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Abstract

In this article, we discuss the Fine computability and the effective Fine con-
vergence for functions on [0, 1) with respect to the Fine metric as the beginning
of the effective Walsh-Fourier analysis. First we treat classically the Fine con-
tinuity and the Fine convergence. Next, we prove that Fine computability does
not depend on the choice of an effective separating set. Subsequently, we pro-
pose a notion of effective Fine convergence for a sequence of functions. We prove
that the limit of an effectively Fine continuous sequence of functions and the
limit of a Fine computable sequence of functions under this effective Fine con-
vergence is effectively Fine continuous and Fine computable respectively. We
also investigate some properties of Fine computable functions through examples.
Especially, we extend the result of Brattka, which asserts the existence of a Fine
computable but not locally uniformly Fine continuous function. Finally, we treat
other examples of Fine computable functions.

Key Words: Fine metric, dyadic interval, Fine continuous function, Fine com-

putable function, effective Fine convergence, continuous convergence

1 Introduction

Piecewise constant functions on the real line have become interesting and important

objects in applications of mathematics to information technology. For example, the

Walsh-Fourier series as well as the Haar wavelet plays an important role in digital

processing. These applications are based on approximation of given data by a finite

linear combination of Walsh functions or of Haar wavelets up to some order.
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Piecewise constant functions have inevitably discontinuity of the first kind with

respect to the Euclidean topology. For such functions, the values at discontinuous

points are often replaced by the corresponding right limits. LetD be the class consisting

of all functions on [0, 1] which are right-continuous and have left limits. It is well known

that D is not separable with respect to the supremum norm, that D is separable with

respect to the Skorohod metric and that D is complete and separable with respect to a

certain metric which is equivalent to the Skorohod metric ([1, 14]). Unfortunately, the

definitions of the above two metrices are complicated, and it does not seem feasible to

treat them effectively.

On the other hand, in some applications, it is sufficient to deal with those functions

which have discontinuities only at dyadic rationals. This is related to the fact that we

can treat only dyadic rationals in the course of calculations using digital computers.

Fine introduced the Fine metric on the unit interval or on the nonnegative real

line and initiated the theory of Walsh-Fourier analysis by proving some fundamental

theorems ([6, 7, 8, 17]). He defined the Fine metric between two real numbers as the

weighted sum of differences of corresponding bits in their binary representations with

infinitely many 0’s. Many topological properties concerning the Fine metric are derived

from the property that a dyadic interval, that is, an interval [a, b) with dyadic rationals

a and b, is open and closed (clopen) with respect to the Fine metric. The topology

generated by the set of all dyadic intervals is equivalent to that induced by the Fine

metric. The point 1 is an isolated point with this topology in the unit interval [0, 1].

Therefore, we treat [0, 1) with the above topology and call this space the Fine space.

In this article, we first consider various notions of continuity and the corresponding

notions of convergence for functions on the Fine space. We use the term “function” as

a mapping from some space to the real line R with the ordinary Euclidean topology.

Subsequently, we treat the corresponding notions of computability. In order to specify

the topological properties with respect to the Fine metric, we prefix “Fine” in front of

the relevant terms. For example, the convergence of a sequence in [0, 1) with respect

to the Fine metric is called Fine convergence. Topological notions with no prefix or

with the prefix “E-” will mean the notions with respect to the Euclidean metric.

In classical analysis, we usually define some suitable notion of convergence for a

function sequence in a space. It is a fundamental problem if the space is closed under

the convergence. It is well known that, if a sequence of uniformly continuous functions

converges uniformly to f , then f is also uniformly continuous. On the bounded closed

interval, it also holds a function is uniformly continuous if and only if it can be ap-

proximated uniformly by a sequence of polynomials. In the measure theory, a function

is measurable if and only if it can be approximated in measure by a sequence of step

functions.

Since the Fine space is not complete, uniform Fine continuity and locally uniform

Fine continuity are different. Let CF be the set of all Fine continuous functions. It

is well known that a function belongs to CF if and only if it is E-continuous at every
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dyadic irrational and right E-continuous at every dyadic rational ([6, 17]). Moreover,

a function in CF is uniformly Fine continuous if and only if it has a left limit at

every dyadic rational. So, a Fine continuous function may diverge. For example,

f(x) = 1
1−2x

χ[0, 1
2
)(x) is locally uniformly Fine continuous and diverges at 1

2
, where

χA denotes the indicator (characteristic) function of the set A. Brattka proved the

existence of a Fine computable function, hence Fine continuous, which is not locally

uniformly Fine continuous.

In the theory of Walsh-Fourier series, it is well known that Walsh functions are

uniformly Fine continuous and form a complete orthogonal system in L2([0, 1)). In

the applications, we need to calculate Walsh-Fourier coefficients. Many attempts have

been made to obtain an algorithm to calculate them fast. Computability theory of

Walsh-Fourier series has thus become a significant subject. For this purpose, we must

first formulate the notion of computability of a function on the Fine space and that of

effective convergence for a sequence of functions.

As for the effective theory of the Walsh-Fourier analysis, we have proved in [11]

that the Walsh-Fourier coefficients of a uniformly Fine computable function form an

E-computable sequence of reals, and have extended this result to the case of locally

uniformly Fine computable functions in [10]. We have also proved in [12] the effective

Riemann Lebesgue theorem, which asserts that the Walsh-Fourier coefficients of a

locally uniformly Fine computable function E-converges effectively to zero.

In order to extend the above theorems to a more general class of functions, we

investigate Fine computable functions and the effective Fine convergence in this article.

For this extension, we first need an approximation theorem which asserts that, for a

Fine computable function f , we can obtain an approximating computable sequence of

dyadic step functions which Fine converges effectively to f . To complete the extension

theory, we need furthermore effectivization of integration theory. We will treat it in a

sequel.

In Section 2, we first review briefly the Fine metric and Fine convergence. We

define weakly locally uniform Fine convergence (Definition 2.3) and the Fine conver-

gence (Definition 2.4) and prove their equivalence (Proposition 2.2). Either is stronger

than the pointwise convergence and weaker than the locally uniform Fine convergence.

They preserve Fine continuity (Proposition 2.4). Their relation to the continuous con-

vergence is also discussed.

Section 3 is devoted to preliminaries to computabilities on the Fine space.

In Section 4, we define Fine computable sequences of functions (Definition 4.1). In

this definition, effective Fine continuity depends on the choice of an effective separating

set. We prove that the notion of effective Fine continuity of functions does not depend

on the choice of an effective separating set (Theorem 3).

In Section 5, we introduce the effective Fine convergence of functions (Definition

5.1). We prove that the limit of an effectively Fine continuous sequence of functions

under this effective Fine convergence is also effectively Fine continuous (Theorem 7)
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and that the effective Fine limit of a Fine computable sequence of functions is Fine

computable (Theorem 8). We also define the notion of a computable sequence of dyadic

step functions and prove that a function f is Fine computable if and only if there exists

a computable sequence of dyadic step functions which Fine converges effectively to f

(Theorem 9).

In Section 6, we treat the example of Brattka, which is Fine computable but not

locally uniformly Fine continuous. We prove that his example satisfies a recursive

functional equation, which is related to self-similarity. We modify this equation and

obtain other examples (Theorems 12 and 13).

2 Fine metric and Fine convergence

The Fine metric dF on [0, 1) is defined as follows: Put Ω = {0, 1}N+
, where N+ =

N\{0} = {1, 2, . . .}. Let Ω0 be the set of all elements of Ω with infinitely many

zeros. We first define µ(x) to be the binary representation of x ∈ [0, 1), under the

restriction that it has infinitely many zeros. For x, y ∈ [0, 1), let µ(x) = σ1σ2 · · · and

µ(y) = τ1τ2 · · ·. Then, the Fine metric dF (x, y) is defined by

dF (x, y) =
∞∑

k=1

|σk − τk|2−k. (1)

The following properties of the Fine metric is well known.

Lemma 2.1 (i) dF (x, y) < 2−n implies that the first n bits of µ(x) and µ(y) coincide.

(ii) If the first n bits of µ(x) and µ(y) coincide, then dF (x, y) < 2−(n−1).

(iii) For a dyadic rational r, dF (r, y) < 2−n is equivalent to the coincidence of the

first n bits of µ(r) and µ(y).

The Fine space is totally bounded. However, it is not complete, since, for any

dyadic rational r, the sequence {r− 2−n} is a Fine Cauchy sequence but does not Fine

converge.

