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Plan of the talk

1. We develop a computational notion of compactness that arises in

• Paul Taylor’s work on Abstract Stone Duality, and

• my work on synthetic topology of computational spaces.
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Plan of the talk

1. We develop a computational notion of compactness that arises in

• Paul Taylor’s work on Abstract Stone Duality, and

• my work on synthetic topology of computational spaces.

The notion is based on universal quantification.

2. On the way, we sketch applications to

• computational analysis (known to you), and

• non-deterministic and probabilistic computation (new to me).
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Disclaimer

There is much to say about constructive mathematics . . .

. . . as opposed to computable mathematics.

In this talk I study computation using classical logic.

But questions about constructive aspects are most welcome.

As some of you know, I am rather interested in this dimension.

But also I don’t take classical or constructive mathematics as a matter of faith.

Please click here if you agree with the above conditions and wish to
continue attending the talk.
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Reading the small print

There is much to say about constructive mathematics . . .

. . . as opposed to computable mathematics.

In this talk I study computation using classical logic.

But questions about constructive aspects are most welcome.

As some of you know, I am rather interested in this dimension.

But also I don’t take classical or constructive mathematics as a matter
of faith.
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Universal quantification in computation

Consider the functional F : NN → Bool defined by

F (s) = true ⇐⇒ sn = 0 for all n ∈ N.

As you all know, this is not computable:

• If the input s is given as a blackbox,

this violates continuity.

• If the input s is given as a whitebox,

this violates the Halting Problem.
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But, perhaps surprisingly:

Some infinite sets do allow definition of algorithms by universal
quantification over them.

An example was implicit in

• the work of Gandy (1970’s, unpublished), and

• independently Berger (1990).

It was made explicit by Simpson (1998).
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The Gandy–Berger program (written in Haskell)

Preliminary notation:

type Nat = ... -- natural numbers
type Two = ... -- 2 = {0,1}
type Cantor = Nat -> Two -- 2ˆN

hd :: Cantor -> Two
tl :: Cantor -> Cantor

cons :: (Two, Cantor) -> Cantor

hd(s) = s(0)
tl(s) = \i -> s(i+1)

cons(n,s) = \i -> if i == 0 then n else s(i-1)
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The Gandy–Berger program

epsilon :: (Cantor -> Bool) -> Cantor
exists :: (Cantor -> Bool) -> Bool
forall :: (Cantor -> Bool) -> Bool

epsilon(p) =
let l = cons(0,epsilon(\s -> p(cons(0,s))))

r = cons(1,epsilon(\s -> p(cons(1,s))))
in if p(l) then l else r

exists(p) = p(epsilon(p))

forall(p) = not(exists(\s -> not(p(s))))
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Loading the program

$ hugs kyoto.hs
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Loading the program

$ hugs kyoto.hs
__ __ __ __ ____ ___
|| || || || || || ||__
||___|| ||__|| ||__|| __||
||---|| ___||
|| ||
|| || Version: November 2002

Reading file "/usr/lib/hugs/lib/Prelude.hs":
Reading file "kyoto.hs":
Hugs session for:
/usr/lib/hugs/lib/Prelude.hs
kyoto.hs
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Running the program

>
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Running the program

> forall(\s->exists(\t->s(t(0)+t(1))==t(s(1)+s(2))))
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Running the program

> forall(\s->exists(\t->s(t(0)+t(1))==t(s(1)+s(2))))
True
>
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Running the program

> forall(\s->exists(\t->s(t(0)+t(1))==t(s(1)+s(2))))
True

> exists(\s->forall(\t->s(t(0)+t(1))==t(s(1)+s(2))))
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Running the program

> forall(\s->exists(\t->s(t(0)+t(1))==t(s(1)+s(2))))
True

> exists(\s->forall(\t->s(t(0)+t(1))==t(s(1)+s(2))))
False
>
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Running the program

> forall(\s->exists(\t->s(t(0)+t(1))==t(s(1)+s(2))))
True

> exists(\s->forall(\t->s(t(0)+t(1))==t(s(1)+s(2))))
False
>

The above two queries amount to

∀s ∈ 2N ∃t ∈ 2N st0+t1 = ts1+s2,

∃s ∈ 2N ∀t ∈ 2N st0+t1 = ts1+s2.
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Sample application (Alex Simpson, 1998, LNCS 1450)

Compute the supremum of the values of a function 2N → 2N.

max :: (Cantor, Cantor) -> Cantor
-- easy definition of lexicographic max omitted

sup :: (Cantor -> Cantor) -> Cantor

sup(f) = let h = hd(f(\n -> 0))
in if forall(\s -> hd(f(s)) == h)

then cons(h, sup(tl.f))
else max( sup(\s -> f(cons(0,s))),

sup(\s -> f(cons(1,s))))
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More sample applications (Alex Simpson, loc. cit.)

Compute the functionals max,
∫

: ([0, 1] → R) → R.

