_\star \ arphi^0_\star \end{array}
ight)$$

Visible HiggsG

Necessary to make the dark photon massive

Higgs potential

$$\begin{split} V_{H} &= V_{0} - \mu^{2} \varphi^{\dagger} \varphi + \lambda (\varphi^{\dagger} \varphi)^{2} - \mu_{\star}^{2} \varphi_{\star}^{\dagger} \varphi_{\star} + \lambda_{\star} (\varphi_{\star}^{\dagger} \varphi_{\star})^{2} \\ &+ \left[2 \lambda_{I} (\varphi^{\dagger} \varphi) (\varphi_{\star}^{\dagger} \varphi_{\star}) \right] - \mu_{0\star}^{2} \phi_{\star}^{\dagger} \phi_{\star} + \lambda_{0\star} (\phi_{\star}^{\dagger} \phi_{\star})^{2} \\ & \text{Portal coupling} \qquad \text{Extra Higgs singlet} \end{split}$$

 G_*

G

Simple scheme for dark dynamics : without ϕ_{\star}

Breakdown of $G_{WS\star} = SU_R(2) \times U_{Y*}(1)$ symmetry

 $m_{u_{\star}} \gg m_{d_{\star}} + m_{e_{\star}}$ $u_{\star}
ightarrow d_{\star} + ar{e}_{\star} +
u_{\star}$ $\Delta^-_\star = [d_\star \, d_\star \, d_\star] = rac{1}{\sqrt{6}} \epsilon_{ijk} d^i_\star \, d^j_\star \, d^k_\star \ H_\star = (\wedge^-)$ **Only one stable hadron** Dark hadron $H_\star = (\Delta_\star^- + \bar{e}_\star)$ **Dark atom** Dark molecule $(H_{\star})_2 = H_{\star}H_{\star}$ Candidates of DM $(H_{\star})_2, \ H_{\star}, \ \Delta_{\star}^-, \ e_{\star}, \ \nu_{\star}: \nu_{iR}: \gamma^{\star}$

No nuclear reaction : Simple thermal history

Simplest scenario of dark dynamics: with ϕ_{\star}

Breakdown of $G_{WS\star} = SU_R(2) \times U_{Y*}(1)$ symmetry

 $m_{u_{\star}} \gg m_{d_{\star}} + m_{e_{\star}}$ $u_{\star}
ightarrow d_{\star} + ar{e}_{\star} +
u_{\star}$ $egin{aligned} & \mathbf{Spin}\ \Delta_{\star}^{-} &= [oldsymbol{d}_{\star}\,oldsymbol{d}_{\star}] = rac{1}{\sqrt{6}} \epsilon_{ijk} d^{i}_{\star}\, d^{j}_{\star}\, d^{k}_{\star}\ H_{\star} &= \mathbf{O} \Delta_{\star}^{-} \,+\, ar{e}_{\star}) \end{aligned}$ Only one stable hadron **Dark hadron** No dark atom No dark molecule $(H_{\star})_2 \bigotimes H_{\star} H_{\star}$ $\Delta_{\star}^{-}, \ e_{\star}, \
u_{\star}:
u_{iR}: \gamma^{\star}, \ \phi_{0}^{\star} ?$ Candidates of DM

No electromagnetism, No nuclear reaction Very simple thermal history

Breakdown of two symmetries

$$egin{aligned} G_{WS} &= SU_L(2) imes U_Y(1) \ G_{WS\star} &= SU_R(2) imes U_{Y\star}(1) \ V_H &= V_0 - \mu^2 arphi^\dagger arphi + \lambda (arphi^\dagger arphi)^2 - \mu_\star^2 arphi^\dagger_\star arphi_\star + \lambda_\star (arphi^\dagger_\star arphi_\star)^2 \ &+ 2\lambda_I ig(arphi^\dagger arphi) ig(arphi^\dagger_\star arphi_\star) \ & ext{Higgs portal coupling} \end{aligned}$$

