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Main topic:

Riesz’s representation theorem
of a bounded linear functional on a Hilbert space

Some hints of reviews —

1) what is a Hilbert space ?

2) some history of Riesz’s theorem.

3) how Riesz’s theorem is useful ?

4) the version in computability analysis.



1) what is a Hilbert space ?

Summary:

a) A linear space H (over the real number field R for

b) endowed with a scalar product 〈 , 〉
(= symmetric positive definite bilinear form)

c) complete with respect to the metric induced by 〈 ,

N.B. These are terminologies in Mathematical Analys

Question : What kind of care is required to incorporat

space in the context of computability analysis ?

(Recall Professor Yasugi’s lecture — Key : How to

the notion of recursiveness into Hilbert spaces.)



a) A linear space H (over the real number field R for

The elements x, y, z, · · · of H are vectors.

The real numbers a, b, c, · · · are scalars.

Their linear combinations ax + by , · · · , are defined an

There is the zero vector 0 ∈ H.

Each x has its negative −x: x + (−x) = (−x) + x = 0

The commutative, composition, ditributive laws hold.

Some consequences: 1 · x = x, 0 · x = 0, (−1) · x = −x



b) endowed with a scalar product 〈 , 〉
(= symmetric positive definite bilinear form)

H × H � (x,y) �→ 〈x,y〉 ∈ R

symmetry : 〈x, y〉 = 〈y, x〉
positivity: 〈x, x〉 ≥ 0

definiteness: 〈x, x〉 = 0 ⇐⇒ x = 0

bilinearity: 〈ax + by, z〉 = a 〈x, z〉 + b 〈y, z〉.

N.B. Consult any standard textbook of the Hilbert sp

for the case of complex scalars. Symmetry and Biline

suitably be modified then.



A standard example : L2(D)

D : bounded open set ⊂ Rn.

f : real-valued measurable function defined on D sati∫
D

|f(x)|2 dx < +∞

L2(D) : the set of such functions f

[actually functions f and f1 are identified

if they differ only on the subset of measure zero

linear combination : (a f + b g)(x) = a f(x) + b g(x), x

scalar product :

〈f , g〉 =
∫
D

f(x) g(x) dx.



c) complete with respect to the metric induced by 〈 ,

norm :

‖x‖ =
√
〈x, x〉, x ∈ H.

Property-1: ‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0

Property-2: ‖ax‖ = |a| ‖x‖, x ∈ H, a ∈ R.

Property-3: ‖x + y‖ ≤ ‖x‖ + ‖y‖, x, y ∈ H.

Property-4: |〈x,y〉| ≤ ‖x‖ ‖y‖, x, y ∈ H.

H is a metric space : dist(x,y) =distance of x and y=

{xn} ⊂ H : Cauchy sequence ⇐⇒ limn,m→∞‖xn − xm‖

H complete ⇐⇒ Every Cauchy sequence converg



The example revisited L2(D)

norm:

‖f‖ =

√∫
D

|f(x)|2 dx , f ∈ L2(D).

Completeness:

The Riesz-Fischer theorem (L2-version):

Let fn ∈ L2(D) with limn,m→∞‖fn − fm‖ = 0.

Then, for a unique f ∈ L2(D), limn→∞‖fn − f‖ = 0

Actually, for an appropriate subsequence fn′ of fn,

fn′(x) → f(x) as n′ → ∞ for almost all x ∈ D.



Other examples and related discussions will be g

in due courses.



Still some patience for how the Hilbert space the

incorporated into the context of computability an

Axiomatic Approach — Pour-El & Richards

Type-Two Turing-Machine Effectivity Approach — W

Their key ideas :

Pick up a class of countable sets (sequences) and

Concentrate considerations on analytical objects whic

— describable recursively through these countable

— and which turn out ample enough to be very in

— yet suggest full of philosophico-mathematical q

— · · ·



2) some history of Riesz’s theorem.