A left-closed right-open interval with dyadic rational end points is called a dyadic

interval. It is easy to see that a dyadic interval is open and closed with respect to the

Fine metric. This property corresponds to prohibition of left convergence to dyadic

rationals and makes some E-discontinuous functions Fine continuous. It also induces

the existence of a finite open disjoint covering of [0, 1), where the maximum of the

diameters of the open sets in the covering is arbitrarily small.

We use the following notations for special dyadic intervals.

I(n, k) = [k 2−n, (k + 1)2−n), 0 6 k 6 2n − 1,

J(x, n) = such I(n, k) that includes x.
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Since the intervals {I(n, k)}k are disjoint and ∪2n−1
k=0 I(n, k) = [0, 1), J(x, n) is

uniquely determined for each n and x.

We call I(n, k) a fundamental dyadic interval (of level n) and J(x, n) a dyadic

neighborhood of x (of level n). It is obvious that I(n, k) = {x | dF (x, k 2−n) < 2−n}
holds. We state a simple property for later use.

Lemma 2.2 The following three are equivalent for any x, y ∈ [0, 1) and any positive

integer n.

(i) y ∈ J(x, n).

(ii) x ∈ J(y, n).

(iii) J(x, n) = J(y, n).

It is obvious that the sequence {J(x, n)}n forms a fundamental system of neighbor-

hoods of x and the set of all fundamental dyadic intervals becomes an open base for the

topology introduced by the Fine metric. If we define Vn(x) = J(x, n), then it is easy

to show that {Vn} satisfies the axioms of an effective uniform topology ([18] Definition

3.1). It holds that J(x, n+1) ⊂ {y | dF (x, y) < 2−n}. So the topology induced by {Vn}
is equivalent to that induced by the Fine metric.

In the rest of this section, we discuss classical notions of continuity and convergence

with respect to the Fine metric.

We remark that most of the arguments below can be carried over to more general

topological spaces. Although, we need separability and a countable fundamental system

of neighborhoods for Definition 2.2 below. We can define the notions of continuity,

locally uniform continuity and uniform continuity for functions on topological spaces

in general.

The continuity on the Fine space can be formulated as follows.

Definition 2.1 (t-Fine continuity) A function f is said to be t-Fine continuous if

for each k and x there exists an integer N(k, x) such that

y ∈ J(x,N(k, x)) implies |f(y)− f(x)| < 2−k.

For a classical theory on the Fine space, the above definition is sufficient. For the

sake of effectivization, we define the following Fine continuity using an enumeration of

all dyadic rationals {ei}. We remark that, we can select a sequence of dyadic rationals

which Fine converges to x for each x ∈ [0, 1), and that we can select an ei such that

x ∈ J(ei, n) or ei ∈ J(x, n) for each x and n.

Definition 2.2 (Fine continuity) A function f is said to be Fine continuous if for

each k and i there exists an integer N(k, i) such that

(a) x ∈ J(ei, N(k, i)) implies |f(x)− f(ei)| < 2−k.

(b)
⋃

i J(ei, N(k, i)) = [0, 1).

Proposition 2.1 The t-Fine continuity and the Fine continuity are equivalent.
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Proof. Suppose first that f is Fine continuous with respect to N2(k, i). Then, by

(b), for each k and x, there exists an i such that x ∈ J(ei, N2(k + 1, i)). Define, for

such an i, N1(k, x) = N2(k + 1, i). Recall that J(ei, N2(k + 1, i)) = J(x,N2(k + 1, i))

holds. If

y ∈ J(x,N1(k, x)) = J(x,N2(k + 1, i)),

then y ∈ J(ei, N2(k + 1, i)). Since x ∈ J(ei, N2(k + 1, i)), by (a) for x and y, it follows

|f(y)− f(x)| 6 |f(y)− f(ei)|+ |f(x)− f(ei)| < 2−(k+1) + 2−(k+1) = 2−k.

So, f is t-Fine continuous with respect to N1(k, x).

Conversely, assume that f is t-Fine continuous with respect to N1(k, x). Define

N2(k, i) = min{N1(k + 1, x) | ei ∈ J(x,N1(k + 1, x)), x ∈ [0, 1)}.

Notice that the minimum is attained by some z. For such a z, N2(k, i) = N1(k + 1, z).

Now suppose x ∈ J(ei, N2(k, i)) = J(ei, N1(k +1, z)). Notice that J(ei, N1(k +1, z)) =

J(z, N1(k + 1, z)). Then x ∈ J(z, N1(k + 1, z)) and ei ∈ J(z, N1(k + 1, z)). So, using

the Fine continuity twice, we have,

|f(x)− f(ei)| 6 |f(x)− f(z)|+ |f(z)− f(ei)| < 2−(k+1) + 2−(k+1) = 2−k.

This proves (a)

Notice next that, for each k and x, there is an ei such that ei ∈ J1(x,N1(k + 1, x)).

Take a z as above. Then, since N1(k + 1, z) 6 N1(k + 1, x),

x ∈ J(ei, N1(k + 1, x)) ⊂ J(ei, N1(k + 1, z))

and

x ∈ J(x, N1(k + 1, x)) ⊂ J(z, N1(k + 1, z)) = J(ei, N2(k, i)).

Hence, we obtain x ∈ J(ei, N2(k, i)). This proves (b).

Remark 2.1 We can also define the Fine continuity with respect to any separating

set (a countable dense subset) {si}, by replacing {ei} by {si}. The above proof is valid

also for this modification. From this fact, we can deduce that the Fine continuity does

not depend on the choice of a separating set.

The uniform convergence and the locally uniform convergence are fundamental

concepts of the calculus. It is well known that the limit of a sequence of uniformly

continuous functions under the uniform convergence is uniformly continuous and that

the limit of a sequence of locally uniformly continuous functions under the locally

uniform convergence is locally uniformly continuous.

We give a simple example of the Fine continuous function. A dyadic step function

is defined to be a finite linear combination of indicator functions of dyadic intervals.
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By definition, a function f is a dyadic step function if and only if there exists a positive

integer n such that f is constant on each fundamental dyadic interval I(n, j), 0 6 j <

2n. Therefore, a dyadic step function is uniformly Fine continuous.

It is easy to prove that a function f is uniformly Fine continuous if and only if there

exists a sequence of dyadic step functions which converges uniformly to f and that f is

locally uniformly Fine continuous if and only if there exists a sequence of dyadic step

functions which Fine converges locally uniformly to f . An approximating sequence of

f by dyadic step functions is given by

ϕn(x) =
2n−1∑
j=0

f(j2−n)χI(n,j)(x). (2)

The example of Brattka, which we treat in Section 6, is Fine continuous but not

locally uniformly Fine continuous. Therefore, we need a weaker notion of convergence

of functions in order to approximate a Fine continuous function by a sequence of

dyadic step functions. By weakening the locally uniform Fine convergence, we obtain

the following two notions of convergence.

Definition 2.3 (Weakly locally uniform Fine convergence) A sequence of functions

{fn} is said to Fine converge weakly locally uniformly to f if, for each k and x, there

exist integers N(k, x) and M(k, x) such that

y ∈ J(x,N(k, x)) and n > M(k, x) imply |fn(y)− f(y)| < 2−k.

Let us remark that we obtain the locally uniform Fine convergence from Definition

2.3 if N(k, x) does not depend on k. We also define the following convergence, for the

sake of effectivization, similarly to Definition 2.2.

Definition 2.4 (Fine convergence) A sequence of functions {fn} is said to Fine

converge to f if, for each k and i, there exist integers N(k, i) and M(k, i) such that

(a) x ∈ J(ei, N(k, i)) and n > M(k, i) imply |fn(x)− f(x)| < 2−k,

(b)
⋃∞

i=1 J(ei, N(k, i)) = [0, 1) for each k.

Similarly to Proposition 2.1, we can prove the following proposition.

Proposition 2.2 The weakly locally uniform Fine convergence and the Fine conver-

gence are equivalent.

For a sequence of Fine continuous functions, we obtain the following proposition.

Proposition 2.3 If a sequence of t-Fine continuous functions Fine converges weakly

locally uniformly to f , then f is also t-Fine continuous.
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Proof. Let {fn} be a sequence of Fine continuous functions with respect to

N1(n, k, x) and suppose that it converges weakly locally uniformly to f with respect to

N2(k, x) and M(k, x). Define N(k, x) = max{N2(k + 2, x), N1(M(k + 2, x), k + 2, x))}.
Then y ∈ J(x,N(k, x)) implies

|f(y)− f(x)|
6 |f(y)− fM(k+2,x)(y)|+ |fM(k+2,x)(y)− fM(k+2,x)(x)|+ |fM(k+2,x)(x)− f(x)|
< 32−(k+2) < 2−k.

