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Abstract

We will speculate on the theory of the effective sequence of unifomities
on a set and its effective limit as a methodology to vest a sequence of real
functions which have different points of discontinuities with some notion
of computability. Some model examples which explain the necessity of
such a methodology are presented.

1 Introduction and background

The standard notion of computability of a real number or of a sequence of real
numbers as well as that of computability of a real continuous function or of a
sequence of continuous functions is now generally agreed (cf. Section 2). There
are many references on this subject. We refer the reader to [10]; there is also
[23] for a quick read.

There are many familiar functions which are discontinuous at some points
and to which we would like to attribute a certain kind of computability. One
approach to this problem was proposed by Pour-El and Richards [10] and was
succeeded by Washihara (cf. [14],[15],[16]) and others. It was a functional
analysis approach. In their treatment, a function is regarded as computable
as a point in some function space. This is sufficient when one draws a rough
graph of the function, but does not supply us with information how to compute
individual values.

In an attempt to compute a discontinuous function, a problem arises in the
computation of the value at a jump point (a point of discontinuity). Suppose a
number ¢ is a jump point. The question “z = a?” is in general not decidable even
for computable x and a. This implies that one cannot decide whether a given
number z is a jump point, which in turn implies that there is no computation
algorithm to compute the value of a function at a jump point. Very often,
however, we do compute the value of a function at a point of discontinuity.
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There are many ways of characterizing computation of a discontinuous func-
tion. We have proposed two approaches to this problem. One is to represent
the value of a function at a jump point in terms of a recursive rational sequence
approximating it with a “limiting recursive modulus of convergence” instead of
a recursive one (Yasugi, Brattka, Washihara:[18]). (A limiting recursive func-
tion is obtained from a recursive function by taking the limit of its values if the
limit exists. The notion of the limiting recursive function is due to Gold [2], and
has been utilized also in some works related to ours: cf. [9] and [3].) Another is
to change the topology of the domain of a function (Tsujii, Mori, Yasugi:[12]) so
that a discontinuous function (in the Euclidean topology) becomes continuous
in the new topology. More precisely, we obtain a “uniform topology” by “iso-
lating” the jump points. Under certain conditions, these two approaches are
equivalent ([21]).

Let us explain the problem and the idea of isolation in more detail with the
case of computing [z], the GauBlian function. This example has been extensively
taken up in [18], and helps to distill the situation.

The Gauflian function [z] outputs the “greatest integer” that does not exceed
x. It can be defined as

[z]=n if n<z<n+1

for each integer n, and hence the value can be determined by judging < alone
unless © be an integer. When z is an integer, x = n? is usually undecidable
(even for a computable z), and hence there is no general computation algorithm
for [z]. (A counter-example is given in [18].)

From what sort of viewpoint can one discuss the computability of a function
like this?

Let z be a computable real number, and let us attempt to compute its value
[]. For the sake of simplicity, we assume z > 0.

For n =0,1,2,3, -, keep asking “z < n?” and “n < z7”. (Technically, we
try to decide the inequality with respect to a recursive sequence of rational num-
bers, say {rm,}, which approximates z with a recursive modulus of convergence,
say a: cf. Section 2.) One will infallibly hit an n satisfying n < © < n + 2. If
one is fortunate so that one hits an n satisfying n < £ < n + 1, then one can
put [z] = n and the computation halts. In general, however, one cannot decide
whethern < x <n+lorn+1<z<n+2.

So, one checks the inequality

1
Ta(p) < (n + 1) — ﬁ
for p=1,2,---. According to its answer, we define a sequence of integers {IN, }

as follows.

While the answer is No, put N, = n+ 1. Once the answer becomes Yes at p,
then put N, = n for all ¢ satisfying ¢ > p. {N,} is a well-defined and recursive
sequence of rationals (integers, as a matter of fact), and it can be shown that,
if N, =n + 1 holds for all p, then the limit of the sequence is n + 1; otherwise,
the limit is n. In either case, the sequence {NV,,} approximates the value [z].



We have to be careful here to note that it is not decidable whether the limit
ism or n+ 1. It is true that one of the two cases definitely holds, and the limit
is the value [z]. Furthermore, for each case, there is a recursive modulus of
convergence. Only we do not know which case holds.

This undecidability indicates that a master program to compute [z] is not
guaranteed. Indeed, there is a computable sequence of real numbers {z,,}, where
the sequence of its values {[z,]} does not form a computable sequence of reals
(integers, in this case: cf. [18]).

On the other hand, in particular, we do distinguish an integer n on the
real line and easily compute [n](= n). Then, excluding integers, we can run a
program to compute [x].

How can we express such an intellectual activity of the human being? This
was the origin of our study of “effective uniformity” in relation to the com-
putability problem in analysis. One interpretation was proposed in [18]. Namely,
one allows the outputs {[z,]} to be approximated by a recursive double sequence
of rationals with a “limiting recursive” modulus of convergence, and its meaning
was speculated in [17]. This is mathematically interesting and significant, but
does not really represent our mental activity. We have found that most natural
mathematical representation of such an activity is “change of topology” of the
real line, the domain of a function, by isolating the jump points. In the case of
the Gauflian function [z], one proceeds as follows.