Summary:

a) bounded linear functional

b) Riesz’s Theorem

c) some historical notes

d) Proofs

N.B. Here we follow the arguments of mathematical

You will see not all of them are valid in the contex

putability analysis, including the formulation of Riesz

itself.



a) bounded linear functional

A map F on a Hilbert space H, i.e., F : H � x �→ F(x)

is linear if

F(a x + by) = a F(x) + b F(y), x, y ∈ H, a, b ∈
and is bounded (or equivalently continuous) if

|F(x)| ≤ M ‖x‖, x ∈ H (for some M > 0

(or ‖xn − x‖ → 0 implies F(xn) → F(x)).



b) Riesz’s Theorem

The Riesz-Fréchet Theorem (Riesz’s Theorem):

F : H → R : bounded linear ⇔ F(x) = 〈x, vF 〉 for som

N.B. vF ∈ H uniquely determined.



c) Some historical literatures:

F. Riesz. Sur une espèce de Géométrie analytique de

de fonctions sommables. Comptes Rendus Acad.

144 (1907), 1409 – 1411.

· · · Pour fixer mes résultats, conséquences immédiates de mon th

enonce encore deux. Voici le premier, intimement lié à certaine

de MM. Hadamard et Fréchet. Pour l’ensemble des fonctions

de carré sommable, j’appelle opération continue chaque opér

correspondre à toute fonction f de l’ensemble un nombre U(f)

quand fn converge en moyenne vers f , U(fn) converge vers U(f).

est dite linéaire si U(f1 + f2) = U(f1) + U(f2) et U(cf) = cU(f).

chaque opération linéaire continue il existe une fonction k

valeur de l’opération pour une fonction quelconque f est

l’intégrale du produit des fonctions f et k. · · · (no explicit



M. Fréchet. Sur les ensembles de fonctions et les

linéaires. Comptes Rendus Acad. Sc. Paris. 144 (19

– 1416. — no explicit proof either —

Orthogonal Projection:

F. Riesz. Zur Theorie des Hilbertischen Raums. A

Math. Szeged. 7 (1934), 34 – 38.

F. Riesz et B. Sz. Nagy. Leçons d’Analyse Fonction

ème éd.) Akadémiai Kiadó (1965) — Reproduction of the

—



d) Proofs

Two proofs:

d-1) separable case

d-2) orthogonal projection — valid for non-separable

N.B. Even the separable case is not immediately tra

computability context !



d-1) When H is separable:

{en} — complete orthonormal basis : 〈ej, ek〉 = δjk

x =
∞∑

k=1

xn ek ∈ H, ‖x‖2 =
∞∑

k=1

|xk|2 < +∞

HN — linear span of e1, · · · , eN — closed subspace o

FN — restriction of F on HN : xN =
∑N

k=1 xk ek ∈ HN

F(xN) = FN(xN) =
N∑

k=1

xk F(ek)

representation of FN : vN =
∑N

k=1 F(ek) ek ∈ HN .

FN(xN) = 〈xN,vN〉 = 〈x,vN〉



d-1)[contd.]

Consequence of boundedness of F :

|F(xN)| = |
N∑

k=1

xk F(ek)| ≤ M ‖xN‖ = M

√√√√√ N∑
k=1

|x

∴

√√√√√ N∑
k=1

|F(ek)|2 ≤ M for any N

candidate of vF which realizes F(x) = 〈x,vF 〉.

vF =
∞∑

k=1

F(ek) ek ∈ H since
∞∑

k=1

|F(ek)|2 <



d-1)[Remark]

There is the idea of friendly looking countability

— but no way of foreseeing the convergence rate of

This remark will be recalled when we discuss Riesz’s T

the context of computability analysis.



d-2) Orthogonal Projection

O
CF = {F = 0}�
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d-2) [Contd-1]

CF = {x ∈ H ; F(x) = 0 } — null-space of F

v �∈ CF (i.e., F(v) �= 0)

c = pdCF
(v) — foot of v on CF : dist(v, CF ) = ‖v − c

v − c ⊥ CF or 〈v − c,w〉 = 0, F(w) = 0

v0 =
1

‖v − c‖ (v − c) (‖v0‖ = 1, v0 ⊥ CF )

candidate of vF : vF = F(v0)v0



d-2) [Contd-2]

u ∈ H =⇒ u1 = u − F(u)

F(v0)
v0 ∈ CF or F(u

Thus, 〈v0,u1〉 = 0, that is,

〈u,v0〉 −
F(u)

F(v0)
= 0 (〈v0,v0〉 = 1)



d-2) [foot]

C : closed convex subset in H. v �∈ C.

