p.60, 問題 3.4

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ \mathbf{O} & A_{22} \end{array}\right)$$

$$det(A) = \sum_{(p_1, p_2, \dots, p_n)} \varepsilon(p_1, p_2, \dots, p_n) a_{1p_1} a_{2p_2} \dots a_{np_n}$$

ただし、 (p_1,p_2,\cdots,p_n) は、 $(1,2,\cdots,n)$ の順列、 $\varepsilon(p_1,p_2,\cdots,p_n)$ は転倒数による符号 (p.44 参照)。A の形から次のようになっている。(それぞれが正方行列なので、n は偶数である。n=2m とする。)

 $i \geq m+1, p_i \leq m$ ならば、 $a_{ip_i} = 0$ (すなわち O の部分。

 $i\geq m+1$ のとき $p_i\leq m$ ならば、このような (p_1,p_2,\cdots,p_n) については、 $i\leq m$ ならば $p_i\geq m+1$ である(順列だから)。 したがって

$$det(A) = det(\begin{pmatrix} A_{11} & \mathbf{O} \\ \mathbf{O} & A_{22} \end{pmatrix})$$

これが $det(A_{11})det(A_{22})$ であることは、p.45, 例題 3.4 を繰り返し使うことで、示される。詳細は省略。n=4 くらいで、実際に計算してみてください。