Isolate each integer n so that the fundamental neighborhood system of the
point n consists of the singleton {n} alone, while each open interval (n — 1,n)
preserves the Euclidean topology. The collection {{n},(n—1,n):n=1,2,3,---}
induces a “uniform topology.” As far as the computability of a function is
concerned, there is no need to evaluate the metric of the domain, and hence
assigning the uniform topology suffices.

With respect to the thus obtained uniform topology, the function [z] becomes
continuous, since there is no element in the neighborhood of an integer x = n
other than n. By assigning “effectivity” to this uniform space, we can develop
a theory of computability of a function such as [z] as the computability theory
of the continuous functions (cf. [12]). In this treatment, the uniform space as
above has been associated with the function [z]. In fact, this topology is the
“weakest topology” for the function [z] to become continuous. We would call it
the “natural topology” for [z]. (Technically, a topology T on a set X is called
the weakest for a function f : X — Y if the inverse image of the open sets of Y
by f forms the system of fundamental neighborhoods for 7.)

In analysis, the limit of a function sequence {f,} plays an important role. In
such a case, to each function f, a uniform topology must be assigned, since the
functions in the sequence may have different jump points. On the other hand,
in order to study the limit function of the sequence, all the functions must be
treated in one topology. We have thus been led to the notion of the “effective
limit” of a sequence of uniform spaces.

As for the “sequence” of functions with different jump points, we first pro-
posed an approach, guided by an example of the system of Rademacher func-



tions, in terms of the “limiting recursive modulus of convergence” ([24]). Let
{#i(x)} be the sequence of Rademacher functions (cf. [11], [24]). In [24], it
was shown that {¢;(z)} has a “weak sequential computability,” that is, there
is a program which does the following job: input a computable sequence of
real numbers {z.,}, a recursive triple sequence of rational numbers can be con-
structed so that it converges to {¢;(x,,)} with a limiting recursive modulus of
convergence. This method, however, does not represent our mental activity of
computing the values of a function sequence at the jump points, as was the case
of a single function [z]. We have thus resorted to an alternative way, using the
notion of the “effective sequence of uniformities.”

In this article, we develop the theory of “effective sequence of uniformities”
and its “effective limit” (Section 4) in order to realize the idea stated above.
Under a certain condition, the “limit” of such an effective sequence is again
an effective uniformity (Section 4: Theorem 1). Several examples supporting
the theory of effective sequence of uniformities will be presented in Section 3.
Effectivity of models of Section 3 is demonstrated in Section 6.

Our original theory of the effective uniform space can be seen in [12], [22]
and [21].

We will first give a brief account of some known fundamental notions such as
computable real numbers and computable (continuous) real functions as well as
the effective uniformity and the computability structure on the effective uniform
space (Section 2) for the reader’s convenience.

In Section 5, we present a special case of the theory proposed in Section 4.
There we confine ourselves to the real numbers in the interval I = [0,1) and
real functions on it. The theory of an effective sequence of uniformities on I and
its limit is developed (Propositions 5.1, 5.3). For the real sequences from I, E-
computability (computability in the Euclidean topology), v-computability (com-
putability with respect to the v-th uniformity in the sequence, v = 1,2,3,---)
and w-computability (computability with respect to the limit of the sequence)
will be defined, and their mutual relationships will be worked out (Propositions
5.2~5.3). This limit space is topologically equivalent to the Fine-metric space
(cf. Remark in Section 8).

In Section 7, a gerenal treatment of the computable sequence of functions
on the sequence of uniformities will be presented. The functions in the models
in Section 3 will then be discussed in Section 8.

We only list some references which have close relationship with the present
work.

We hope to modify our approach to a function sequence with points of
discontinuity defined on a metric space with a computability structure (cf. [7]
and [19]).

The article is composed in a manner that some model examples are first
given, prior to the theory, so that the motivation for the theory can be better
understood. It is made self-contained as much as possible.



2 Preliminaries

In the following, R will denote the set of real numbers. In general, letters such
as p,l,m,n, k, u, v will be used to denote positive integers or natural numbers.

For the subsequent discussion, let us here note the following fundamental
facts: =, <, < on natural numbers and on rational numbers are decidable; a < b
can be decided for computable real numbers a and b when the inequality indeed
holds, while a = b and a < b are not necessarily decidable even for computable
real numbers a and b.

We will first introduce some basic definitions.

Definition 2.1 (Euclidean computability: cf. [10], [23]) 1) A sequence of
rational numbers {r,} is called recursive if

hold with recursive functions 3,~ and §.
2) A sequence of real numbers {z;} is called E-computable (computable with
respect to the Euclidean topology) if

¥m > a(i,p) i~ rim] < oo

for a recursive function a and a recursive sequence of rational numbers {r;,}.
This property will be expressed as z; ~g (rim,a(i,p)), or, for short, z; ~g
(rim,a).

A real number z is called E-computable if {z,x,x, -} is.

3) A real (continuous) function f is computable (E-computable) if the fol-
lowing (i) and (ii) hold.

(i) f preserves sequential computability, that is, for a computable {z,},
{f(z,)} is computable.

(ii) f is effectively continuous with a recursive (3:

1 1
VpYRYE 2 B0, p)Va,y € [—n,nlle — | < 55 = 1£(@) = F@)] < 55
This definition can be extended to a sequence of functions.