There is a unique c ∈ C such that

dist(v, C) = inf
w∈C

‖v − w‖ = ‖v − c‖

c is the foot of v on C: c = pdC(v)

For Verification:

i) The basic identity of a Hilbert space:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈
ii) And completeness of H



d-2) [Supplements]

I) Basic identity =⇒

〈x, y〉 =
1

4

(
‖x + y‖2 − ‖x − y‖2

)
, x, y ∈ H

defines an inner-product. Basic identity is characte

Hilbert space structure.

II) The idea of foot will be seen quite useful in com

discussion of the null-space of a bounded linear funct



A second example:

I = [0,1]. Let f be absolutely continuous on I with

summable derivative f ′ on I (Thus, f ′ is also absol

grable.) Suppose f(0) = f(1) = 0.

Let H1
0 be the totality of such functions f .

H1
0 is a Hilbert space with the inner-product:

〈f, g〉 =
∫ 1

0
f ′(t) g′(t) dt, f, g ∈ H1

0.

For h ∈ L2(I), consider a bounded linear functional o

H : H1
0 � f �→

∫ 1

0
f(t) h(t) dt ∈ R.

Then

vH(t) = (1 − t)
∫ t

0
s h(s) ds + t

∫ t

1
(1 − s)h(s) d



3) how Riesz’s theorem is useful ?

Summary:

a) Examples from simple linear elliptic variational pro

b) Existence and uniqueness theorems

c) Numerical Analysis



a) Examples from simple linear elliptic variational pro

D : bounded, open subset of Rn

with a nice (e.g., smooth) boundary ∂D

Is D a good object of computability analysis ?

— Yes, surely ! You can so set.

Variational problem in the background:

Let f(x) be (a good) function defined on D = D ∪ ∂D

Find (an appropriate) u(x) on D which minimizes

V (u) =
1

2

∫
D

n∑
k=1

(
∂ku(x)

)2
dx +

∫
D

u(x) f(x) dx (∂



b) Existence and uniqueness theorems

appropriate class of functions —

a certain smoothness requirement

the imposed boundary condition

Example:

Find smooth u(x) which vanish at ∂D:

Dirichlet condition : u(x) = 0 x ∈ ∂D

The Euler equation:

−∇2 u(x) + f(x) = 0, x ∈ D (∇2 =
n∑

k=1

∂2
k

d

dε
V (u + ε v)|ε=0 =

n∑
k=1

∫
D

∂ku(x) ∂kv(x) dx +
∫
D

v(x)

Choice of conditions will affect discussions below:



Choice of the Hilbert space:

H1
0(D) � v(x) ⇔ v ∈ L2(D), ∂kv(x) ∈ L2(D), v(x)

Remarks:

1) Here ∂kv are generalized derivatives of v(x):∫
D

∂kv(x)ϕ(x) dx = −
∫
D

v(x) ∂kϕ(x) dx (ϕ(x) ∈ C

2) Legitimacy of v(x)|∂D = 0 requires some discussion

Inner Product:

〈v, w〉 =
n∑

k=1

∫
D

∂kv(x) ∂kw(x) dx, v, w ∈ H1
0(D



bounded linear funcitonal on H1
0(D):

F : H1
0(D) � v �→ −

∫
D

v(x) f(x) dx (for f ∈
Why ?

|F(v)| ≤ ‖v‖‖f‖ = ‖f‖
√∫

D
v(x)2 dx

together with Poincaré’s inequality:√∫
D

v(x)2 dx ≤ δD

√∫
D

|∇v(x)|2 dx , v ∈ H1
0(D

Apply Riesz’s Theorem:

For a unique u ∈ H1
0(D), F(v) = 〈u, v〉 in H1

0(D).

This u solves the variational problem.



c) Numerical Analysis

Actual computation — Done on computer

Basic philosophy — Genuineness of discrete procedur

Main interest therein — Efficient algorithm and Erro

Origin of credibility — Mathematics

However, of course, we do not enter in philosophical a

Recall the variational elliptic problem in the above.

