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Abstract. Employing molecular dynamics simulations of two-dimensional soft parti-
cle packings, we investigate microscopic mechanical responses of granular materials to
simple shear deformation. Though microscopic affine responses are deterministic, the re-
structuring of force-chain networks is well described by a stochastic method for the force
distributions, i.e. a master equation. We find that microscopic responses of force-chains
are anisotropic in average, while fluctuations of forces are equiprobable in all directions,
i.e. the probability of force fluctuations is isotropic under simple shear deformation.

1 Introduction

Quasi-static deformations of granular materials have been widely investigated because
of their importance in industry and science. However, the macroscopic behavior of dense
granular materials is still not fully understood due to disordered configurations and com-
plex dynamics of the constituent particles [1]. At microscopic scale, mechanical responses
of granular materials are probed as the change of force-chain networks [2, 3], where com-
plicated non-affine displacements of the particles cause the restructuring of force-chains
including opening and closing contacts. If macroscopic quantities, e.g. shear stress, are de-
fined as statistical averages in the force-chains, their mechanical responses to quasi-static
deformations are governed by the change of probability distribution function (PDF) of
forces. Therefore, the PDFs in dense granular materials have practical importance such
that many theoretical studies [4, 5] have been devoted to determine their functional forms
observed in experiments [6] and numerical simulations [7].

Recently, we have proposed a master equation for the PDFs as a stochastic description
of the restructuring of force-chain networks [8]. The master equation can reproduce
the evolution of the PDFs under isotropic (de)compressions, where transition rates or
conditional probability distributions (CPDs) in the master equation fully encompass the
statistics of microscopic mechanics of dense granular materials.

In this paper, we apply our master equation to the stochastic evolution of force-chain
networks under simple shear deformations. First, we explain our numerical method in
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Sec. 2. Then, we introduce our theoretical framework in Sec. 3 and show our numerical
results in Sec. 4. In Sec. 5, we discuss and conclude our results.

2 Method

We use molecular dynamics (MD) simulations of two-dimensional 50 : 50 binary mix-
tures of frictionless soft particles with the same mass, m, and two kinds of radii, R and
R/ρ (ρ = 1.4). The normal force between the particles in contact is given by f = Kξ−ηξ̇,
where K, η, ξ, and ξ̇ are a spring constant, viscosity coefficient, particle overlap, and rela-
tive speed in the normal direction, respectively [9]. A global damping force, fdamp = −ηv,
proportional to the particle’s velocity, v, is also introduced to enhance the relaxation,
where the damping coefficient, η, is the same with the viscosity coefficient between the
particles in contact. Then, we randomly distribute the N = 8192 particles in a L × L
square periodic box to make static packings by the method described in Ref. [8], where
distances from jamming are defined by the averaged overlaps. In this study, we prepare
different 50 packings for each distance from jamming, ∆ϕ ≡ ϕ−ϕJ , by changing the initial
random configurations of the particles, where ϕ and ϕJ are defined as the area fraction of
the particles and the jamming point [3], respectively.

We apply a simple shear deformation to the static packings by replacing every particle
positions, (xi, yi), with (xi +∆γyi, yi) (i = 1, . . . , N), where ∆γ is an infinitesimal strain
increment and the Lees-Edwards boundary conditions are used.

3 A Master Equation

Macroscopic mechanical responses of granular materials to simple shear deformations
are described by constitutive equations [1]. In this section, we show that constitutive
equations can be described by microscopic mechanical responses of force-chain networks
through a master equation for the PDFs of forces. In two-dimensional soft particle pack-
ings, a microscopic expression of stress tensor is given by σpq = S−1⟨fpdq⟩ (p, q = x, y),
where S, fp, and dq are the system area, interparticle force, and relative position (or
branch vector) between two particles in contact, respectively. On the right-hand-side,
the parentheses, ⟨. . . ⟩, represent a statistical average over the particles in contacts. In
our linear frictionless model, the force is proportional to the overlap and parallel to
the relative position. Therefore, introducing a unit vector along the relative position
as (nx, ny) = (cos θ, sin θ) with an angle measured from the x-axis (Fig. 1(a)), we can
rewrite the force and relative position as fp = Kξnp and dq = d(ξ)nq, respectively, where
d(ξ) = s − ξ is the interparticle distance defined as the difference between the sum of
radii, s, and overlap. Then, the stress tensor is rewritten as

σpq =
K

S
⟨ξd(ξ)npnq⟩ , (1)

where the stress tensor is represented by a set of overlap and angle, i.e. r ≡ (ξ, θ), which
we call microscopic states of soft particle packings.
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Statistics of the microscopic states are governed by their PDFs, Pγ(r), where the sub-
script, γ, represents the amount of shear strain applied to the system. To introduce the
PDFs, we employ the Delaunay triangulations to static packings, where not only the par-
ticles in contacts, but also the nearest neighbors without contacts, i.e. the particles in
virtual contacts, are connected by the Delaunay edges. Then, we generalize “overlaps”
as ξ ≡ s−D with the Delaunay edge length, D, where the overlaps between particles in
virtual contacts are defined as negative values (s < D). Because the total number of the
Delaunay edges is conserved during deformations, the PDFs are normalized as∫∫