Remark Notice that, in the definition above, the Euclidean computability of
a function is defined only for a continuous function. On the other hand, in
computing values of a piecewise continuous real function, for example, it is a
common practise to first compute the value at a jump point, and then compute
values on the open interval where the function is continuous. Such an action
corresponds to the mathematical notion of isolating the jump points or isolating
each half-closed interval. For instance, consider the function f such that f(z) =
0if x < 0and f(z) =1 if z > 0, and isolate the intervals I; = (—o00,0) and
I, = [0,00) from each other. Then we can regard f as continuous on each



interval of I; and I,. We were thus led to the uniform topology of the real
line induced from the Euclidean topology by isolating the jump points or the
intervals with the jump points at ends. (We have employed the definition of
uniformity as defined in [4].) For details of three definitions below, see [12] and
[21].

Let X be a non-empty set. A sequence {V,,}nen of maps from X to the
powerset of X, that is, V,, : X — P(X), is called a (countable) uniformity if it
satisfies some axioms, that is, Axioms A; ~ As to be stated below. Let us note
that, in fact, A; and Ay in [4] can be unified to A;&Az: N,V (z) = {z}. We
will state Axioms A3z ~ As in the form of effective uniformity.

Definition 2.2 (Effective uniformity:[12]) Let {V,} be as above. It is called
an effective uniformity if there are recursive functions ay, @y and as such that

(A1&As) Ny Va(z) = {z};

(Effective A3) Vn,mVe € X.Vy, (n,m)(x) C Va(z) N Vi (2);
(Effective Ay) VnVr,y € X.x € Vo) (y) = y € Va(2);
(Effective A5) VnVz,y,2z € X.x € Voym)(y) Ay € Vayn)(2) = 2 € Vi (2).

The system 7 := (X, {V,}, a1, as, a3) will be called an effective uniform topo-
logical space.

Note It is known that {V,(z)} forms a system of fundamental neighborhoods
of z for x € X.

Definition 2.3 (Effective V-convergence:[12]) A sequence {z;} from X is said
to effectively V -converge to x in X if there is a recursive function ~ satisfying

YnVk > y(n).z, € Vi(x).

This property will be expressed as z ~y (x,7).
This definition can be extended to effective convergence of a multiple se-
quence to a sequence.

Definition 2.4 (Computability structure:[12]) Let S be a family of sequences
from X (multiple sequences included). S is called a computability structure for
T if the following C1~C3 hold.

C1: (Non-emptiness) S is nonempty.

C2: (Re-enumeration) If {z;} € S and «a is a recursive function, then
{l'a(i)}i €S.

C3: (Limit) If {z;} belongs to S, {x;} is a sequence from X, and {z}
V-converges to {z;} effectively as k tends to the infinity, then {z;} € S. (S is
closed with respect to effective V-convergence.)

In fact, C2 and C3 should be stated for multiple sequences.

A sequence belonging to S is called V-computable, and z € X is called
V-computable if {z,z,---} is V-computable.

We will henceforth consider the system of the pair (7,S).



Remark Applications of the effective uniform space to the computability prob-
lems of some E-discontinuous real functions are seen in [12], [13] and [21]. In
the present article, we are interested in the computability property of a function
sequence whose functions have different jump points, and, for that purpose, we
need to work on a sequence of uniformities.

Definition 2.5 (Effective separability:[12]) 1) Suppose a V-computable se-
quence {ey} satisfies the following. For each computable sequence {x,,}, there
is a recursive function y such that

VaVm(eun,m) € Val(om))-

Then {e} is called an effective V -approzimating sequence of the computability
structure S.

2) Let {er} be an effective V-approximating sequence. Suppose furthermore
that it is dense in X, that is, VnVz3k(er € V,(x)). Then the space (T,S) is
said to be effectively V -separable, and {e;} is called an effective V -separating
sequence.

We will now consider U = (T, S, {ex}).

Note No effectivity is assumed for the association of k to n and z in 2) above.

3 Model examples

We will first quote five sequences of E-discontinuous functions from [20] (with
possibly some minor modifications), since they are typical examples which ex-
plain the points of problem of our concern.

v will subsequently represent a positive integer.

Model 1 (Gaufian function) Let g be the GauBlian function, that is, g(z) =the
largest integer ¢ such that ¢ < z. For simplicity, we confine ourselves to the
domain I'™ =[1,00). Let us also consider {g,(z)} defined by

g(x)=g() if z2<v; =v if z>w

The function g can be regarded as the “limit” of the function sequence {g,}.

In order to regard g, as continuous, it is natural to bestow the uniform
topology to I by mutually isolating the intervals I = [i,i + 1),i < v, and
I} = [v,0), and conserving the interval topology {I} N (z — 5%, + 5= )} within
each of these intervals. Such a topology turns out to be a uniform topology
for each v. In each interval I} as above, g, is E-continuous, while g, is not if
p > v. It should be unnatural to consider g, with respect to the intervals {I!'}
when ¢ > v so that g, happens to be E-continuous at such p. The topology
determined by I? is natural for g, in the sense that it is the weakest topology
with respect to which g, becomes continuous.



On the other hand, in order to regard the GauBian function as the limit of
the sequence {g,}, it is necessary to consider all the functions g, as well as g
in one topology. It will be thus sensible to consider a kind of the limit of the
uniformities {UY}, in which all these functions become continuous. The limit
uniformity {U%} turns out to be the one in which all the half-open intervals [¢, i+
1),i =0,1,2,--- are mutually isolated, while each [¢,7+ 1) conserves the interval
topology. {g,} is a sequence of continuous functions in the limit uniformity and
the Gaufian function, the limit of this sequence, is also continuous. (This limit
space is somewhat different from the “amalgamated space” for the Gauflian
function in Section 6 of [12].)

