集合と論理 レポート課題 2003-2 八杉担当 7月 14日講義終了後提出・厳守

以下で ある;ない においては、二つののうち正しいほうを○で囲むこと。
それ以外は空欄またはスペースに正しい答えを記入すること。
1 U は集合、 A,B をそ <u>れぞ</u> れ U の部分集合とする。このとき
$(A^c \cap B)^c = A \cup B $ c
ただし X^c は集合 X の U に関する補集合を表す。
2 (1) $\mathbf N$ は正整数の集合、 K は京都府民全体の集合、とする。
写像 $d:K \to \mathbf{N}$ を
d(c)=c さんの運転免許証番号
と定義す <u>る。このとき d は</u>
全域的で ある; ない ; 全射で ある; ない ;
単射で ある;ない 。
M= 京都府発行の運転免許証番号の集合
と、おくとき、同じ写像 d は
$d:K \to M$
と表される。このとき d は全射で $egin{array}{cccccccccccccccccccccccccccccccccccc$
d の逆写像 g は、 n が京都府発行の運転免許証番号であるとき、
g(n)=番号 n の運転免許証をもつ 京都府民 である。
K^st を、京都府発行の <u>運転</u> 免許を <u>もつ京都</u> 府民の集合とするとき、 d のグラ
フは $G_d = \{\langle c, n \rangle : c \in \fbox{K^*}, n = \fbox{d(c)}\}$ と表すことができる。したがっ
て、 G_d は直積集合 $K^* imes M$ の部分集合である。

注:最後の答えは、 K^* の代わりに K, M の代わりに N でもよい。