From Proposition 2.1, Proposition 2.2 and Proposition 2.3, we obtain the following

proposition.

Proposition 2.4 If a sequence of Fine continuous functions Fine converges to f , then

f is also Fine continuous.

We also obtain the following proposition.

Proposition 2.5 A function f is Fine continuous if and only if there exists a sequence

of dyadic step functions which Fine converges to f or, equivalently, weakly locally uni-

formly Fine converges to f .

The weakly locally uniform convergence reminds us of the continuous convergence.

According to Binz ([2]), the continuous convergence is equivalent to the compact uni-

form convergence in the case of locally compact topological spaces. In [4], it is pointed

out that metrizable c=lu spaces are locally compact, where c means continuous con-

vergence and lu means locally uniform convergence. Accordingly, the continuous con-

vergence and the locally uniform convergence do not coincide on the Fine space.

Schröder ([16]) investigated the notion of continuous convergence of a function

sequence in relation to the admissible representation of the space of all continuous

functions and to the sequentialization of the compact uniform topology. In general,

continuous convergence is defined to be the coarsest convergence structure on the space

of continuous functions which makes the evaluation map (f, x) → f(x) continuous. We

discuss briefly continuous convergence following the definition in [16].

Definition 2.5 (Continuous Fine Convergence) {fn} is said to Fine converge con-

tinuously to f if {fn(xn)} E-converges to f(x) for every sequence {xn} which Fine

converges to x.

As stated in Introduction, E-convergence means the convergence with respect to

the Euclidean topology.

Remark 2.2 The continuous Fine convergence is equivalent to the following.

For each k and x there exist integers N(k, x) and M(k, x) which satisfy that y ∈
J(x,N(k, x)) and n > M(k, x) imply |fn(y)− f(x)| < 2−k.
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The proposition below follows.

Proposition 2.6 If a sequence of Fine continuous functions {fn} Fine converges

continuously to f , then f is Fine continuous.

Proof. Let us assume that a sequence {xm} Fine converges to x. For each m,

{fn(xm)}n E-converges to f(xm) by virtue of continuous convergence. So, we can choose

a strictly increasing sequence of positive integers {nm} such that |fnm(xm)− f(xm)| <
2−m. If we define yn = xm if n = nm for some m and = x otherwise, then {yn}
Fine converges to x. From the continuous convergence, {fn(yn)} E-converges to f(x).

Hence, the subsequence {fnm(xm)} E-converges to f(x). From the above inequality,

{f(xm)} also E-converges to f(x).

It seems to be difficult to discuss the relation between the continuous Fine con-

vergence and the weakly locally uniform Fine convergence in a general setting. Let

us assume that a sequence of Fine continuous functions converges under one of them.

Then, from the last two propositions, the limit function is Fine continuous. So, we can

obtain the other convergence by changing N(k, x) in a suitable manner, using the Fine

continuity of the limit function.

Proposition 2.7 For a sequence of Fine continuous functions, the weakly locally

uniform Fine convergence and the continuous Fine convergence are equivalent.

3 Preliminaries on computability

A sequence of rationals {rn} is called recursive if there exist recursive functions α(n),

β(n) and γ(n) which satisfy rn = (−1)γ(n) β(n)
α(n)

. We will subsequently treat the com-

putability of sequences from the Fine space and the computability of functions on the

Fine space. So, we assume that a number x or a sequence {xn} is in [0, 1) unless

otherwise stated.

A double sequence {xn,m} is said to Fine converge effectively to a sequence {xn} if

there exists a recursive function α(n, k) such that xn,m ∈ J(xn, k) for all n, k and all

m > α(n, k).

A sequence {xn} is said to be Fine computable if there exists a recursive double se-

quence of rationals {rn,m}, which Fine converges effectively to {xn}. For this definition,

it is sufficient to take a recursive sequence of dyadic rationals instead of a recursive

sequence of rationals in general. A single element x is called Fine computable if the

sequence {x, x, x, . . .} is Fine computable. The definition of Fine computability can be

extended to multiple sequences in an obvious manner.

A Fine computable sequence which is dense in [0, 1) is called an effective separating

set.

If we use the Euclidean metric instead of the Fine metric in the above, then we

obtain the usual notion of computability on the real line. We call this computability

9



E-computability. Notice that a single real number is E-computable if and only if it is

Fine computable, and that a Fine computable sequence of real numbers is also an E-

computable sequence ([3, 11, 23]). But the converse of the latter does not hold. It also

holds that a recursive sequence of rationals is Fine computable, while an E-computable

sequence of rationals is not necessarily Fine computable ([3, 11]).

In the subsequent sections, we treat computability and effective convergence of real

valued functions on the Fine space. In the scheme of Pour-El and Richards ([15])

for computable analysis, computability of a real function is formulated in terms of

two properties: (i) Sequential computability and (ii) Effective continuity. (i) claims

that computable sequences are mapped to computable sequences by the function, and

(ii) claims that the function has a recursive modulus of continuity. They used the

effective uniform continuity for functions on bounded closed intervals and the effectively

compact uniform continuity for functions on the real line. In the representation based

approach developed by Weihrauch ([19]), continuity is also a necessary condition for

the computability of functions.

There have been several approaches to weaker notions of computable functions in

order to make some simple E-discontinuous functions computable. We quote only some

recent works, which are closely related to this article: [3, 11, 12, 18, 23, 20, 24]. In

the last two, the computability on the range is weakened by replacing the recursive

modulus of convergence with the limitting recursive one in the definition of computable

sequences of reals. Another method is that the topology on the domain of definition is

replaced by the Fine metric, which is stronger than the Euclidean metric: [3, 11, 12].

The latter approach is generalized to the computability with respect to an effective

uniformity in [18, 23]. Various examples of effective uniformities, which make other

types of discontinuous functions computable, are listed in [23].

The uniform Fine computability of a function is introduced in [11]. The locally

uniform Fine computability is treated in [12] together with the effective locally uni-

form Fine convergence. A similar but slightly different notion of computability is also

introduced in [18] for functions on a space with an effective uniform topology.

In this section, we review the above two definitions of computability for functions

on the Fine space, together with the corresponding effective convergence. Another will

be introduced in the next section. For this purpose, we take a recursive enumeration of

all dyadic rationals in [0, 1), denoted by {ei}, as an effective separating set and use it

through this article. An effective separating set is defined to be a computable sequence

which is a dense subset.

Roughly speaking, we define the effective Fine continuity and the effective Fine

convergence by requiring that N(k, i) and M(k, i) in Definition 2.2 and Definition 2.4

are recursive functions.

Definition 3.1 (Uniformly Fine computable sequence of functions [11]) A sequence

of functions {fn} is said to be uniformly Fine computable if (i) and (ii) below hold.
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(i) (Sequential Fine computability) The double sequence {fn(xm)} is E-computable

for any Fine computable sequence {xm}.
(ii) (Effectively uniform Fine continuity) There exists a recursive function α(n, k)

such that, for all n, k and all x, y ∈ [0, 1), y ∈ J(x, α(n, k)) implies |fn(x) − fn(y)| <

2−k.

The uniform Fine computability of a single function f is defined by that of the

sequence {f, f, . . .}.
Notice that the computability of the sequence {fn(xm)} in (i) is E-computability.

Definition 3.2 (Effectively uniform convergence of functions [11]). A sequence of

functions {fn} is said to converge effectively uniformly to a function f if there exists

a recursive function α(k) such that, for all n and k,

n > α(k) implies |fn(x)− f(x)| < 2−k for all x.

Closedness of the space of uniformly Fine computable functions under the effec-

tively uniform convergence is claimed in ([12]). The proof is similar to that of the

corresponding theorem in [15].

Theorem 1 If a uniformly Fine computable sequence of functions {fn} converges

effectively uniformly to a function f , then f is also uniformly Fine computable.

Definition 3.3 (Locally uniformly Fine computable sequence of functions, [10]) A se-

quence of functions {fn} is said to be locally uniformly Fine computable if the following

(i) and (ii) hold.

(i) {fn} is sequentially Fine computable.

(ii) (Effectively locally uniform Fine continuity) There exist recursive functions

α(n, k, i) and β(n, i) which satisfy the following (ii-a) and (ii-b).

(ii-a) For all i, n and k, |fn(x) − fn(y)| < 2−k if x, y ∈ J(ei, β(n, i)) and y ∈
J(x, α(n, k, i)).

(ii-b)
⋃∞

i=1 J(ei, β(n, i)) = [0, 1) for each n.

It is proved in Example 4.1 of [10] that the function f defined by f(x) = 1
1−2x

if

x < 1
2

and = 0 if x ≥ 1
2

is locally uniformly Fine computable but not uniformly Fine

continuous, since it diverges at 1
2
.