Model 2 (Pulse functions) Consider a sequence of pulse functions {t, } on I'":
o, .
1/),,(5[7)22—” it z=v; =0 if z#w.

1, produces a pulse of size 2% at x = v. The limit of this function sequence
is the constant 0 function, say ¢. 1, becomes continuous in the space which is
obtained from the interval topology on IT by isolating the sole point . In order
to consider the convergence of {1, } to ¢, we should isolate all the integers in I,
while preserving the interval topology in the open intervals between adjacent

integers. (This is the amalgamated uniformity in Section 6 of [12].)

Model 3 (Rademacher functions) Here we consider the bounded half open
interval I = [0,1), and the Rademacher function system {¢,(z)} on I (cf. [24]).
The vth function ¢, in the Rademacher system is continuous in the topology
where the intervals [2%, k,;zl), k < 2 — 1, are mutually isolated. In order to
develop the Walsh analysis, we need to consider these functions in one topology.
The union of the topologies above will serve the purpose.

We have elaborated on Model 3 in Sections 4 and 5 of [20] and hence we
refer the reader to [20].

Model 4 (Variation of tangent function) Consider the function sequence 7, (z)
defined on R as follows. 7,(z) = 0 if z = 2&tl7 for some integer i; 7,(z) =
tan(2”'x) otherwise. For v, if we isolate the points 21;1 m, then 7, becomes
continuous. (We do not consider the limit of the function sequence for this
model.)

Model 5 (Cantor set) Consider the interval Iy = [0,1]. Define first a “v-

decomposition” of Iy, denoted by K;’il’i%___’il,), where i; = 0,1, 2, as follows.

s oo, i1
]

K7, :[2k=13—ka k=135 T30

(21,82, 00
ifig, -, i,_1,0, #1;

v v ik v ik 1
K<i1’i2""7iu> = ( k:13_k’ k:13_k + y)



if iy, -+ i, 1 # 1 and i, = 1;

Kzlil,i27~~~,il,) = Kétihi%...,i")
if there exists a 4 < v — 1 such that 4;,---,i,—1 #1 and 7, = 1.

It is obvious that, for each v, the collection of K&17i27...7iy>’s forms a decom-
position of Iy, and hence, for every x € Iy, there is a unique tuple (i1, ia,---,i,)
such that x € Kzlihiz,“-,iu)' For each v, mutually isolate all the K{il,i%---,iu) to
obtain a sequence of topologies with respect to which the characteristic functions
of these intervals are continuous.

The sequence of these intervals is a process of getting the Cantor set. We

will later deal with the characteristic functions of these decompositions.

Remark 1) Our major interest is the computability of the functions as above.
Namely, we would like to consider the functions in concern as computable in the
sense of computability of continuous functions in some uniform topologies (cf.
Section 4 of [12]). In order to materialize this idea, we will develop the theory
of effective sequence of uniformities and its effective limit according to [20]. (In
[20], our emphasis was mainly on treatment of some special cases.)

2) In order to deal with the limit of a function sequence, we need to consider
the functions in the sequence as well as the limit function in one topology.
However, we consider it natural to assign to each function the weakest topology
with respect to which the function becomes continuous. This is the reason why
we work on a sequence of uniformities and its limit, and not on the limit space
from the outset.

4 Effective sequence of uniformities and its limit

In this section, we develop a general theory of the effective sequence of unifor-
mities and its limit.

Definition 4.1 (Effective sequence of uniformities) 1) Let {V)¥} = {{V,Y}.}.
be a sequence of uniformities on a set X satisfying the following conditions (cf.
Definition 2.2).

For each v, A1& A, holds, that is, N, VY (z) = {z}.

The recursive functions ay,as and asz in As, A4 and As in Definition 2.2
depend here also on v. Thus, for example, effective A4 stands as follows.

Yv,nVz,y € X.x € V(;’z(,,,n) (y) =y eV, (2).

Then {V,Y} will be called an effective sequence of uniformities (on X). (It is
obvious that {V¥'},, is an effective uniformity for each v.)

2) {zuk} is said to sequentially effectively V -converge to {x,;} if there is a
recursive function v satisfying the following.

Y, l,nVk > y(v,l,n).zu € VY (x,).



We will write this property as z,; ~vy (z,k,7y) (cf. Definition 2.3).

3) For each v, S, will denote the computability structure on (X,{V})},)
(cf. Definition 2.4). The sequence {S,} will be called an effective sequence
of computability structures if the recursive functions in the definition of the
computability structure (cf. Definition 2.4) depend also on v. For example,
C3 stands as follows. Suppose {z,ix}r € S, for each v and [, and {z,,} C X.
Suppose {z,i }r sequentially effectively V-converges to {x,;}, that is, z,; ~y
(Tuik,7y) (cf. 2) above). Then {z,;}; € S,. (Any sequence belonging to S, will
be called S,-computable, or v-computable.)

4) C, will denote the set of v-computable elements of X. If C, is identical
(say Cy) for all v, then (X, {V.Y},n, {S,}.) is said to have a stable computability
structure.