Use signed-digit binary representation.

avg :: (I, I) -> I -- definition of average omitted
riemann :: (I -> I) -> I
riemann(f) =

let h = hd(f(zero))
in if forall(\s -> hd(f(s)) == h)

then cons(h, riemann(tl.f))
else avg( riemann(\s -> f(cons(0,s))),

riemann(\s -> f(cons(1,s))))

(This idea was previously used by Edalat and Escardó 1996, for both max and
∫

.)
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Summary so far

• Universal quantification over some infinite data spaces is computable.

• This has non-trivial applications to computational analysis.

(The ones given are long known results, but this is not the point.)
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Topological analysis of this phenomenon

A topological space is called compact if every open cover has a finite
subcover.

I’ll now relate this to universal quantification.
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Lemma

The following are equivalent for spaces X and Y :

1. The projection Y ×X → Y is a closed map.

2. F ⊆ Y ×X closed =⇒ {y ∈ Y | ∃x ∈ X.(y, x) ∈ F} closed.

3. W ⊆ Y ×X open =⇒ {y ∈ Y | ∀x ∈ X.(y, x) ∈ W} open.
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Proof of the lemma

The following are equivalent for spaces X and Y :

1. The projection π : Y ×X → Y is a closed map.

2. F ⊆ Y ×X closed =⇒ {y ∈ Y | ∃x ∈ X.(y, x) ∈ F}︸ ︷︷ ︸
π(F )

closed.

3. W ⊆ Y ×X open =⇒ {y ∈ Y | ∀x ∈ X.(y, x) ∈ W}︸ ︷︷ ︸
(π(W c))c

open.
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Theorem

TFAE for a topological space X:

1. X is compact.

2. ∀Y , the projection Y ×X → Y is a closed map.

3. ∀Y , F ⊆ Y ×X closed =⇒ {y ∈ Y | ∃x ∈ X.(y, x) ∈ F} closed.

4. ∀Y , W ⊆ Y ×X open =⇒ {y ∈ Y | ∀x ∈ X.(y, x) ∈ W} open.
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We are interested in the equivalence of (1) and (4):

a topological space X is compact ⇐⇒ for any Y ,

openness of W ⊆ Y ×X

implies that of {y ∈ Y | ∀x ∈ X.(y, x) ∈ W},

because, replacing “open” by “semi-decidable”, it gives rise to . . .
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Computational compactness

We say that a computational space X is compact ⇐⇒ for any Y ,

semidecidability of W ⊆ Y ×X

implies that of {y ∈ Y | ∀x ∈ X.(y, x) ∈ W}.
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N is of course a counter-example

Recall the functional F : NN → Bool defined by

F (s) = true ⇐⇒ sn = 0 for all n ∈ N.

This is not computable, as we have discussed.

This has to do with the fact that N is not (computationally) compact:

1. Consider Y = NN and X = N in the previous definition.

2. Consider W ⊆ NN × N defined by W = {(s, n) | sn = 0}.

3. This is decidable and hence semidecidable.

4. However, the singleton set {s ∈ NN | ∀n ∈ N.(s, n) ∈ W}
is not semidecidable and hence not decidable.
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Look at the definition again:

X is compact ⇐⇒ for any Y ,

semidecidability of W ⊆ Y ×X

implies that of {y ∈ Y | ∀x ∈ X.(y, x) ∈ W}.
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Shouldn’t we require uniformity in the definition?

A computational space X is compact ⇐⇒ for any Y ,

semidecidability of W ⊆ Y ×X

implies that of {y ∈ Y | ∀x ∈ X.(y, x) ∈ W},

uniformly in W .

We instead consider an alternative formulation for which uniformity is
automatic, using the notion of exponentiation.
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Exponentiation of topological spaces

Let S be any space.

We write SX to denote the set of continuous maps from X to S with a
topology such that

1. the evaluation map e : SX ×X → S defined by e(f, x) = f(x) is
continuous, and

2. for any space Y , if f : Y ×X → S is continuous then so is its
transpose f̄ : Y → SX defined by f̄(y) = (x 7→ f(y, x)).

Such an exponential topology doesn’t always exist, but when it does it
is easily seen to be unique.
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Sierpinski space

Let S be the Sierpinski space with

an isolated point > (true) and

a limit point ⊥ (false).

The open sets are ∅, {>} and {⊥,>}, but not {⊥}.

A map p : X → S is continuous ⇐⇒ p−1(>) is open.

U ⊆ X is open ⇐⇒ its characteristic map χU : X → S is continuous.
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Theorem

TFAE if the exponential SX exists:

1. X is compact.

2. The universal-quantification functional A : SX → S defined by

A(p) = > ⇐⇒ ∀x ∈ X.p(x) = >

is continuous.
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Proof

We routinely use the previously proved:

Lemma. TFAE for a topological space X:

1. X is compact.

2. For every space Y and every open W ⊆ Y ×X, the set
{y ∈ Y | ∀x ∈ X.(y, x) ∈ W} is open.

. . . and nothing else.

In particular, we don’t need to know what the exponential topology is.

The universal property suffices.
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Proof

X compact =⇒ A : SX → S continuous:

Because the evaluation map e : SX ×X → S is continuous, the set

W
def= e−1(>) = {(p, x) ∈ SX ×X | p(x) = >}

is open.