How do Riesz’s theorem and discretization procedure



Principle of approximation :

Sh = {sh,j(x)} — Linearly independent functions in H

Sh — Linear span of Sh in H1
0(D)

Nh = dimSh < +∞ ⇐⇒ Sh finite

Approximate v ∈ H1
0(D) by vh ∈ Sh:

vh(x) =
Nh∑

j=1

vh,j sh,j(x)

(sh,j(x) are not orthogonal)

N.B. One might imagine Sh as shape functions relate

finite elements. In fact, the presentation is too simpl

Here are just the idea and principle to avoid technica



variational equation in Sh:

〈 , 〉h : restriction to Sh of the inner product 〈 , 〉 of H

unknown — uh(x) =
∑Nh

j=1 uh,j sh,j(x)

〈uh, sh,k〉h = −
∫
D

f(x) sh,k(x) dx = −fh,k, k = 1,

LHS =
Nh∑

j=1

uh,j ah,jk, ah,jk = 〈sh,j, sh,k〉h = 〈sh,j



Matrix equation:

Ah =
(
ah,jk

)
— Nh × Nh-square matrix.

Ah is symmetric positive definite !

Uh = t(uh,1, · · · , uh,Nh) — Unknown vector

Fh = t(−fh,1, · · · , −fh,Nh) — Known vector

The matrix equation: Ah Uh = Fh, which is uniquely s

uh(x) =
∑Nh

j=1 uh,j sh,j(x) ∈ Sh : determined.



Important fact:

u(x) ∈ H1
0(D) — The solution of the variational ellipt

uh(x) ∈ Sh — Approximate solution

uh(x) is the foot of the orthogonal projection of u(x)

This fact, together with the construction of sh,j(

provides the estimate of the difference u − uh.

h corresponds to the order of approximation. This pa

quite akin to the arguments in computability analysis



4) The version in computability analysis

Summary:

a) Our Main Theorem

b) Axiomatic approach of Pour-El & Richards

c) TTE approach of Weihrauch. Some flavor



a) Our Main Theorem

Let H be an effective separable real Hilbert space wit

product 〈 , 〉. Let {en} be an effective generating set o

constitutes a basis of H.

Suppose F is a bounded linear functional on H.

Assume {F(en)} be a computable sequence of reals.

(1) Then there is a uniquely determined element vF

that F(u) = 〈u,vF 〉 holds for any u ∈ H.

(2) vF is not necessarily a computable element in H

counter-examples show.

(3) The element vF is computable if and only if the

CF = {u ; F(u) = 0 } is a recursive set.

Here are lots of jargons



b) Axiomatic approach of Pour-El & Richards

Marian B. Pour-El and J. Ian Richards.

Computability in Analysis and Physics.

Springer-Verlag (1989)

Computability structures in Banach spaces

Discussions about classical theorems of harmonic ana

Written in rather familiar language of lay mathematic

Very important result — First Main Theorem

Some reviews of their results follow:



Computable Structure S (�= ∅) as the set of

computable sequences in H specified by three axioms

Axiom I [Linear Forms]

{xnk}, {ynk} : computable sequences in H.

{αnk}, {βnk} computable sequences of reals (scalars).

d : N → N : a recursive function.

Then the sequence {∑d(n)
k=0 (αnk xk + βnk yk)} is compu

Axiom II [Limits]

{xnk} : a computable double sequence in H

{xnk} converges to {xn} in H effectively in k, n as k →
Then {xn} is a computable sequence in H.

Axiom III [Norms]

{xn} : computable sequence in H.

Then {‖xn‖H} is a computable sequence of reals.



Remarks:

1) S � (0, 0, · · · ) is assumed (i.e., S �= ∅ )

2) {xnk} converges to {xn} in H effectively in k, n as

if and only if

‖xnk − xn‖ < 2−N, k > e(n, N).

for a recursive function e : N2 → N.

3) x ∈ H is a computable element ⇐⇒ (x, x, · · · ) ∈
4) Axioms I-III are formulated for Banach spaces.

A version with the inner-product can be proposed.



Effective separable:

{en} — effective generating set ⇐⇒
computable sequence

its linear span : dense in H

E = {∑k
n=0 qn en : qn ∈ Q } : computable. dense in H

N.B.

{en} can be made into a complete orthonormal basis



Effective Density Lemma (Pour-El & Richards)

{en} : a complete orthonormal system,

{en} generates a computability structure S of H.

{xn} : a sequence in H.