5) (X, {V,Y},{S,}) is said to have a common effective V -separating sequence
{e,}if {e4} € S, holds for all v, and {e, } is an effective separating sequence with
respect to S, for each v , where the function g in Definition 2.5 depends also on
v, that is, given a sequence {Z,,,} so that {Z,m}m € Su, €uw,n,m) € Vir (Tum)
holds.

We will write a system with all those structures as

E=(X AV an, 0,03, {S, }, {eq})
and call it the system of a {v}-consistent sequence of uniformities.

Assumption: We will henceforth work on £.

Corollary 1 1) A system £ has the “computability structure intersection prop-
erty,” that is, S, # 0, since {e,} € N S,.

2) & has the “computable elements intersection property,” that is, (| C, # 0,
since each e, € (C,.

Definition 4.2 (Effective limit) Given a system & as above, a uniformity {W;}
on X will be called an effective limit of {V¥} if the following properties are
satisfied.

(i) {Wi} is an effective uniformity on X (cf. Definition 2.2).

(ii) There are recursive functions €1, and A such that

ViVe Wi (x) C VEE;(%) (x);

YoV Wy, () C V) ().

(iii) (X, {W:}) has a computability structure S, satisfying S, =), S,. (A
sequence of S, is called S,- (or w-)computable.)

(iv) Let C, denote the set of w-computable elements of X. Then, C, =
N, Co. (If {V,¥} has the stable computability structure, then C,, = Cy.)

(v) {eq} in & is an w-effective separating sequence (cf. Definition 2.5).

Note In (iii) and (iv) above, S, and C, are nonempty due to Corollary 1.
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Definition 4.3 (Intersection property) We say that a sequence of uniformities
{V.¥} has the sequential intersection property if, for Az in Definition 2.2, further
holds that there are recursive functions 4 and «y satisfying the following:

Yy, va¥n, mVe € X. V'Y(Vl’VZ’n m)( ) C VA (z) N V22 (x).

B(vi,va,n,m)

Definition 4.4 (The effective union of {V}¥}) Given a system &, define {V*}
by V¥ = V:;(gl)), where m; and 72 are recursive inverse functions of a recursive
pairing function (p, g} so that I = (w1 (1), m2(I)). If I = (v,n), then we write V*
as Vi, (= V). {V;*} will be called the union of {V;'}.

Theorem 1 (w-uniformity: a sufficiency condition) Given a system &, and
suppose {V,”} has the sequential intersection property (cf. Definition 4.3). Then
the union of {V;'}, viz. {V*} = {V}; .}, is the effective limit of {V;'}, and hence
in particular is an effective uniformity on X (cf. Definitions 2.2 and 4.2).

Proof We show (i)-(v) in Definition 4.2.
(i) A1&A, is obvious. A, and As hold due to the conditions in 1) of
Definition 4.1. For example, A4 can be shown to hold as below.

Yv,nVx,y € X.x € V<°,’,’a2(,,,n)>(y) =yE V<°;n> (z).

Notice that V, n =V, n)( ) and Vi (z) = VY ().

ua2

As holds due to t e sequentlal intersection property:
W‘J:V(Vl7”27n7m)7ﬁ(”17’/27n7m)>( ) C ‘/<V1 TL)( ) n ‘/((:)/2,m> (m)

(ii) Since V¥(x) = V;;l((ll)) (z) by definition, we can take e; = m; and e = ma.

Also, it holds Vi, .\ (x) = V;Y(), hence we can take A(v,n) = (v, n).

(iii) Define S, = N, S,. Then S, # 0 by 1) of Corollary 1. If {z;} € S,
then {z;} € S, for all v. So, any recursive re-enumeration of {z;} is a member
of S, for all v, hence of S,,.

Suppose {z;;} € S, {z;} C X and there is a recursive function ¢ such that

VIV > 65, 1) € Vi (ay) = VI (),

or
VjVv,nVi > 6(j, (v, n)).xji € V(i oy (25) = Vi ().

Put ¢'(4,v,n) = 6(4, (v,n)). Then, for each v,
Vj,n¥i > 8 (j,v,n).xj; € V.V (z;),
and hence {z;} € S,. This implies {z;} € S,. So, S, is a computability

structure.
(iv) Put C, =, C,.

11



(v) Recall that {e;} € NSu(= Su). If {zn} € S, then {z,,} € S, for all
v, and hence
€u(v,n,m) € Vnu(wm) = V?J (CUm)

where | = (v,n). So, {e,} is an effective w-separating sequence.

Remark 1) In Section 6 below, we will see that the sufficiency condition in
Theorem 1 is quite prevailing.

2) Theorem 1 guarantees that, under the intersection property in Definition
4.3, the effective limit uniformity {V;*} exists for a system &.

3) Some of our examples of the effective sequence of uniformities on the
real line do not have the sequential intersection property. Such a sequence can
nevertheless have the effective limit as we will see.

5 A model example on the domain [0, 1)

In this section, we will discuss Model 3 of Section 3 at some length, as an
exemplary case of an effective sequence of uniformities. This example has been
discussed in detail in [20], but here it is treated as an application of Theorem
1. Other examples will be treated in Section 6.

Put I =[0,1). This is the domain of our discourse in Section 5. We assume
that v is a positive integer, and 0 < k < 2 — 1. The sequence of uniformities in
consideration will be denoted by {UY}. In [20], we have proved some interesting
interrelations between the computability problem with respect to {UY },, for each
v and the computability problem with respect to the effective limit uniformity.