Considering Y = SX in the lemma, the compactness of X gives the
open set

{p ∈ SX | ∀x ∈ X.(p, x) ∈ W} = {p ∈ SX | ∀x ∈ X.p(x) = >} = A−1(>).

Therefore A is continuous.
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Proof

A : SX → S continuous =⇒ X compact:

To apply the lemma, let Y be any space and W ⊆ Y ×X be open.

Because χW : Y ×X → S is continuous, so are its transpose

w : Y → SX and the composite A ◦ w : Y → S.

Hence V
def= (A ◦ w)−1(>) is open.

Now ∀x ∈ X.(y, x) ∈ W iff ∀x ∈ X.w(y)(x) = > iff A(w(y)) = > iff
y ∈ V .

This shows that {y ∈ Y | ∀x ∈ X.(y, x) ∈ W} = V and hence it is open,
as required.
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Uniformity for free (for exponential experts)

If X is compact, then we have a continuous map SX → S.

Elevating this map to the power Y , we get (SX)Y → SY .

But (SX)Y ∼= SY×X.

Hence we get a continuous map SY×X → SY .

This sends the characteristic map of W ⊆ Y ×X to that of
{y ∈ Y | ∀x ∈ X.(y, x) ∈ W}.

In this sense, the passage from W to {y ∈ Y | ∀x ∈ X.(y, x) ∈ W} is
continuous.
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Computational interpretation of the Sierpinski space

Space of results of semi-decisions:

> = termination = observable true.

⊥ = non-termination = unobservable false.

The asymmetry of the topology of the Sierpinski space reflects the
asymmetry of the notion of semi-decision.

The negation map S → S is not continuous.

Semi-decidable subset of X ∼= computable map X → S.
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Official formulation of computational compactness

We say that X is computationally compact if the universal quantification
functional SX → S is computable.

In other words:

X is computationally compact ⇐⇒ universal quantification over
semi-decidable predicates is semi-decidable.
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Generality and precision of the definition

One has to work in computational settings that incorporate a Sierpinski
domain S and exponentiation SX for computational spaces X.

One has to say precisely what a Sierpinski domain is.

Possible settings:

• Taylor’s ASD.

• Higher-type programming languages (e.g. Haskell, ML, PCF).

• Realizability toposes with a dominance.

• Cartesian closed categories of represented spaces (Schröder).
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Haskell compactness of the Cantor space

We previously discussed a boolean-valued universal quantification.

data S = T

ifs :: (S,a) -> a
ifs(T,x) = x

forall :: (Cantor -> S) -> S

forall(p) =
p(ifs(forall(\s -> p(cons(0,s)))
/\ forall(\s -> p(cons(1,s))), \n -> 0))
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The Tychonoff program

The product of an r.e. sequence of computationally compact spaces is
itself computationally compact.

In Haskell, we need witnesses for the inhabitation of each space.

type Seq a = Nat -> a
type Quant = (a -> S) -> S

t :: (Seq a, Seq (Quant a)) -> (Quant (Seq a))
t(w,a) = \p ->
hd(a)(\x->p(ifs(t(tl(w),tl(a))(\s->p(cons(x,s))),w)))

The proof that this program works is non-trivial. It uses denotational
semantics, domain theory and topology (Tychonoff!).
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There are plenty of computationally compact sets

Starting with the finite ones, one gets non-trivial ones using the
Tychonoff program.

Then a further supply is obtained by taking computable images of
computationally compact sets.

One can apply Tychonoff again, and so on.

Question: Is every computationally compact set a computable image of
the Cantor space?
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Other computational versions of topological notions

Open, closed, Hausdorff, discrete. (Cf. Taylor’s ASD.)

They interact with computational compactness as expected.

In fact, with more transparent proofs (using λ-calculus).

If there is time, I’ll use the blackboard to give you some examples.
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Application to non-deterministic computation

Must testing:

Given

• a non-deterministic program P with values on X,

• a semi-decidable set U ⊆ X,

semi-decide whether the output of P must land in U .

Obstable: Such a program has infinitely many outputs in general.

But: The outputs form a computationally compact set.

Hence: Must-testing is semi-decidable.

This is a rather simplified story, suitable for a tired audience.
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Application to probabilistic computation

Given

• a probabilistic program P with values on X, and

• a semi-decidable set U ⊆ X,

(lower semi-)compute the probability that the output of P lands in U .

This is again possible, again using a compactness argument, and a
more general version of integration.
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To conclude (well, almost: there is another slide)

1. Perhaps surprisingly, there are infinite sets over which one can
universally quantify in a computable fashion.
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1. Perhaps surprisingly, there are infinite sets over which one can
universally quantify in a computable fashion.

2. Not only they include usual topologically compact sets,

2N, [0, 1], their countable products, images etc.,

3. but also they must be topologically compact, and hence they exclude
all non-compact sets of analysis and topology.

4. A definition of computational compactness is based on a
reformulation of topological compactness that avoids open coverings.

5. For experts: notice how we have avoided the Scott topology in the discussion,
using projection maps Y ×X → Y instead. But.
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