Pγ(r)dr = 1 . (2)

When the system is deformed by a small shear strain, ∆γ, the microscopic states will
change to new states, r′ ≡ (ξ′, θ′), as shown in Fig. 1(b), where the new PDF is given by
Pγ+∆γ(r

′). Assuming that the transitions between microscopic states (from r to r′) are
described by the Markov processes, we connect the PDFs before and after simple shear
deformation through the Chapman-Kolmogorov equation [10],

Pγ+∆γ(r
′) =

∫∫
W (r′|r)Pγ(r)dr , (3)

where W (r′|r) is the CPD of the microscopic states, r′, which were r before the simple
shear deformation. By definition, the CPD is normalized as∫∫

W (r′|r)dr′ = 1 . (4)

From Eqs. (3) and (4), a master equation for the PDFs is readily obtained as

∂

∂γ
Pγ(r

′) =

∫∫
{T (r′|r)Pγ(r)− T (r|r′)Pγ(r

′)} dr , (5)

where we introduced the transition rate as T (r′|r) ≡ lim∆γ→0W (r′|r)/∆γ [10]. In the
master equation (5), the first and second terms in the integral on the right-hand-side
represent the gain and loss of new states, r′, respectively. Therefore, the transition rates
or CPDs fully determine the statistics of microscopic responses to shear deformations.

If we take the statistical average, ⟨. . . ⟩ in Eq. (1), by the PDF, the shear stress defined
as τ = (σxy + σyx)/2 is given by

τ =
K

2S

∫∫
{ξd(ξ) sin 2θ}Pγ(ξ, θ)dξdθ , (6)

where we used nxny = cos θ sin θ = (sin 2θ)/2 and restricted the overlaps to positive values
(ξ > 0). Then, the shear modulus, G = ∂τ/∂γ, is given by

G =
K

2S

∫∫
{ξd(ξ) sin 2θ}

{
∂

∂γ
Pγ(ξ, θ)

}
dξdθ , (7)

which is coupled with the master equation (5) through the derivative of the PDF.
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4 Results

4.1 Microscopic responses

To determine the transition rates in the master equation, we first study affine and non-
affine responses of microscopic states, r = (ξ, θ). When we apply simple shear deformation
to the system, the microscopic state will change to raffine ≡ (ξaffine, θaffine), where each
component is given by the initial state as

ξaffine ≃ ξ − ∆γ

2
d(ξ) sin 2θ , θaffine ≃ θ +

∆γ

2
cos 2θ , (8)

respectively 1. The second term on the right-hand-side of ξaffine represents an anisotropic
response of overlaps, where its magnitude becomes maximum in compressive and decom-
pressive directions, θ = ∓π/4, respectively. Note that Eq. (8) is correct for both contacts
and virtual contacts. In addition, if we introduce change rates of microscopic states as
ṙaffine ≡ (raffine − r)/∆γ, each component is respectively given by

ξ̇affine = −d(ξ)
2

sin 2θ , θ̇affine =
1

2
cos 2θ . (9)

In soft particle packings, however, particles are randomly arranged and the force bal-
ance between the particles in contacts is broken by simple shear deformation so that
particles move around and the system relaxes to a new static state, where the microscopic
states change to r′ = (ξ′, θ′). Clearly, the microscopic states after relaxation, r′, as well
as their change rates, ṙ ≡ (r′− r)/∆γ ≡ (ξ̇, θ̇), are expected to be different from those for
affine response, Eqs. (8) and (9). Figures 1(c) and (d) display the angular dependence of
change rates, where the affine responses (blue dots) show the deterministic evolution ac-
cording to Eq. (9), while the non-affine responses (red dots) fluctuate around mean values.
In these figures, the mean change rate of overlaps, ⟨ξ̇⟩, seems to be quite different from
ξ̇affine, while that of angles is almost the same with θ̇affine, i.e. ⟨θ′⟩ ≃ θaffine. Therefore, we
can write the non-affine microscopic responses as the sum of their mean and fluctuations,
i.e.

ξ′ = f(ξ, θ) + ψ , θ′ = θaffine + ζ , (10)

respectively, where the mean overlap, ⟨ξ⟩ ≡ f(ξ, θ), depends on the initial states and
we have introduced random variables as ψ and ζ of which standard deviations are given
by v ≡

√
⟨ψ2⟩ and w ≡

√
⟨ζ2⟩, respectively. As can be seen in Figs. 1(c) and (d), the

standard deviations, v and w, are independent of the initial angle, i.e. they are isotropic
in space.