We have also worked on some function sequences defined on I, say {f,},
where the index v represents the “size of the mesh” on I, that is, f, is continuous
in each mesh. Then, v plays the role of an indicator expressing the distance of
two adjacent points of discontinuity of f, (in the Euclidean topology). It then
immediately follows that {UY} is a natural topology (the weakest topology) for
fu-

First we review the definition of the sequence {UY} and some properties
from [20] for the reader’s convenience.

Definition 5.1 (Neighborhoods and uniformity) Define subintervals of I, de-
noted by IY, and the sequence {U}} as follows.

E k+1

1. . )
0 Tov +—) it zely.

I = S
k [ 271,’:[j n

);Upn(z) = I N (x
Corollary 2 (cf. [20]) 1) {U%} is a decreasing sequence with respect to v,
that is, UY T (z) C UY ().

2) {U}} is a decreasing sequence with respect to n, that is, Uy, (x) C
UY(x).

3) z € U(y) if and only if y € UY(x) (symmetry).

4) Ifx e U, (y),y € Uy, 1(2), then x € U/(2) (transitivity).

12



Proposition 5.1 (Effective sequence:[20]) 1) {UZ} forms an effective sequence
of uniformities on I (cf. 1) of Definition 4.1).
2) {U}} satisfies the sequential intersection property (cf. Definition 4.3).

1) and 2) of Proposition 5.1 have been proved in [20]. For 1), we have
ay(v,n,m) = max(n,m); as(v,n) =n; as(v,n) =n+ 1.
For 2), we have
B(vi,ve,n,m) = max(vy,ve); y(v1,v2,n,m) = max(n,m).

Definition 5.2 (v-computability) Let v be an arbitrary (but fixed) positive
integer, and let u denote a finite sequence of indices, which is possibly empty.
wi denote a finite sequence (of natural numbers) p followed by .

1) A (multiple) sequence {a,;} is called a v-sequence if, for each p, there
exists a k = k, < 2” — 1 such that {a,;}; C I}.

2) A multiple sequence of rational numbers {r,;} is called a recursive v-
sequence if it is recursive and is a v-sequence.

3) {aumi} effectively v-converges to {x,m} with respect to ¢ if there is a
recursive function a so that i > a(u, m,p) implies aym; € U} (Tum). We write
this property as

Tum v <aumi7 CM(/J,, map)>

or, for short, 2,m ~, (@umi, ).
4) A sequence of real numbers {z,n,} is called v-computable if there are a
recursive v-sequence {r,m;} and a recursive function « as in 3) such that

Tyum v <7'umi7 C“(N;map» .

5) A real number z is called v-computable if the sequence {z,z,---} is
v-computable.

Proposition 5.2 (v-computability structure) Let S, be the family of v-computable
sequences and let Sg denote the family of E-computable sequences. Let C, be
the set of v-computable elements, and let Cg denote the set of E-computable
elements.

1) {S.,} is an effective sequence of computability structures with respect
to {U¥}, and it holds that S, C S,4+1 C So, where each inclusion represents a
proper subset.

2) C, =Co.

3) A recursive enumeration of all dyadic rationals is an effective separating
sequence for all v, and serves as a common effective U-separating sequence.

By virtue of Proposition 5.2, {UY} , {S.} and {e,} satisfy the conditions on
&, and hence we can now apply Theorem 1 to {U}} to obtain the following.

Proposition 5.3 (Effective limit {U;"}) {U}} has the effective limit with re-
spect to {S, }.
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Let us denote the limit with {U}"}, or {UE‘; n>}. By the proof of Theorem 1,

Uty =UliSu = So-

Remark In [20], we have presented a direct characterization of w-computable
sequences, while here we have obtained the w-computability structure as an
application of Theorem 1. It is a straightforward practise to show that these
two notions coincide.

6 Effectivity of models

Returning to other models in Section 3, we assign an effective sequence of uni-
formities and see that it has the effective limit. At the same time, an effective
separating sequence will be assigned.

Model 1 Define a uniformity {U}"} on It = [1,00) as follows.

1
U}L,u(x):[z’,z’+1)ﬂ(m—2—n,x+2—n) if i<r<i+l<w
1 1.
:[V,oo)ﬂ(:r—Q—n,a:+2—n) it z>w.

As for the sequential intersection property (Definition 4.3), one can take the
maximum of the two indices for both functions 8 and ~.

A sequence of numbers from I, say {x,,}, will be called v-computable if it
is an E-computable sequence which is effectively approximated by a recursive
double sequence of rational numbers, say {r.,;}, such that, for each m, {r..;}; C
[t,0/) if x € [¢,4"), where t =i and '/ =i+ 1 for some i < v or ¢t =v and ¢/ = cc.

Let 81, denote the family of v-computable sequences. The set of computable
elements C;, is exactly the E-computable real numbers in IT, say Cy.

An effective enumeration of all rational numbers in I serves as a common
effective separating sequence. By Theorem 1, the effective limit exists, that is,

UM (@) = UL (@)

{U*} is effectively equivalent to the sequence {le’“’} below.

Lw, n e 1 1, . .
W; (m)—[z,z+1)ﬂ(w—§,x+§) if zeli,i+1).

g and {g,} are all w-continuous.

Model 2 Define {U2”(z)} as follows.