A weakened notion of effective convergence is defined as follows.

Definition 3.4 (Effectively locally uniform Fine convergence, [10]). A sequence of

functions {fn} is said to Fine converge effectively locally uniformly to a function f if

there exist a recursive function γ(i) and a recursive function δ(k, i) such that

(a) |fn(x)− f(x)| < 2−k for x ∈ J(ei, γ(i)) and n ≥ δ(k, i),

(b) ∪∞i=1J(ei, γ(i)) = [0, 1).
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Theorem 2 ([10]) If a locally uniformly Fine computable sequence of functions {fn}
Fine converges effectively locally uniformly to f , then f is locally uniformly Fine com-

putable.

Theorem 2 can be proved similarly to the proof of Theorem 8 in Section 4.

Remark 3.1 The above two definitions of computable functions can be carried over

to an effectively separable metric space with a computability structure or to a space

with effective uniformity. The latter case is treated in [18].

4 Fine computable functions

The notion of the Fine computable functions is introduced as that of (ρF , ρE)-computable

functions by Brattka ([3]) for a single function. Here, ρE is an admissible standard rep-

resentation of the real numbers with respect to the Euclidean metric and ρF is the

Fine representation (cf. [3, 19]), that is, the inverse of µ. He proved that (ρF , ρE)-

computability is equivalent to the following Fine computability. We extend Brattka’s

definition to that of a function sequence, and prove a theorem similar to Theorem 2.

Recall that {ei} is a recursive enumeration of all dyadic rationals in [0, 1) and notice

that it is an effective separating set.

Definition 4.1 (Fine computable sequence of functions) A sequence of functions {fn}
is said to be Fine computable if it satisfies the following.

(i) {fn} is sequentially Fine computable.

(ii) (Effective Fine Continuity) There exists a recursive function α(n, k, i) such

that

(ii-a) x ∈ J(ei, α(n, k, i)) implies |fn(x)− fn(ei)| < 2−k,

(ii-b)
⋃∞

i=1 J(ei, α(n, k, i)) = [0, 1) for each n, k.

The Fine computability of a single function f is defined by replacing α(n, k, i)

with α(k, i). It is equivalent to saying that the sequence {f, f, . . .} is computable.

Effective Fine continuity is the “effectivization” of Fine continuity, that is, we require

that N(k, i) in Definition 2.2 is a recursive function,

Brattka ([3]) proved the existence of a Fine computable (hence Fine continuous)

function which is not locally uniformly Fine continuous. We extend his result in Section

6. It appears to be easy to prove that effectively locally uniform Fine continuity implies

effective Fine continuity, but Iiduka has pointed out that the proof is not trivial. He

proved this property in a more general setting ([9]).

Definition 4.2 (Effective Fine continuity with respect to {ri}) If the requirement

(ii) in Definition 4.1 holds for a Fine computable sequence {ri} instead of {ei}, we say

that f is effectively Fine continuous with respect to {ri}.
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In [18], we proposed a slightly different notion of computability of functions on an

effective uniform topological space, that is, we required the sequential computability,

the effective continuity with respect to some effective separating set and the relative

computability. On the Fine space, we can prove that the effective Fine continuity of a

function sequence does not depend on the choice of an effective separating set.

Theorem 3 If f is effectively Fine continuous with respect to an effective separating

set {ri}, then f is effectively Fine continuous with respect to any effective separating

set {tj}.

For the proof of this theorem, we prepare some elementary properties concerning

dyadic intervals. Classically, they are self-evident. We will explain how some of classical

proofs can be effectivized. We say that a sequence of dyadic intervals Ij = [aj, bj)

(aj < bj) is an effective dyadic covering of a dyadic interval I if {aj} and {bj} are

recursive sequences of dyadic rationals, each Ij is a subinterval of I and ∪jIj = I.

Lemma 4.1 The following hold.

(i) Let I be a dyadic interval, that is, I = [i2−m, j2−n) for some positive integers

i, j, m and n, and let x be Fine computable. Then, we can decide effectively whether

x ∈ I or x /∈ I.

(ii) Let I and J be dyadic intervals. Then, we can decide effectively whether

I ∩ J = φ or not, and whether I ⊆ J or not.

(iii) Let {si} be an effective separating set. Then for any n and k, we can find

effectively an i such that si ∈ I(n, k), that is , there is a recursive function of n and k

which computes i. In this case, I(n, k) = J(si, n).

(iv) Let {Ij} be an effective dyadic covering of [0, 1) and let {xn} be Fine com-

putable. Then we can select effectively some j = j(n) such that xn ∈ Ij.

(v) If a dyadic interval [a, b) is not a fundamental dyadic interval, then we can

decompose it effectively into finitely many disjoint fundamental dyadic intervals.

From the condition (ii-b) in Definition 4.1, it follows that the set of dyadic neigh-

borhoods {J(ei, α(n, k, i))}i is an effective dyadic covering of [0, 1) for each n, k.

For a covering consisting of dyadic intervals, the following lemma holds.

Lemma 4.2 Let {Jp} be an effective dyadic covering of a dyadic interval I. Then,

we can construct an effective dyadic covering {Iq} of I, which satisfies the following

conditions.

(i) Each Iq is a fundamental dyadic interval.

(ii) Iq is a subinterval of Jp for some p.

(iii) Iq’s are disjoint.

Proof. Let us first note that we can perform the following (a) and (b) effectively

by using Lemma 4.1:

13



(a) The complement of a dyadic interval, say [a, b)c, is equal to [0, a) ∪ [b, 1).

(b) The complement of a finite union of dyadic intervals (∪n
i=1[ai, bi))

c = ∩n
i=1[ai, bi)

c

can be represented by a finite disjoint union of fundamental dyadic intervals.

We only explain the construction of {Iq} according to a routine procedure in mea-

sure theory. The construction itself will explain that the whole procedure can be done

effectively.

First, J1 is a dyadic interval by definition. So, we can decompose it into finitely

many disjoint fundamental dyadic intervals, say, I1, . . . , Iτ1 by Lemma 4.1 (v).

Second, consider (J2∩(J1)
c) = (J2∩(∪τ1

q=1Iq)
c). It is a finite disjoint union of dyadic

intervals by (b) just above. So, we decompose them and obtain a finite sequence of

fundamental dyadic intervals Iτ1+1, . . . , Iτ1+τ2 , the union of which is (J2 ∩ (J1)
c).

Next, try the same for (J3 ∩ (J1 ∪ J2)
c) = (J3 ∩ (∪τ1+τ2

q=1 Iq)
c), and so on. If we

continue the above process, we obtain {Iq}, which is the desired sequence.

The construction above suggests the following: if Jp = J(rp, α(p)) for some recursive

function α(p) and a recursive sequence of dyadic rationals {rp}, then we can obtain

recursive functions β(q) and γ(q) (0 6 γ(q) 6 2β(q) − 1) so that Iq = I(β(q), γ(q)).

Proposition 4.1 Let {ri} be an effective separating set and let f be a function on

[0, 1). Then, f is effectively Fine continuous with respect to {ri} if and only if there

exist a Fine computable double sequence {sk,q} and a recursive function δ(k, q) which

satisfy the following.

(a) {sk,q}q is a subset of {ri} for each k.

(b) {J(sk,q, δ(k, q))}q is disjoint for each k.

(c) x ∈ J(sk,q, δ(k, q)) implies |f(x)− f(sk,q)| < 2−k.

(d)
⋃∞

q=1 J(sk,q, δ(k, q)) = [0, 1) for each k.

Proof. First, we prove the “if” part. For each k and i, we can find effectively such

q that ri ∈ J(sk+1,q, δ(k + 1, q)). It is sufficient to take α(k, i) = δ(k + 1, q), since

|f(x)− f(ri)| 6 |f(x)− f(sk+1,q)|+ |f(sk+1,q)− f(ri)| < 2−k

for x ∈ J(ri, α(k, i)) = J(sk+1,q, δ(k + 1, q)).