{xn} : a computable sequence in S

⇐⇒
{∑d(n,k)

j=0 αnkj ej} converges to {xn} in H effectively

k → ∞

Here {αnkj} a computable triple sequence of rational

d : N2 → N a recursive function



First Main Theorem. (Pour-El & Richards, p.101):

Let Xand Y be Banach spaces with computability

Let {en} be a computable sequence in X whose line

dense in X (i.e. an effective generating set). Let T

be a closed linear operator whose domain D(T) con

and such that the sequence {Ten} is computable in Y

maps every computable element of its domain onto a c

element of Y if and only if T is bounded.

Complement.

Under the same assumptions, if T is bounded then

be said. The domain of T coincides with X, and T m

computable sequence in X into a computable sequen



Back to Hilbert spaces:

{en} : orthonormal basis. effective generating set

Fundamental fact:

x =
∑∞

n=1 xn en ∈ H computable element

⇐⇒

{xn} : computable sequence of reals∑∞
n=1 x2

n < +∞ effectively



Application to a computable version of Riesz’s T

F : H → R bounded linear functional

Definition

F is called (PR)-computable∗ if, for any {bn} ∈ S , {F
computable sequence of reals.

Proposition

F is (PR)-computable if and only if {F(en} is a c

sequence of reals such that
∑∞

n=1 |F(en)|2 < +∞
N.B. The square sum needs not converge effectively

∗not properly following Pour-El & Richards. See First Main The



Remark about the proof of Proposition:

Only if part:

F (PR)-computable =⇒ {F(en)} computable sequenc

The convergence of the square sum: See Proof d-1)

If part:

Actually contained in Pour-El & Richards (p.137)

Need to verify that {F(xn)} is a computable sequen

for any {xn} ∈ S .



Counter-example 1:

�∞0 : Banach space with norm ‖ξ‖∞ = max |ξn|
�∞0 � ξ = (ξ0, ξ1, · · · ) ⇐⇒ limn→∞ |ξn| = 0

ξ : computable ⇔ {ξn} computable & limn→∞ |ξn| = 0

�2 : Banach space with norm ‖η‖2 =
√∑∞

n=0 |ηn|2
�2 � η = (η0, η1, · · · ) ⇐⇒ ∑∞

n=0 |ηn|2 < +∞
η : computable ⇔ {ηn} computable &

∑∞
n=1 |ηn|2 <

tively.

The closed linear operator

I : �∞0 � (c0, c1, · · · ) �→ (c0, c1, · · · ) ∈ �2. dom(I) = �∞0 ∩
Apply First Main Theorem to find ζ = (ζ0, ζ1, · · · ) ∈ d

which is computable in �∞0 but not in �2.

vF =
∑∞

n=0 ζn en ∈ H : not computable in H

But F(x) = 〈x,vF 〉 is (PR)-computable.



Counter-example 2: Perhaps friendlier looking to lo

a : N → N a one-to-one recursive function

generating a recursively enumerable non-recursive set

Let ζk = 2−a(k)/2, k ∈ N, and vF =
∑∞

k=0 ζk ek

(See Pour-El & Richards, p.16. pp.22–24)

The rest is as in the previous counter-example.

N.B.

Actually ζ = (ζ0, ζ1, · · · ) ∈ �∞0 ∩ �2.



Final comment before proceeding to c):

— key point of Proof d-2) —

z ∈ H, z �= 0

Orthogonal complement of {z} : {z}⊥ = {w ∈ H ; 〈

foot of v ∈ H on {z}⊥ : pd{z}⊥(v) = v − 〈v, z〉
‖z‖2 z

pd{z}⊥ : H → {z}⊥ orthogonal projection

N.B. dist(v, {z}⊥) =
|〈v, z〉|
‖z‖ .



comment before c) [contd.]

{en} effective generating set

z ∈ H. ‖z‖ = 1

{pd{z}⊥(en)} computable sequence in H ⇔ z com

key ingredient:

pd{z}⊥(en) = en − 〈en, z〉 z (‖z‖ = 1)



c) TTE approach of Weihrauch. Some flavor

K. Weihrauch.

Computable Analysis.

Springer (2000)

The key objective here:

discuss computability of the null-space CF

Our preparation of these lectures is very much indebt

Professor Ning Zhong’s series lectures

given at Kyushu University, last November.