U (z) = {z}, if z=uv;
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1
+—=)n[Lv), if 1<z<uy;

2,v — =
UR (@) = (o = 50+ o

1 1
Up¥(e) = (& = 5.0 + ) Nvoo), i v <a

It is obvious that {U2"(z)} forms an effective sequence of uniformities.
For this model, the sequential intersection property does mot hold. However,
by modifying the sequence of uniformities, one can define the effective union.
Namely, define another sequence of uniformities by

W2t (z) = (U (x), if @ €[0,v];
I<v

W2¥(z) = U>"(x), if =€ (v,00).

{W2"} is an effective sequence of uniformities. v-computable sequences are
defined similarly to those in Model 1. The set of v-computable numbers is the
set of E-computable numbers. A recursive enumeration of rational numbers in
It forms a common effective separating sequence. {W2"} therefore satisfies
the conditions on €. So, Theorem 1 applies and we obtain the limit uniformity
by qu“:w =W2v. {¢,} is w-continuous.

The space with {Wf’“’} is identical with the “amalgamated space” in Section
6 of [12]. In this space, all the nonnegative integers are isolated and the intervals
between adjacent integers conserve the interval topology.

Although, for the limit alone, dealing with the sequence {W2"} is sufficient,
the natural topology for ¥, is {UZ"},.

Model 4 Put 0 4+ 1
Ubv(z) = 22,
21/
if o = Zitln,

1 1
4,v _ qv = il
U () = Y0 e = oot o),

if z € JY, where Jy = (Ztln, 23 7).
The sequential intersection property holds for {U2*}. As for an effective
separating sequence as well as computability structure, we need a device as in

[21]. The point is to assign a symbolic name to each element 217 and include

21/
it in the effective separating sequence. The v-computable sequences are defined
as in the case of Model 1 except that all the points 257 are isolated. The
conditions in Definition 4.1 are then satisfied. By Theorem 1, we can define the

effective limit.
Model 5 For each v, define

1 1
5,v _ v
Un (.’17) = K(ihiz,"',iu) n (1} — 2—n,.7: + 2_n)
if x € K, . It is easy to show that {U2"} is an effective sequence of

(11,82, 500 )
uniformities. The notions of v-computability of sequences from Iy (with respect

to {U3"}) can be defined similarly to the case of Model 1.
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Note The definition of a computable sequence above can be extended to the
definition of a multiple sequence. Precise definitions of computability structures
are seen in [12], [13], [21] and [20].

7 Computability of a function sequence in the
limit

In the effective limit, one can discuss the limit of a computable function se-
quence.

The definition of the “computable function” on a uniform space below is a
streamlined version of the same notion in [12].

Definition 7.1 (Computable function) 1) A real-valued function f from an
effective uniform space with a computability structure S and an effective sep-
arating sequence, say (X, {V,h}, S, {eq}), is called V-computable if the following
hold.

(i) f preservessequential V-computability, that is, for any {x;} € S, {f(x;)}
is an E-computable sequence of reals.

(ii) f is effectively continuous in the following sense.

There is a recursive function vo(g,p) for which

1
/NS Vwo(q,P)(eq) = [f(y) — fleg)| < o (1)
and -
U Vaetam(ea) = X (2)
q=1
for each p.

2) A sequence of functions, say {f,}, is called V-computable if it preserves
sequential V-computability in the sense of (i) above, viz., for any computable
sequence {Z,, }, {fo(zm)} is an E-computable double sequence of real numbers,
and there is a recursive function 7, (v, ¢, p) (depending also on v) for which (ii)
above holds (for every v). In particular, (1) should be modified as follows.

1
ye V'Yo('/yq,p)(eq) = 1fu(y) = fuleg)] < PTh

Consider next a system & (Section 4).

Definition 7.2 ({v}-computable sequence of functions) Let {f,} be a sequence
of real-valued functions on X.

{f,} is called a {v}-computable sequence of functions if the following three
conditions hold.

(i) For each v, f, is V”-computable, that is, f, is computable in the sense
of 1) of Definition 7.1 with resepect to {V," },..
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(i) If {zm} € NSy, then {f,(zm)} is an E-computable double sequence of
real numbers.
(iii) There is a recursive function 7o for which hold that

VO(qu,P)(eq) = 1fu(y) = fuleg)] < 2—11)

and

U v,4,p) =X

for each v.

Theorem 2 (V“-computable function sequence) Let {V”} be an effective se-
quence of uniformities in a system & satisfying the intersection property of
Definition 4.3, and let {V;*} be its effective limit as defined in Theorem 1. Let
{fv} be a {v}-computable sequence of functions (Definition 7.2). Then {f,} is
computable with respect to {V*} (V“-computable, or w-computable).

Proof Notice first that {V*} is an effective uniformity as defined in Theorem
1, where V¥ . = V. In order to prove the two properties in 2) of Definition
7.1, we will c1te the item numbers in Definition 7.2.

w-sequential computability is guaranteed by (ii).

w-effective continuity: It suffices to define a recursive function n such that

yGV(qu)(eq):>|f,,( ) fu(eq)|<§
and

U (V,q,p) =X.

With 7o in (iii), define

n(v,q,p) = (v,7%(v,q,p)) -

Then the two conditions are satisfied.

The effective convergence of a function sequence below is an improved version
of the one in Definition 4.3 of [12], and is a generalization of Definition 4.1 in

8.

