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Inelastic binary collision

A model of granular materials:
Smooth (frictionless) spheres which dissipate their kinetic energy by inelastic collisions

Relative velocities

g=V1i—V; .

g 'n=—e(g'n)



Inelastic binary collision

Velocities, v''y and v, which result in v; and v, after an inelastic collision:
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g =V,1—V, g -n=—;(g'n)

1
For frictionless particles, g’ = g — <1 + —) (g-n)n
e

Exercise 1) Please derive the following relations.
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\elocity distribution functions

@ o @ @ oo “The number of particles in a volume dr with
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Co—N, e the velocities v~v+dv at time ¢t ” = f (r, v, t)drdv

V \
@ dr =\ R ," ® If there is no collision, we can trace the particles by
e © \\r\ X @ @ r—-r+vdt dv
¢ e ¢ F=m— External
@ r vo v+ (F/m)dt — " dt body force

(the center of dr)

The number of particles does not change:

{f(r+vdt,v+ (F/m)dt,t + dt) — f(r,v,t)}drdv =0

Because of collisions, the number of particles change during dt:

{f(r + vdt,v+ (F/m)dt,t + dt) — f(r,v,t)}drdv = (%) drdvdt
coll
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Boltzmann equation

0
The change of the number of particles after collisions: (—f) drdvdt
coll

at

« Case 1. “Direct collision”, v = v'(# v), lose the number of particles with v
« Case 2: “Inverse collision”, v''(# v) = v, gain the number of particles with v

Here, we assume that no particle goes out from the volume dr.

(side-view)

db |g|dt
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(top-view) bdp
—
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The number of direct collisions:

The particles in a volume element
dV = bdp X db X |g|dt
will collide with the scatter particle.

b=o0sinf,db =o0cos0db

~dV = o?|g-n|sin8 dododt
= ¢?|g - n|dQdt

“The number of particles in dV”
= f(r,vy, t)dVdv,

“The number of scatters in dr”
= f(r, vy, t)drdv,



Boltzmann equation

The number of direct collisions:

(The number of particles in dV) x (The number of scatters in dr)

f(r,v, t)f(r, vy, t)o?|g - n|dQdv,dv,drdt

The number of inverse collisions:

fr,v',Of@, vy, t)o?|g"  n|ldQdv”’ dv",drdt

T 1 " " 1
g’ 'n= —;(g'n) dv'ydv’,; =—dvidv,  (Exercise 1)
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The amount = (inverse collisions “gain”) — (direct collisions “l0ss”)
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cf.) Note the similarity with the Master equation!



Boltzmann equation

| weorty. flav =5 fj dvdv jg dalg nlAL) + IFF

AA(V) = A(V') — A(v)

Collision invariants

Mass Y(v) =m jml[f,f]dv =
Momentum Y(v) =mv val[f,f]dv =0

- - ’I’)’lV2 m_vzl[ ]d __7'[7710'2(1_ 2)j| |3 /d d /
Kinetic energy (v) = — > f,fldv = Te e g’ ff'dvdv

Exercise 2) Please derive above relations of collision invariants.



Hydrodynamics

Boltzmann eq. (% +v- \7>f = I[f, f]

e.g.) Integrate over v

v' V and visindependent.
v" Collision invariant

0
ajfdv+\7-fvfdv=jI[f,f]dv=0
. 0
Continuity eq. ﬁn +V-(nu) =0

Number density — n(r,t) = jf(l‘,v, t)dv

1
n(r,t)

Velocity field u(r,t) = j vf(r,v,t)dv



Hydrodynamics

JdVV X [Boltzmanneq.] m) Equation of motion

d 1
—ut+u-Vu=——-">"V-0
ot mn

my*
fdv > X [Boltzmann eq. ] » Energy eq.

d 2
aT+u-|7T——§(a.|7u+\7-q)—(T

my?2
“Granular” temperature T(r,t) = 3n(r, t)j f(r,v,t)dv
Velocity fluctuation V =v—u(r,t)

Exercise 3) Please derive the equation of motion from the Boltzmann eq,.
(The derivation of the energy eq. is given in the lecture note.)



Hydrodynamics

1
Stress O-ij = TlT5U + jTTl(VlV] — §5UV2)de = anl] + f Dl]de

mV? 5 3
Heat flux qi =j > _ET Vifdv:fsifdv

i = ——— | v2Ilf, flav
Cooling rate ¢ = 3T ,



Chapman-Enskog method

“Slightly” inhomogeneous
V~k e~|Kk| « 1

V- eV
Dispersion relation

w(k) = wy + kw; + k*w, +

~wy + ewy + 2wy + -+

Introduce different time scales

Perturbative expansion of f(r,v,t)

f=fotefst



Chapman-Enskog method

Boltzmann eq. (% +v- V)f = I[f, f]

d d d

a=at0+eat1+--- V- eV f=fotefi +
Closed equatlon of
o(1) T o = 1lfo fo
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Ly
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Chapman-Enskog method

Assume that f(r, v, t) depends on r and t through the
hydrodynamic fields, n(r,t), u(r,t),and T(r, t).

of afan+af 6u+6f6T
ot onadt odu ot OT ot
of of of

|7f=%|7n+%-\7u+ﬁ\7T

cf.) This idea, “projection of phase-space functions on hydrodynamic fields”,
IS quite important in statistical mechanics, e.q. the mode-coupling theory (MCT).