Summary:

c-1) TTE approach: representation, name, code, ·
c-2) (ρ, δ)-computable ⇔ (PR)-computable

c-3) coding of closed and open sets in H

c-4) recursive set

c-5) recursive closed set {z}⊥
c-6) A computable version of Riesz’s Theorem and re



c-1) TTE approach: representation, name, code, ·

Review:

Cauchy representation of R

Q = the set of rational numbers. countable. dense in

αQ : N → Q standard effective coding

ρ : ⊂ NN � p = (k0, k1, · · · ) �→ x ∈ R

by |x − αQ(km)| < 2−m as m → ∞.

ρ(p) = x ⇔ p is a ρ − name of x ∈ R

(ρ : surjective partial map)



N.B. There are other ”representations” of R.

In some case, the set of D of positive dyadic rationals

D � d ⇐⇒ d = 2m
L∑

l=0

kl

2l
(L ∈ N, m ∈ Z, kl ∈ {0,1

(2m−L ≤ d < 2m+1 in the above)

D countable, encoded by αD : N → D.



Recall

E = {∑k
n=0 qn en : qn ∈ Q } : computable. dense in H

notation or coding of E

α : N � 2�03�1 · · ·π�k
k �→

k∑
n=0

αQ(�n) ∈ E (bije

(πn=n + 1-st prime, π0 = 2, π1 = 3, π2 = 5, · · · )



Coding of H

Recall {α(km)} is a sequence in E for (k0, k1, · · · ) ∈ NN

Cauchy representation of H

δ :⊂ NN � p = (k0, k1, · · · ) �→ x ∈ H

by ‖α(km) − x‖ ≤ 2−m as m → ∞.

p δ-name or δ-code



c-2) (ρ, δ)- computability

string p = (k0, k1, · · · ) ∈ NN computable

⇐⇒
p : N � m �→ km ∈ N recursive

x ∈ H : computable ⇔ δ-name of x : computab

x ∈ R : computable ⇐⇒ ρ-name of x : computa



Computability of string function:

A string function

fT : NN × · · · × NN︸ ︷︷ ︸
k

→ NN

is computable if there is a Type 2 Turing machine w

putes it†.

†There is a Type 2 Turing machine T which reads the input st
input tapes, the j-th string pj = (nj

0, n
j
1, · · · ) on the j-th tape

symbol by symbol from the left to the right. T then compu
(p1, · · · , pk) and writes out the output string q = (m0, m1, · · ·
symbol from the left to the right. Thus, fT(p1, · · · , pk) = q.



Notes on computable sequences

{xn} : a sequence in H.

{xn} is a computable sequence in H

if and only if

there is a computable string function Ξ̂ :⊂ NN → NN

such that xn = δ(Ξ̂(qn)), n ∈ N.

With these, discussions in Pour-El & Richards are t

into Weihrauch’s approach



F : H → R bounded linear functional

F is computable‡ if

F(δ(p)) = ρ(Ψ(p)), p ∈ NN

where Ψ : NN → NN is a computable string function.

Ψ is a (δ, ρ)-realization of F

F is (δ, ρ)-computable if it has a computable (δ, ρ)-rea

‡Forget (PR)-computable for some time. They turn out to be e



c-3) Coding of closed and open sets in H.

Open ball with center c ∈ H and radius r > 0

B(c, r) = {x ; ‖x − c‖ < r }
Countable family of open balls

B = {B(y, d) ; y ∈ E, d ∈ D }
notation or coding of B

β : N � k → (k1, k2) → B(α(k1), αD(k2)) ∈ B

(k → (k1, k2) is the inverse of the standard bijection N



Some auxiliary symbols :

Bk = {B(y, d) ; y ∈ E, d ∈ D, d ≤ 2−k}, k ∈ Z

For X ⊂ H,

BX = {B ; B ∈ B, B ∩ X �= ∅ }.
XB = {B ; B ∈ B, B ∩ X = ∅ }.

Also BX
n = Bn ∩ BX and XBn = B ∩ XB.



Basic Proposition

Take a closed set A ⊂ H. Then

A =
⋂

n∈N

⋃
B∈BA

n

B

and

H \ A =
⋃

n∈N

⋃
B∈ABn

B =
⋃

B∈AB

B

hold.



A = the totality of the closed sets in H.

Basic Proposition =⇒ Each A ∈ A is specified by BA.

Via the bijection§ β : N → B, β−1(BA) ⊂ N.