Definition 7.3 (Effective convergence of a function sequence) Let {f,} be a
V“-computable sequence of functions. It is said to effectively V¥ —converge to
a function f if there are recursive functions (i, k) and (i, k) satisfying the
following.
(a) zeVy pq)(eq) and v > v(p, q) imply |f,(z) — f(z)| < 5.
(b) Uq 1 Vst ( q) = X for each p.
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In fact, this definition is valid for any effective uniformity with a computabil-
ity structure and an effective separating sequence.

Applications of Theorem 2 and Definition 7.3 are seen in the next section.

There is a sufficient condition for computability of the limit function in a
general setting (cf. Corollary 3 in [12]).

Effective convergence of a function in the Fine metric space is discussed in
[8] and in its revized version.

8 Functions in the models

We will speculate on the function sequences and their convergences in the models
of Section 3.

Model 1 It is obvious that g is w-computable. Recall that g,(x) = g(z) if
1<z <vand =vif z>v. From this definition, {g,} is {v}-computable,
and hence by Theorem 2 it is UM“-computable. In fact {g,} is “uniformly”
computable.

{gv} effectively w-converges to g. Since {e,} is a recursive sequence of ratio-
nal numbers, one can effectively find a 1 = y(g) for any ¢ so that pp < e, < p+1.
Then, in the interval [, u + 1), g,.(z) = g(x) holds. Since

. 1 1

Ull’ (eq) - [N:M+ 1) n [eq - 57611 + 5))

putting 3(p, q) = (70(q), 1) and v(p,q) = 10(q) in Definition 7.3, we obtain (a).
(b) easily follows.

Model 2 {¢,} is {v}-computable since U2 (e,) is either the singleton {e,} or
an open interval on which 1, is constant 0. As in Model 1, there is a recursive
function vy such that v(¢) = p satisfies u < e, < p+ 1. The 8 and v defined
as follows will do for effective convergence of {1, } to the constant 0 function ¢.

B(p,q) = (70(q),1); v(p,q) = max(yo(q) + 1,p+ 1).

Model 3 Yasugi and Washihara [24] have shown that the Rademacher function
system is endowed with some kind of computational attributes. It has also been
shown in [20] that it is a “uniform” w-computable sequence.

Here we will cite an example of Brattka which is w-computable and is ef-
fectively approximated by a “uniform” {v}-computable sequence of functions.
(A function or function sequence is “uniformly” computable if in the definition
of computability “effective continuity” can be replaced by “effectively uniform
continuity.”)

Example (Brattka’s example: [1]): wu(z) will denote the binary representation
of x with infinitely many 0’s.
Let f: I — R be defined as follows.
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i—1
>t mod 2)27"i*2j:0(n,-+z,-)
if pu(z) = 001t 1ti0m -

i—1
> oimo (€ mod 2)2_"i‘2j=0(n]-+z]-)
it () = 070 100m 0% - 16m

where ng > 0,n; >0 for i > 0 and I; > 0 for all i > 0.

Brattka showed that the function f is “Fine-computable” but is “not locally
uniformly Fine-computable.” f is in fact not locally uniformly Fine-continuous.
(See [1] for details.) However, f can be effectively approximated by the function
sequence {¢,} defined below (cf. [8] for details), which is “uniformly” {v}-
computable. (Each ¢, is “uniformly” continuous on I}, and jumps at 2%, k<
2¥ — 1. So, ¢, is continuous with respect to the uniformity {U%}.) {p,} is
a “uniformly” w-computable sequence of functions and f is an w-computable
function.

flz) =

@ = {

14(=1)¢ | pv=i@(@=14+517)) .
R ) - A <a<i- L

1=12,...,v—1
eu(z) = (1+(71)" )

- if 1- gl <z<l-g
1+(_1)u+1
2

if 1-L<z<1

Model4 Ineach (25 m, e 1), 7, () is effectively continuous and sequentially
computable, and at z = 25w, y € V¥ () if and only if y = 2. So, {7, } is {v}-

computable.

Model 5 Define a function sequence {7, } as follows. Suppose z € K7,

(i1, 00 )
’YV(‘T):O if /Llaalu—l#laluzly

Y(x) =1 if iy, y0, # 1
Yo(x) =vu(2)(=0) if FIp<v—1liy,---,ip1 #1,i, =1

It can be easily shown that {7, } is {v}-computable, and hence is w-computable.
In fact it is “uniformly” w-computable.

The pointwise limit, that is, lim, v, (z) for each z, exists. Let us denote this
limit by ¢(x). It is obvious that ¢(x) is the characteristic function of the Cantor
ternary set. Since {v,(x)} pointwise approximates c(z), we can identify non-
effectively the Cantor ternary set with the function sequence {7,}. Since the
limit function ¢(x) is not continuous with respect to the limit, the convergence
can be only pointwise.

Remark In [20], we have shown that the uniformity {U}} of Model 3 and
its diagonal {U} are effectively topologically equivalent, and that the latter is
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(hence both are) effectively topologically equivalent with the Fine-metric topol-
ogy. We have also shown in [22] that the metric induced from an effective
uniformity by a general construction preserves effective convergence, while left
it open if it preserves sequential computability. The metric obtained from the
uniformity {U;'} by the general construction method indeed preserves sequen-
tial computability. In [5], [6] and [8], Fine-computability and Fine-convergence
are extensively studied.
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