Combined with the 15t-order hydrodynamics,
the 1st-order Boltzmann eq. is now written as

0

5 f1—1fo, fil = 11f1, fol = A-VlogT + B - Vlogn + C: Vu
0

Exercise 4) Please show the explicit forms of A, B, and C.
Note that A x V,B < V, and C is a traceless tensor.



Chapman-Enskog method
0

ot fl — I[fo,fl] — I[fl,fo] =A- VlogT +B- Vlogn + C:Vu
0
\

J

1
Linear in f; I

fi = o VlogT + - Vlogn + y: Vu

Substitute f; in the 1t-order Boltzmann eq. and use the O0t"-order hydrodynamics

o 1 B
—Co (Ta_T-I_f)a_][fo’a] =A

0
—Co (T6_5+ 0‘) —Jlfo,B] =B

Y
—CoTa—T—][fo;Y]=C Jla,b] = Ila, b] + I[b, a]

o, 3,and y are determined by solving the equations, i.e. f; is obtained.



Chapman-Enskog method

2
Stress 0;; =nTd;; + j Dijfdv =poij —n (Viuj + Viu; — §5ij\7kuk>
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Kinetic theory Phenomenological expression

V- eV f=fotefi+-
0o(1) p=nT  Hydrostatic pressure

1
O(e) n= _EJ(D:V)dV Shear viscosity

Heat flux ¢q; = jSifdv = —kV;T — uVn

1 .
K==37 (S-a)dv  Thermal conductivity

0(e) 1
w=-g- (S:B)av  “2M-thermal conductivity”



Chapman-Enskog method

e.g.) From the Oth-order Boltzmann eq.

n

V2 v2
fo = G mysrz X [_ 2T/m] {1 +az(e)5, <2T/m>}

Shear viscosity
15 mT 3(4 — 3e)
T= 20 +e)(13 — 0)d? / - (1 T 83 -9 a2(8)> «NT
Thermal conductivity
75 T 797 + 211e
“T20+ )0 + 7e)d? ./nm<1 T 3209+ 7¢) “2(8)) VT

“2nd-thermal conductivity”
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The oblique impacts of nanoclusters are studied theoretically and by means of molecular dynamics. In
simulations we explore two models—Lennard-Jones clusters and particles with covalently bonded atoms.
In contrast with the case of macroscopic bodies, the standard definition of the normal restitution coefficient
yields for this coefficient negative values for oblique collisions of nanoclusters. We explain this effect and
propose a proper definition of the restimtion coefficient which is always positive. We develop a theory of an
oblique impact based on a continnum model of particles. A surprisingly good agreement between the
macroscopic theory and simulations leads to the conclusion that macroscopic concepts of elasticity, bulk
viscosity, and surface tension remain valid for nanoparticles of a few hundred atoms.

DOT: 10.1103/PhysRevLet.105.238001

Introduction.—Inelastic collisions, where part of the me-
chanical energy of colliding bodies transforms into heat, are
common in nature and industry. Avalanches, rapid granular
flows of sand, powders, or cereals may be mentioned as
pertinent examples [1.2]. Moreover, inelastic collisions
define basic properties of astrophysical objects, like plane-
tary rings, dust clouds, etc. An important characteristic of
such collisions is the so-called normal restitution coefficient
e. According to a standard definition, it is equal to the ratio
of the normal component of the rebound speed, g’ (prime
states for the postcollision value), and the impact speed, g

f.
e=-212 i)
g£-n

The unit intercenter vector n = ry»/|rys| at the collision
instant (rj; = r; — ry) specifies the impact geometry. Since
particles bounce in the direction opposite to that of the
impact, e is positive, e > 0, and since the energy is lost in
collisions, e 1s smaller than 1, that is, 0 = ¢ = 1. Thisis a
common statement in the majority of mechanical textbooks,
where it is also claimed that e is a material constant. Recent
experimental and theoretical studies show, however, that the
concept of a restitution coefficient is more complicated;
first, it depends on an impact speed [3-5] and second, it
can exceed unity for a special case of obligue collisions with
an elastoplastic plate [6], where the energy of normal mo-

PACS mumbers: 45.70.—n, 45.50.Tn

numerically [7-10]. It was observed that the surface effects,
due to the direct intercluster van der Waals interactions, play
a crucial role: The majority of collisions of homogeneous
clusters, built of the same atoms, lead to a fusion of particles
[7]: they do not fuse for high impact speeds, but disintegrate
into pieces [7]. This complicates the analysis of restitutive
collisions, which may be more easily performed for parti-
cles with a reduced adhesion. Among possible examples of
such particles are clusters of covalently bonded atoms,
especially when their surface is coated by atoms of a differ-
ent sort, such as for H-passivated 51 nanospheres [8]. These
particles can rebound from a substrate, keeping their form
unaltered after an impact [8]. The bouncing nanoclusters
demonstrate a surprising effect—the normal restitution
coefficient can exceed unity even for strictly head-on
collisions [9].

In this Letter we investigate the oblique impact of nano-
clusters with the reduced adhesion by means of molecular
dynamics (MD) and theoretically, using concepts of con-
tinuum mechanics. Unexpectedly, we have found that the
normal restitution coefficient, as defined by Eg. (1),
acquires for large incident angles negative values, e < 0.
We explain this effect by the reorientation of the contact
plane during an impact and quantify it. Moreover, we
propose a modified definition of e, which preserves its
initial physical meaning and always yields positive values.
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