Unitary decomposition

$$\begin{split} \varphi(x) &= \frac{1}{\sqrt{2}} U(\vartheta(x)) \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \\ & \checkmark \quad \text{Visible Higgs} \\ \varphi_{\star}(x) &= \frac{1}{\sqrt{2}} U_{\star}(\vartheta_{\star}(x)) \begin{pmatrix} 0 \\ v_{\star} + h_{\star}(x) \end{pmatrix} \\ & \checkmark \quad \text{Dark Higgs} \end{split}$$

$$egin{aligned} V_H(h,\,h_\star) &= egin{aligned} \lambda v^2 h^2 + egin{aligned} \lambda_\star v_\star^2 h_\star^2 + 2\lambda_I v v_\star hh_\star \end{pmatrix} & ext{Interaction mode} \ &+ \lambda v h^3 + \lambda_\star v_\star h_\star^3 + \lambda_I v hh_\star^2 + \lambda_I v_\star h^2 h_\star \ &+ \cdots \end{aligned} \ &m_h^2 &= 2\lambda v^2 (\simeq \Lambda^2) & extsf{m}_{h\star}^2 &= 2\lambda_\star v_\star^2 (\simeq \Lambda_\star^2) \end{aligned}$$

Direct detection of dark matter

LUX & PandaX & Xenon 1t

Indirect detection of dark matter

Difficult to identify the process from decay products

Fermi & AMS-2

Mass of stable dark hadron

$$\Delta_{\star}^{-} = \left[\emph{d}_{\star} \, \emph{d}_{\star} \, \emph{d}_{\star}
ight] = rac{1}{\sqrt{6}} \epsilon_{ijk} \emph{d}_{\star}^{i} \, \emph{d}_{\star}^{j} \, \emph{d}_{\star}^{k}$$

(1) Era of common soup of visible & dark quanta

dark family : 3 visible families

(2) Same mechanism for baryogenesis in two sectors
(3) Era with stable nucleons N and dark hadrons Δ_{*}

$$2m_{\Delta_{\star}}: 6m_N = \Omega_c h^2: \Omega_b h^2 = 0.11889: 0.022161$$
 $m_{\Delta_{\star}} = rac{3 imes 0.11889}{0.022161} m_N$ Data from Planck
 $m_{\Delta_{\star}} \leq 15.1 \, {
m GeV}$

Λ

4

LUX detection

 7.6×10^{-46} cm² at a WIMP mass of 33 GeV/c²

LUX & PandaX & Xenon 1t : 2016

Early reheating period : Inseparable phase G and G_{\star} symmetric stage Friedmann equation <a>All visible & dark fields Effective number of relativistic d. o. f. $g_* = (28 + \frac{7}{8} \times 90) + (28 + \frac{7}{8} \times 30 + 2)$ = 106.75 + (54.25 + 2) = 161 + 2 = 163Many scales of symmetry breakings

No evidence for extra relativistic species except ordinary photons + (almost) massless neutrinos

Dark photon γ_* should be massive

Fundamental representation of chiral triplet fields

$$\Psi_L(x)={}^t egin{pmatrix} \Psi_{(v)}&:&U_{(d)}\ &D_{(d)} \end{pmatrix}_L \ \Psi_R(x)={}^t egin{pmatrix} U_{(v)}\ D_{(v)} &:&\Psi_{(d)}\ &D_{(v)} \end{pmatrix}_R$$

Three families of visible Q's and L's $G=SU_c(3) imes SU_L(2) imes U_Y(1)$

Additional single family of dark Q's and L's

$$G_{\star}=SU_{c^{st}}(3) imes SU_{R}(2) imes U_{Y^{st}}(1)$$

Monotone world of dark matter Careful study of thermal history : Required **Problems remained**

Massive dark photon & massive dark scalar $\,\gamma_{\star}\,\phi_{0}^{\star}\,$ Dark U(1) Higgs mechanism

U(1) gauge portal coupling

 $\mathcal{L} = g_{\mathrm{mix}} F_{\mu
u} F^{\mu
u}_{\star}$

Neutrino sector: SM + portal

Seesaw mechanism Leptogenesis

Thank you for your attention

We are still at phenomenological stage

We have to look for new key concepts and formalism step by step