To prove the “only if” part, let α(k, i) be a recursive modulus of continuity of f

and let us consider {J(rp, α(k + 1, p))}p for each k. If we apply Lemma 4.2 to this

sequence with I = [0, 1), then we obtain recursive functions β(k, q) and γ(k, q) so that

the sequence {Ik,q} = {I(β(k, q), γ(k, q))} is an effective dyadic covering of [0, 1) and

satisfies (i) to (iii) of Lemma 4.2 for each k. We define δ(k, q) = γ(k, q). For each q,

we can select p and ri so that ri ∈ Ik,q ⊆ J(rp, α(k + 1, p)). If we put sk,q = ri, then it

holds that

|f(x)− f(sk,q)| 6 |f(x)− f(rp)|+ |f(rp)− f(ri)| < 2−k,

for x ∈ J(sk,q, δ(k, q)) = Ik,q.
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Proof of Theorem 3. Assume that f is effectively Fine continuous with respect to

an effective separating set {ri} and that {tj} is an effective separating set. Let {sk,q}
and δ(k, q) satisfy the requirements (a) to (d) in Proposition 4.1. For each k, q, choose

some tj ∈ J(sk+1,q, δ(k + 1, q)) and denote it by uk,q. (We can do this effectively, hence

{uk,q} is computable). It holds that J(sk+1,q, δ(k + 1, q)) = J(uk,q, δ(k + 1, q)) and

|f(y)− f(uk,q)| 6 |f(y)− f(sk+1,q)|+ |f(sk+1,q)− f(uk,q)| < 2−k

for y ∈ J(uk,q, δ(k+1, q)). If we define δ̃(k, q) = δ(k+1, q), then δ̃(k, q) is recursive and

the conditions (a) to (d) of Proposition 4.1 hold for {uk,q} and δ̃(k, q) with respect to

{tj}. If we apply Proposition 4.1 again, we obtain that f is effectively Fine continuous

with respect to {tj}.
As a corollary to Theorem 3, it follows that the computability of functions in [18]

is equivalent to the Fine computability on the Fine space.

Let us consider the maximum of a Fine computable function. On the unit interval

[0, 1], Pour-El and Richards proved that the maximum of a uniformly E-computable

function is an E-computable real ([15]). This property also holds on an effectively

compact metric space with a computability structure ([13]). Since the Fine space is

not complete, a Fine continuous function does not necessarily attain its maximum.

Nevertheless, we obtain the following weaker property ([12]).

Theorem 4 A uniformly Fine computable function has the E-computable supremum.

This theorem is proved by using the following theorem and its proof in [11].

Theorem 5 A function f on [0, 1) is uniformly Fine computable if and only if there

exists a uniformly computable function g on (Ω, dC) such that f(x) = g(µ(x)) for all

x ∈ [0, 1), where dC is the Cantor metric on Ω, that is, dC(σ, τ) =
∑∞

k=1 2−k|σk − τk|
for σ, τ ∈ Ω.

Notice that supx∈[0,1) f(x) = maxσ∈Ω g(σ) holds.

For locally uniformly Fine computable functions, the corresponding property does

not hold.

In the rest of this section, we treat some examples of Fine computability of a

function. For this purpose, we introduce special dyadic step functions:

χc(x) = χ[0,c)(x), χ̃n(x) = χ[1−2−(n−1),1−2−n)(x). (3)

It is obvious that χ̃n is uniformly Fine computable and the same holds for χc if c

is a dyadic rational.

Proposition 4.2 There exists a bounded locally uniformly Fine computable function,

the supremum of which is not E-computable.
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Proof. Let a be a one-to-one recursive function from N+ to N+, whose range

a(N+) is not recursive. Define cn =
∑n

k=1 2−a(k). Then {cn} is an E-computable

sequence of real numbers, which is monotonically increasing and converges to a non-

E-computable limit c ([15]). Define also f(x) =
∑∞

n=1 cnχ̃n(x). In = [1 − 2−(n−1), 1 −
2−n) = [2

n−2
2n , 2n−1

2n ) is a fundamental dyadic interval and {In} is a partition of [0, 1).

Let us define β(i) = α(k, i) = n if ei ∈ In. Then f is locally uniformly Fine computable

with respect to β and α. But sup06x<1 f(x) = c is not E-computable.

We give a simple example of a function which is not Fine computable. In the

following proposition, 1
3

is not essential, and the proposition remains valid if we replace
1
3

with any dyadic irrational.

Proposition 4.3 χ 1
3

satisfies the following:

(i) It is not Fine continuous.

(ii) It is not sequentially Fine computable.

(iii) For any α(k, i) which satisfies Definition 4.1 (ii-a), (ii-b) does not hold.

Proof. (i) is obvious, since 1
3

is not a dyadic rational and a Fine continuous function

must be continuous with respect to the Euclidean metric at every dyadic irrational.

(ii) Let a be a one-to-one recursive function, whose range A = a(N) is not recursive

and each value of which is greater than 1. Define {xn} and {xn,k} respectively by

xn =

{
1
3
− 1

2m+1 if there exists an m such that a(m) = n

1
3

otherwise
,

and

xn,k =

{
1
3
− 1

2m+1 if there exists m s.t. m 6 k and n = a(m)

1
3

otherwise
.

Then, xn,k ∈ J(xn, p) if k > p + 2 for all n, and {xn,k} Fine converges effectively to

{xn}. Therefore, {xn} is Fine computable.

To show that {χ 1
3
(xn)} is not E-computable, recall that χ 1

3
(x) = 1 if 0 6 x < 1

3

and = 0 if 1
3

6 x < 1. By the definition, xn < 1
3

if n ∈ A and xn = 1
3

if n /∈ A.

So, χ 1
3
(xn) = 1 if and only if n ∈ A. If {χ 1

3
(xn)} were E-computable, then it would

be a recursive sequence of natural numbers. So A would be recursive, yielding a

contradiction.

(iii) Assume that 1
3
∈ J(ei, α(k, i)) for some i. Since J(ei, α(k, i)) is a dyadic

interval and 1
3

is not a dyadic rational, 1
3

is not an end point. So, there exists x in

J(ei, α(k, i)), which satisfies x < 1
3
. By the definition of χ, χ 1

3
(x)− χ 1

3
(1

3
) = 1.

5 Effective Fine convergence

In this section, we define the effective Fine convergence of a sequence of functions, and

prove that the space of effectively Fine continuous functions is closed with respect to
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this convergence.

Definition 5.1 (Effective Fine convergence of functions) We say that a sequence

of functions {fn} Fine converges effectively to a function f if there exist recursive

functions β(k, i) and γ(k, i) which satisfy

(a) x ∈ J(ei, β(k, i)) and n > γ(k, i) imply |fn(x)− f(x)| < 2−k,

(b)
⋃∞

i=1 J(ei, β(k, i)) = [0, 1) for each k.

The above definition is the effectivization of Definition 2.4.

Notice that a dyadic step function which takes only E-computable values is uni-

formly Fine computable.

Definition 5.2 (Computable sequence of dyadic step functions, [11]) A sequence of

functions {ϕn} is called a computable sequence of dyadic step functions if there exist

a monotonically increasing recursive function δ(n) and an E-computable sequence of

reals {cn,j} (0 6 j < 2δ(n), n = 1, 2, . . .) such that

ϕn(x) =
2δ(n)−1∑

j=0

cn,jχI(δ(n),j)(x). (4)

A computable sequence of dyadic step functions is a uniformly Fine computable

sequence of functions since ϕn(x) = ϕn(y) if x, y ∈ I(δ(n), j) for some j. Typical

examples of computable sequences of dyadic step functions are the system of Walsh

functions, that of Haar functions and that of Rademacher functions.

Theorem 6 Let f be a Fine computable function. Define a computable sequence of

dyadic step functions {ϕn} from f as (2) in Section 2, that is,

ϕn(x) =
2n−1∑
j=0

f(j2−n)χI(n,j)(x).

Then {ϕn} Fine converges effectively to f .

Proof. Let f be a Fine computable function with respect to α(k, i).

If n > α(k + 1, i), then J(ei, α(k + 1, i)) =
⋃

j2−n∈J(ei,α(k+1,i)) I(n, j). Assume

further that x ∈ J(ei, α(k + 1, i)). Then, x ∈ I(n, j) for some j which satisfies j2−n ∈
J(ei, α(k + 1, i)) and ϕn(x) = f(j2−n). So we obtain

|ϕn(x)− f(x)| = |f(j2−n)− f(x)| 6 |f(j2−n)− f(ei)|+ |f(ei)− f(x)|
< 2−(k+1) + 2−(k+1) = 2−k.

Therefore, {ϕn} Fine converges effectively to f with respect to γ(k, i) = β(k, i) =

α(k + 1, i).
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Remark 5.1 If f is uniformly Fine computable or locally uniformly Fine computable,

then the convergence can be replaced by the effectively uniform convergence or the

effectively locally uniform Fine convergence respectively ([10, 11]).

Similarly to the proof of Proposition 4.1, we can prove the following proposition.