Its enumeration determines pA ∈ NN.

A ∈ A is encoded by pA ∈ NN

Encoding of A :

ψ< :⊂ NN � p �→ A ∈ A

defined by

ψ<(p) =

{
∅, p = (0,0, · · · )
A, p = pA

.

§pA = (n0, n1, · · · ) iff BA = {β(nk); k = 0,1, · · · } unless A = ∅.
infinite when A �= ∅. Of course, B∅ = ∅ and ∅ can be coded by



O = the totality of the open sets in H.

The compliments of the closed sets are open and th

open sets are closed.

To encode an open set O = H \ A,

employ the enumeration p = pO ∈ NN of β−1(AB), A =

Encoding of O :

θ< : NN � p �→ O ∈ O

defined by

θ<(p) =

{
∅, p = (0,0, · · · )
O, p = pO

.



c-4) recursive set

More detailed encodings:

ψ : NN → A and θ : NN → O.

〈 , 〉 = the standard pairing NN×NN → NN induced by J

For p1, p2 ∈ NN : ψ<(p1) = A and θ<(p2) = H \ A,

ψ : NN � p = 〈p1, p2〉 �→ A ∈ A

For O ∈ O, use ψ-code of H \ O ∈ A to define θ. Thus

θ(〈q1, q2〉) = O ⇐⇒ ψ(〈q2, q1〉) = H \ O.



A ∈ A is recursively enumerable or r.e.

if its ψ<-code pA is computable

A is co-recursively enumerable or co-r.e.

if its complement O = H \ A has a computable θ<-cod

In our previous language :

A is ψ<-computable iff A is r.e.,

A is co-r.e. iff H \ A is θ<-computable.

For closed sets in the Hilbert space H, the above encod

that A ∈ A is r.e. and co-r.e. iff the set β−1(BA) ⊂ N is

Thus, it is natural to call A ∈ A recursive or ψ-compu

is r.e. and co-r.e..



Some examples:

0 ∈ H =⇒ {0} is a recursive closed set.

x ∈ H, {x} a recursive closed set =⇒ x is computa

z ∈ H, z �= 0 computable

=⇒ pd{z}⊥(y) computable for computable y ∈ H

=⇒ {pd{z}⊥(yn)} computable sequence

for computable sequence {yn} in H



c-5) recursive closed set {z}⊥

{z}⊥ is a recursive closed set iff

its ψ<-name is computable and

equality |〈y, z〉| = d ‖z‖ can be effectively determined

for each y ∈ E and d ∈ D.

{z}⊥ recursive closed set

=⇒ dist(y, {z}⊥) is computable (y ∈ E outside {z}

{z}⊥ recursive closed set

=⇒ pd{z}⊥(y) has computable δ-name (y ∈ E outsid



Further properties:

{z}⊥ recursive closed set ‖z‖ = 1

=⇒ z computable (show {pd{z}⊥(en)} computab



c-6) A computable version of Riesz’s Theorem and re

F : H → R bounded linear functional

null-space CF = {x ; F(x) = 0 } recursive closed set

{F(en)} computable sequence of reals

=⇒ F(x) = 〈x, vF 〉 with computable vF

null-space CF = {x ; F(x) = 0 } recursive closed set

{F(e)} computable for some computable e ∈ H

=⇒ F(x) = 〈x, vF 〉 with computable vF



Some further observations:

{F(en)} computable sequence of reals

‖y − pdCF
(y)‖ computable (for some y ∈ E, F(y) �= 0)

=⇒ vF computable

vF computable

=⇒ ‖y − pdCF
(y)‖ computable (for any y ∈ E, F(y)



Final comment:

F : H → R bounded linear functional. ((PR)-)comput

vF computable ⇐⇒ CF recursive closed

N.B. Interpretation in explicit examples: immer o

Invitation: In addition to the above notices
Related results according to various differentiate

of computability are of course still to be exploite

N.B. Vasco Brattka called me attention that, in view of the f

of F coincides with that of ‖vF‖, the above statement may well b

standard arguments of recursive closed sets, whence much of o

could be simplified.



THANK YOU VERY MUCH FOR YOUR PATIE

There are still incomplete manuscripts in a pdf form

technical details (of various levels, though) about t

discussions. — I show only its references part here

you some ideas.