Proposition 5.1 A sequence of functions {fn} Fine converges effectively to f if and

only if there exist a recursive sequence of dyadic rationals {sk,i} and recursive functions

β(k, i) and γ(k, i) which satisfy the following:

(a) x ∈ J(sk,i, β(k, i)) and n > γ(k, i) imply |fn(x)− f(x)| < 2−k.

(b)
⋃∞

i=1 J(sk,i, β(k, i)) = [0, 1) for each k.

(c) {J(sk,i, β(k, i))}i is a set of pairwise disjoint dyadic neighborhoods for each k.

We can also define the notion of effective Fine convergence with respect to any

effective separating set {ri}, and prove that the notion of effective Fine convergence

does not depend on the choice of an effective separating set.

Now, we prove the closedness of the space of Fine computable functions under

effective Fine convergence.

Theorem 7 If an effectively Fine continuous sequence of functions {fn} Fine con-

verges effectively to f , then f is effectively Fine continuous.

Proof. Let {fn} be effectively Fine continuous with respect to α(n, k, p), that is,

x ∈ J(ep, α(n, k, p)) implies |fn(x) − fn(ep)| < 2−k and
⋃∞

p=1 J(ep, α(n, k, p)) = [0, 1)

for each n, k. From the effective Fine convergence, we obtain {sk,i}, β(k, i) and γ(k, i)

satisfying the conditions (a), (b) and (c) in Proposition 5.1. In particular, the dyadic

neighborhoods {J(sk,i, β(k, i))} are mutually disjoint with respect to i.

From the requirement (ii-b) of Definition 4.1 for α(n, k, p), we have

J(sk+2,i, β(k + 2, i)) ⊆ [0, 1) =
⋃∞

p=1 J(ep, α(γ(k + 2, i), k + 2, p)).

If we set I = J(sk+2,i, β(k+2, i)) and {Jk,i,p}p = {J(ep, α(γ(k+2, i), k+2, p))∩I}p,

and apply Lemma 4.2, we obtain an effective dyadic covering of J(sk+2,i, β(k + 2, i)),

say {Ik,i,q} = {I(ξ(k, i, q), η(k, i, q))}, which satisfies (i)∼(iii) of Lemma 4.2 for each

pair k, i . Let us remark that Ik,i,q is a subinterval of Jk,i,p for some p, and that ξ(k, i, q)

and η(k, i, q) are recursive functions.

For each k, i and q, we can find effectively some p = p(k, i, q) such that ep ∈ Ik,i,q.

Define rk,i,q = ep and δ(k, i, q) = ξ(k, i, q), and assume x ∈ J(rk,i,q, δ(k, i, q)) =

Ik,i,q. Since J(rk,i,q, δ(k, i, q)) ⊆ J(sk+2,i, β(k + 2, i)), |f(x)− fγ(k+2,i)(x)| < 2−(k+2) and

|f(rk,i,q)− fγ(k+2,i)(rk,i,q)| < 2−(k+2) hold. So

|f(x)− f(rk,i,q)|
6 |f(x)− fγ(k+2,i)(x)|+ |fγ(k+2,i)(x)− fγ(k+2,i)(rk,i,q)|+ |fγ(k+2,i)(rk,i,q)− f(rk,i,q)|
< |fγ(k+2,i)(x)− fγ(k+2,i)(rk,i,q)|+ 2−(k+1).
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On the other hand, Ik,i,q = J(rk,i,q, δ(k, i, q)) ⊆ J(ep, α(γ(k + 2, i), k + 2, p)) = Jk,i,p

and rk,i,q = ep imply that

|fγ(k+2,i)(x)− fγ(k+2,i)(rk,i,q)| = |fγ(k+2,i)(x)− fγ(k+2,i)(ep)| < 2−(k+2).

Therefore, x ∈ J(rk,i,q, δ(k, i, q)) implies |f(x)− f(rk,i,q)| < 2−k.

Furthermore, ∪i ∪q J(rk,i,q, δ(k, i, q)) = ∪iJ(sk+2,i, β(k + 2, i)) = [0, 1) due to the

assumption for {sk,i}, β and γ.

We can perform the above procedure effectively in i. So, taking some recursive

pairing function, 〈i, q〉 = i + 1
2
(i + q)(i + q + 1) for example, define rk,` = rk,i,q and

δ(k, `) = δ(k, i, q), for ` = 〈i, q〉. Then, the necessary condition of Proposition 4.1 (with

respect to k and `) holds for this rk,` and δ(k, `) for each i.

Theorem 8 If a Fine computable sequence of functions {fn} Fine converges effectively

to f , then f is Fine computable.

Proof. Effective Fine continuity is guaranteed by Theorem 7.

Let us assume that {fn} Fine converges effectively to f with respect to β(k, i) and

γ(k, i). To prove the sequential computability, let {xm} be Fine computable. For each

k, m, we can find effectively an i = i(k,m) so that xm ∈ J(ei, β(k, i)). If n > γ(k, i),

then |fn(xm) − f(xm)| < 2−k. So the E-computable sequence {fn(xm)}n converges

effectively to {f(xm)}, and hence {f(xm)}m is an E-computable sequence.

Combining Theorem 8 with Theorem 6, we obtain the following theorem.

Theorem 9 (Necessary and sufficient condition for Fine computable function) A

function f is Fine computable if and only if there exists a computable sequence of

dyadic step functions, which Fine converges effectively to f .

We can extend Theorem 8 to the case where a computable double sequence {fm,n}
Fine converges effectively to a sequence {fm}, by suitably extending the notions of the

Fine computable sequence, the effective Fine convergence and the computable sequence

of dyadic step functions. This can be done by adding a new argument m to the relevant

recursive functions.

Theorem 10 If a Fine computable double sequence of functions {fm,n} Fine converges

effectively to a sequence {fm}, then {fm} is Fine computable.

Theorem 11 A sequence of functions {fm} is Fine computable if and only if there

exists a computable double sequence of dyadic step functions {ϕm,n}, which Fine con-

verges effectively to {fm}.
Example 5.1 Let us consider χ 1

3
in Proposition 4.3. Define xn to be 1

3
(1 − 4−n).

Then {xn} is a Fine computable sequence of reals and Fine converges to 1
3
. Hence, χxn

converges pointwise to χ 1
3
. Moreover, {χxn} is a computable sequence of dyadic step

functions (Definition 5.2). However, the convergence is neither Fine nor continuous

due to Propositions 2.4 and 2.6.
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6 Recursive functional equations and Fine computable

functions

In this section, we provide several examples concerning Fine computability of functions.

Some of them are represented as linear combinations of χc(x)’s and χ̃n(x)’s, which have

been introduced in Section 4 (Equation (3)).

Example 6.1 Let us define fn =
n∑

i=1

2−iχei
and f =

∞∑
i=1

2−iχei
.

Then, for n < m, |fn(x) − fm(x)| 6
∑m

i=n+1 2−i < 2−n holds and {fn} converges

effectively uniformly to f . So, f is uniformly Fine computable by Theorem 1. On the

other hand, f is E-discontinuous at every dyadic rational, since f(x)− f(ei) > 2−i for

any x < ei.

There is an example of a computable sequence of dyadic step functions, which

converges classically but the convergence is not effectively Fine.

Example 6.2 Let a be a one-to-one recursive function from N+ to N+, whose range

a(N+) is not recursive and let us define fn(x) =
n∑

k=1

χ̃a(k)(x), f(x) =
∞∑

k=1

χ̃a(k)(x). Then,

{fn} is a computable sequence of dyadic step functions. Classically, {fn} converges to

f and f is Fine continuous. However, f does not satisfy the sequential computability,

since f(1 − 2−m) = 1 if m = a(k) for some k ∈ N and = 0 otherwise. So, the con-

vergence is not effectively Fine. On the other hand, the limit function f is effectively

locally uniformly Fine continuous.

The existence of an example which is Fine computable but not locally uniformly

Fine computable has been proved by Brattka.

Example 6.3 (Brattka [3]) The example of Brattka is the following:

v(x) =





∞∑
i=0

(`i mod 2)2−ni−
Pi−1

j=0(nj+`j)

if µ(x) = 0n01`00n11`10n2 · · ·
m∑

i=0

(`i mod 2)2−ni−
Pi−1

j=0(nj+`j)

if µ(x) = 0n01`00n11`10n2 · · · 1`m0ω

, (5)

where, n0 > 0, ni > 0 for i > 0 and `i > 0 for all i > 0.
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For investigation of this example and its generalizations, we introduce the following

fundamental dyadic intervals and mappings.

A` = [1− 2−(`−1), 1− 2−`)

B` = [1− 2−`, 1) =
⋃∞

j=`+1 Aj

S`(t) = 1− 2−(`−1) + 2−`t : [0, 1) → A`

R`(t) = 1− 2−` + 2−`t : [0, 1) → B`.

Obviously, {A`}∞`=1 is an infinite partition of [0, 1) and {A1, . . . , Aj, Bj} is a finite

partition of [0, 1) for each j. Furthermore, S` is a bijection from [0, 1) to A` and S−1
` x =

2`(x− (1− 2−(`−1))). R` is a bijection from [0, 1) to B` and R−1
` x = 2`(x− (1− 2−`)).

We note that x ∈ A` is equivalent to that µ(x) is represented as 1`−10 ∗ ∗ · · ·.
First, we treat the approximating sequence of dyadic step functions {vn}, which is

obtained from v by Equation (2) in Theorem 6. Since v is known to be Fine computable,

{vn} Fine converges effectively to v by virtue of Theorem 6.

The proof by Brattka [3] that the v defined by Equation (5) is not locally uniformly

Fine continuous assures that it is not locally uniformly Fine continuous. It is easy

to prove that the limit of a sequence of locally uniform Fine continuous functions

under locally uniformly Fine convergence is also locally uniformly Fine continuous. If

the convergence of {vn} to v were effectively locally uniformly Fine, then v would be

locally uniformly Fine continuous by virtue of Theorem 2. So the convergence is not

locally uniformly Fine,

It is easy to see that the sequence {vn} satisfies the following recurrence equation.

v1(x) =

{
0 if x ∈ A1 = [0, 1

2
)

1 if x ∈ B1 = [1
2
, 1)

,

(6)

vn(x) =





1+(−1)i

2
+ 2−ivn−i(S

−1
i x) if x ∈ Ai (1 6 i 6 n− 1)

1+(−1)n

2
if x ∈ An

1+(−1)n+1

2
if x ∈ Bn

.

It also holds that vn(k2−n) = v(k2−n) for each n and k.

We illustrate the first four of {vn} in Figure 1. Let us examine the graph of v4.

The restriction of v4 to A1 = [0, 1
2
) is the contraction of the graph of v3 with scale 1

2
.

The restriction of v4 to A2 = [1
2
, 3

4
) is the vertical translation of the contraction of the

graph of v2 with scale 1
4

= 2−2. The restriction of v4 to A3 = [3
4
, 7

8
) is the contraction

of the graph of v1 with scale 2−3. v4(x) = 1 if x ∈ A4 = [7
8
, 15

16
) and v4(x) = 0 if

x ∈ B4 = [15
16

, 1).
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By definition, it holds that v`(k2−n) = vn(k2−n) for ` > n, and hence they are equal

to v(k2−n) for any natural number k which is less than 2n. This shows that the value

v(x) is determined by vn(x) if x is a dyadic rational of level n.

In Figure 2, we draw line from (k2−6, v(k2−6)) to ((k + 1)2−6, v(k2−6)) for 0 6 k 6
26 − 1.

v1(x) v2(x)

0

1/2

1

1 0

1/2

1

1

v3(x) v4(x)

0

1/2

1

1 0

1/2

1

1

Figure 1: vn(x) for n = 1, 2, 3, 4

To prove some properties of the function v, we derive a simple recurrence equation.

It is easily proved that v(x) defined by Equation (5) satisfies v(0) = 0 and the

following functional equation

v(x) = 1+(−1)`

2
+ 2−`v(S−1

` x) if x ∈ A` (` = 1, 2, . . .). (7)

Properties of fractals deduced from Equation (7) will be discussed in a forthcoming

paper.
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

lineps6large.nb 1

Figure 2: v(x) for x = k2−6, 0 6 k 6 26 − 1

If we replace the first term in the right hand side of Equation (7) with a recursive

function, we can obtain other examples of Fine computable functions.

Theorem 12 Assume that {h(`)}` is an E-computable sequence from [0, 1] and that

h(1) = 0.

(i) The equation

f(x) = h(`) + 2−`f(S−1
` x) if x ∈ A` (` = 1, 2, . . .) (8)

has a unique Fine computable solution in the space of bounded functions on [0, 1).

(ii) If lim inf`→∞ h(`) 6= lim sup`→∞ h(`), then the bounded solution of Equation (8)

is not locally uniformly Fine continuous.

(iii) If lim inf`→∞ h(`) = lim sup`→∞ h(`) = a and the convergence is effective, then

the bounded solution of Equation (8) is uniformly Fine computable.

If h is given by h(`) = 0 for an odd ` and = 1 for an even `, then we obtain the

example of Brattka.

We can also get Fine computable functions by the following equation, which is

similar to Equation (8) but slightly different.

Theorem 13 Let h satisfy the assumption of Theorem 12.

(i) The equation

f(x) = h(`) +
1

2
f(S−1

` x) if x ∈ A` (` = 1, 2, . . .) (9)

has a unique Fine computable solution in the space of bounded functions on [0, 1).

(ii) If h is not constant, then the bounded solution of Equation (9) is not locally

uniformly Fine continuous.
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For the proof of Theorems 12 and 13, we introduce the following notations.

For each x ∈ [0, 1), we can define an infinite sequence {`i(x)}∞i=1 in N+ by x ∈ A`1(x)

and S−1
`i(x) · · ·S−1

`1(x)(x) ∈ A`i+1(x).

We also define L0(x) = 0 and Lj(x) = `1(x) + `2(x) + · · ·+ `j(x) for j > 0.

Finally, for a dyadic rational r, we define its level by

lev(r) = min{n ∈ N | ∃j.r = j2−n}. (10)

We have defined the level of a fundamental dyadic interval I in Section 2. We also

denote this as lev(I).

If {rn} is a recursive sequence of dyadic rationals, then {lev(rn)}n is recursive.

We list up some properties concerning {S`} and {`i(x)}.
Fact 1: `j(x) > 1 and Lj(x) > j.

Fact 2: For any positive integers `1, `2, . . . , `k, we define Lk = `1 + . . . + `k. Then

S`1S`2 · · ·S`k
[0, 1) = [1− 2−L1 − 2−L2 − · · · − 2−(Lk−1), 1− 2−L1 − 2−L2 − · · · − 2−Lk)

is a fundamental dyadic interval of level Lk.

Fact 3: For any positive integers `1, `2, . . . , `k, if x ∈ S`1S`2 · · ·S`k
[0, 1), then

`i(x) = `i, i = 1, 2, . . . , k.

Fact 4: If a dyadic rational r is of level n and lies in A`, then the level of S−1
` r is

equal to or less than n− `. Hence, if Lj(r) > lev(r) then S−1
`j(r)

· · ·S−1
`2(r)S

−1
`1(r)r = 0.

Fact 5: If {xn} is a Fine computable sequence of reals, then the double sequence of

integers {`i(xn)} is computable. (In fact, it is recursive for any fixed {xn}.)
Fact 6: Let f be a solution of Equation (8). Put t = S−1

`j(x) · · ·S−1
`2(x)S

−1
`1(x)x for

x ∈ [0, 1). Then we obtain

f(x) = h(`1(x)) + 2−L1(x)h(`2(x)) + · · ·+ 2−Lj−1(x)h(`j(x)) + 2−Lj(x)f(t). (11)

Moreover, if r is dyadic rational and Lj(r) > lev(r), then it holds by Fact 4 that

f(r) = h(`1(r)) + 2−L1(r)h(`2(r)) + · · ·+ 2−Lj−1(r)h(`j(r)). (12)

Fact 7: Let f satisfy Equation (9). Put t = S−1
`j(x) · · ·S−1

`2(x)S
−1
`1(x)x for x ∈ [0, 1).

Then, we obtain

f(x) = h(`1(x)) + 2−1h(`2(x)) + · · ·+ 2−(j−1)h(`j(x)) + 2−jf(t). (13)

and

f(r) = h(`1(r)) + 2−1h(`2(r)) + · · ·+ 2−(j−1)h(`j(r)). (14)

for dyadic rational r with Lj(r) > lev(r).

Subsequently, ||f || will denote the supremum of a function f (when it exists).
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Proof of Theorem 13 (i). Let f be a bounded solution of Equation (9) (or Equation

(8)). Since, 0 ∈ A1 and S−1
1 (0) = 0, we obtain f(0) = 1

2
f(0) and hence f(0) = 0.

From Equation (13) (or Equation (11)) and the assumption that h(`) ∈ [0, 1], we

obtain

|f(x)| 6 1 + 2−1 + · · ·+ 2−(j−1) + 2−j||f ||.
Letting j to infinity, we obtain

|f(x)| 6
∞∑

j=0

2−j = 2. (15)

Existence: Since ||h|| 6 1,
∑∞

j=1 2−(j−1)h(`j(x)) converges absolutely and uniformly

in x. If we denote this limit function by f , then it is easy to prove that f satisfies

Equation (9).

Uniqueness: Suppose that f and g are bounded solutions of Equation (9) or of Equation

(8). Then, from Equation (13) (or from Equation (11)),

|f(x)− g(x)| 6 2−j(||f ||+ ||g||)

holds for all j. Since the right-hand side tends to zero as k tends to infinity, we obtain

f = g.

Remark 6.1 From Existence and Uniqueness, the unique bounded solution of Equa-

tion (9) is given by

f(x) =
∞∑

j=1

2−(j−1)h(`j(x)). (16)

The convergence in the right-hand side is effectively uniform.

Effective Fine Continuity: We fix an arbitrary k. From the definition of {S`} and

Fact 2, the set of intervals {S`1S`2 · · ·S`k+3
[0, 1)}`1,`2,...,`k+3

is a partition of [0, 1) con-

sisting of fundamental dyadic intervals. Therefore, each ei is contained in some I =

S`1S`2 · · ·S`k+3
[0, 1). Note that we can find such I effectively in k and i. If we define

γ(k, i) to be the level of I, then J(ei, γ(k, i)) = I and γ is recursive.

Assume that x ∈ J(ei, γ(k, i)). Then, `j(x) = `j(ei) = `j for 1 6 j 6 k + 3 by Fact

3, and we obtain by Equation (13)

f(x) = h(`1) + 2−1h(`2) + · · ·+ 2−(k+2)h(`k+3) + 2−(k+3)f(t),

f(ei) = h(`1) + 2−1h(`2) + · · ·+ 2−(k+2)h(`k+3) + 2−(k+3)f(s),

where, t = S−1
`k+3

· · ·S−1
`2

S−1
`1

(x) and s = S−1
`k+3

· · ·S−1
`2

S−1
`1

(ei). Therefore,

|f(x)− f(ei)| 6 2 2−(k+3)||f || 6 4 2−(k+3) < 2−k.
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This proves the effective Fine continuity of f .

Sequential Computability: Let {xn} be a Fine computable sequence in [0, 1). Define

yn,m = h(`1(xn)) + 2−1h(`2(xn)) + · · ·+ 2−(m−1)h(`m(xn)).

Then, the double sequence {yn,m} is E-computable by Fact 5 and E-converges effectively

to {f(xn)} by Remark 6.1. Therefore, {f(xn)} is an E-computable sequence of reals.

Theorem 12 (i) can be proved similarly.

Proof of Theorem 12 (ii). Let us assume that lim infm→∞ h(m) 6= lim supm→∞ h(m)

and that f is locally uniformly Fine continuous with respect to functions α(k, i) and

β(i), that is, for all k, |f(x) − f(y)| < 2−k if x, y ∈ J(ei, β(i)) and y ∈ J(x, α(k, i)),

and
⋃∞

i=1 J(ei, β(i)) = [0, 1).

Put δ = lim sup`→∞ h(`) − lim inf`→∞ h(`) and consider any fixed i and the corre-

sponding J(ei, β(i)).

Now, take k so large that 2−k < δ 2−(β(i)+1). From the definition of δ, there exist

m1 > α(k, i) and m2 > α(k, i) such that h(m2)− h(m1) > δ
2
.

Let z be the left end point of J(ei, β(i)). Then it holds that lev(z) 6 β(i). Define

further x = z + 2−(β(i)+1)(1 − 2−(m1−1)) and y = z + 2−(β(i)+1)(1 − 2−(m2−1)). Then z,

x and y are dyadic rationals and z can be written as j2−β(i) for some integer j. From

the last property above, there exists an integer n such that Ln(z) = β(i) + 1. In this

case, `j(z) = `j(x) = `j(y) if j 6 n, `j(z) = 1 if j > n, `n+1(x) = m1, `n+1(y) = m2

and `j(x) = `j(y) = 1 if j > n + 1.

By Equation (12) and Fact 1, we obtain

f(y)− f(x) = 2−Ln(z)(h(m2)− h(m1)) > 2−(β(i)+1)δ. (17)

From Equation (17) and the choice of k, f(y)− f(x) > 2−k holds.

On the other hand, x, y ∈ J(ei, β(i)) and y ∈ J(x, α(k, i)) hold. This implies, from

the assumption, |f(x)−f(y)| < 2−k, contradicting Equation (17). f is thus not locally

uniformly Fine continuous.

Proof of Theorem 13 (ii). Assume that h(m1) < h(m2). For any i, there exists an

integer n such that Ln(ei) = lev(ei) + 1. Put, for any m,

x = ei + 2−(lev(ei)+1)(1− 2−(m−1)) + 2−(m+lev(ei)+1)(1− 2−(m1−1))

and

y = ei + 2−(lev(ei)+1)(1− 2−(m−1)) + 2−(m+lev(ei)+1)(1− 2−(m2−1)).

Then, x and y are dyadic rationals and satisfy

`n+1(x) = `n+1(y) = m, `n+2(x) = m1, `n+2(y) = m2,

`n+3(x) = `n+3(y) = 1, `n+4(x) = `n+4(y) = 1, · · ·.
So we obtain

f(x) = f(ei) + 2−(lev(ei)+1)h(m) + 2−(lev(ei)+2)h(m1)

and
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f(y) = f(ei) + 2−(lev(ei)+1)h(m) + 2−(lev(ei)+2)h(m2)

by Equation (14). Hence,

f(y)− f(x) = 2−(lev(ei)+2)(h(m2)− h(m1)) > 0.

On the other hand, it holds that x, y ∈ J(z, lev(ei) + m) and y ∈ J(x, lev(ei) + m).

If f were locally uniformly Fine continuous, then f(y)−f(x) would be arbitrarily small

for sufficiently large m, contradicting the last inequality.

Proof of Theorem 12 (iii). For any `1, `2, . . . , `j and x ∈ [0, 1), define t =

S−1
`j
· · ·S−1

`1
x. Then it holds that `i(x) = `i for 1 6 i 6 j and we obtain

f(x) = h(`1) + 2−L1h(`2) + · · ·+ 2−Lj−1h(`j) + 2−Ljf(t). (18)

Let α(k) be a modulus of convergence of h, that is, α is a recursive function which

satisfies that ` > α(k) implies |h(`)− a| < 2−k. We can assume that α(k) > k.

Let us consider the finite partition of [0, 1) consisting of all sets of the form

U1U2 · · ·Uk+3[0, 1), where Ui is chosen from {S1, S2, . . . , Sα(k+3), Rα(k+3)}. By Fact 2,

each U1U2 · · ·Uk+3[0, 1) is a fundamental dyadic interval. So we can define β(k) to be

the maximum of their levels.

Suppose y ∈ J(x, β(k)). Then x and y are contained in some U1U2 · · ·Uk+3[0, 1).

If Rα(k+3) does not appear in U1, U2, . . . , Uk+3, then it holds that `i(x) = `i(y) for

1 6 i 6 k + 3 from Fact 3. So we obtain by Equation (18)

|f(x)− f(y)| 6 2 2−Lk+3||f || 6 4 2−(k+3) < 2−k.

Otherwise, there exists at least one Rα(k+3) in U1, U2, . . . , Uk+3. Let Uj be the

first appearance of Rα(k+3). (U1 may be Rα(k+3).) If j > 2, then `i(x) = `i(y) for

1 6 i 6 j − 1. Since Rα(k+3)[0, 1) = Bα(k+3) =
⋃∞

i=α(k+3)+1 Ai, we obtain for some

t, s ∈ [0, 1)

f(x) = h(`1(x)) + 2−L1(x)h(`2(x)) + · · ·+ 2−Lj−2(x)h(`j−1(x))

+2−Lj−1(x)h(`j(x)) + 2−Lj(x)f(t),

f(y) = h(`1(y)) + 2−L1(y)h(`2(y)) + · · ·+ 2−Lj−2(y)h(`j−1(y))

+2−Lj−1(y)h(`j(y)) + 2−Lj(y)f(s).

It holds that `j(x), `j(y) > α(k + 3) > k + 3. So we obtain

|f(x)− f(y)| 6 2−Lj−1(x)|h(`j(x))− h(`j(y))|+ 2−Lj(x)|f(t)|+ 2−Lj(y)|f(s)|
6 2−(k+3) + 4 2−α(k+3) 6 5 2−(k+3) < 2−k.

Therefore, y ∈ J(x, β(k)) implies |f(x) − f(y)| < 2−k, and the effectively uniform

Fine continuity holds.
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