1Eq. (8) is the first-order approximations of an infinitesimal shear strain, O(∆γ), where the frame
rotation by simple shear deformation, φ = −∆γ/2, has already been subtracted from θaffine and θ′.
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Figure 1: (Color online) Sketches of microscopic states (a) before and (b) after simple shear deformation,
r = (ξ, θ) and r′ = (ξ′, θ′), respectively, where the solid lines connect centers of particles and the dotted
lines are parallel to the x-axis. (c) Change rates of overlaps scaled by interparticle distances, ξ̇/d, and (d)
those of angles, θ̇, plotted against the initial angle, θ, where the blue and red dots are the results of affine
and non-affine responses, respectively. The dotted lines in (c) and (d) are − sin(2θ)/2 and cos(2θ)/2,
respectively. Here, we apply ∆γ = 10−6 to the system with ∆ϕ = 10−2 (i.e. α ≡ ∆γ/∆ϕ = 10−4).

4.2 Mean and fluctuations

The mean overlap, f(ξ, θ), can be determined by scattered plots of overlaps before and
after simple shear deformation. Figure 2 displays the scattered plots, where we plot the
affine and non-affine overlaps after shear, ξaffine (blue dots) and ξ′ (red dots), against the
initial overlap, ξ. Here, we fixed the initial angle, θ, to compressive (Figs. 2(a) and (b)) or
decompressive direction (Figs. 2(c) and (d)). The difference between affine and non-affine
responses depends on both the strain step, ∆γ, and distance from jamming, ∆ϕ, where the
difference increases with their ratio, α ≡ ∆γ/∆ϕ. Because overlaps are defined not only
between contacts, but also between virtual contacts, there are four kinds of transitions, i.e.
contact-to-contact (ξ, ξ′ > 0), contact-to-virtual (ξ > 0, ξ′ < 0), virtual-to-contact (ξ < 0,
ξ′ > 0), and virtual-to-virtual (ξ, ξ′ < 0) [8]. In this paper, we restrict our analyses
to the first case, contact-to-contact, where both overlaps before and after simple shear
deformation remain positive. Then, we introduce the mean overlap for contact-to-contact
as a linear fitting function for ξ′ (> 0) as

f(ξ, θ) = {1 + a(θ)} ξ + b(θ) . (11)

We also introduce a standard deviation of ξ′ around f(ξ, θ) as v such that systematic
deviations from affine responses are quantified by the excess slope, a(θ), offset, b(θ),
and fluctuation, v, where the affine approximation gives a(θ) = (∆γ/2) sin 2θ, b(θ) =
−(s∆γ/2) sin 2θ, and v = 0.

Figures 2(e) and (f) display our numerical results of the excess slopes and offsets, where
their angular dependence are well captured by sinuous functions,

a(θ) = −A sin 2θ , b(θ) = −B sin 2θ , (12)
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Figure 2: (Color online) Scatter plots of ξ′ against ξ scaled by the averaged overlap in the system, where
we fix the initial angle to θ = −π/4 ((a) and (b)) or π/4 ((c) and (d)), and change the ratio, α, as shown
in the legends. The angular dependence of (e) excess slopes, a(θ), and (f) offsets, b(θ), where the lines are
fitting functions, (e) −A sin 2θ and (f) −B sin 2θ, respectively. The insets show the data scaled by each
amplitude, i.e. a(θ)/A and b(θ)/B, where the dotted lines represent − sin 2θ. Here, we apply ∆γ = 10−5

to the system with different ∆ϕ (or the ratio, α ≡ ∆γ/∆ϕ) as shown in the legends.

respectively. On the right-hand-side of Eq. (12), the amplitudes, A and B, represent the
strength of anisotropic responses of soft particle packings. We have confirmed that the
amplitudes, A and B, and fluctuation, v, are increasing functions of the ratio 2, α. From
Eq. (12), the mean overlap, Eq. (11), is rewritten as

f(ξ, θ) = ξ − (Aξ +B) sin 2θ , (13)

where the sinuous dependence is the same with that of affine response, Eq. (8).

4.3 Conditional probability distributions

The microscopic affine responses are described by the deterministic equation (8) so
that the CPDs are given by a delta-function, W (r′|r) = δ(r− raffine). However, as shown
in Figs. 1 and 2, the microscopic non-affine responses fluctuate around their mean values
such that the CPDs must have finite widths. In this section, we numerically determine
the CPDs by MD simulations.

2Data are not shown. See Ref. [8] for the case of isotropic compressions.
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Figure 3: (Color online) CPDs for contact-to-contact, W (r′|r), plotted against the distance from the
mean overlap, Ξ ≡ ξ′ − f(ξ, θ), which is scaled by the averaged overlap in the system, where we fixed the
initial overlap to ξ = 1.2. Different symbols represent different (a) α, (b) ∆θ, and (c) θ, as shown in the
legends, where we used (a) θ = −π/4 and ∆θ = 0, (b) α = 10−3 and θ = −π/4, and (c) α = 10−3 and
∆θ = 0, respectively. The lines are the Gaussian fitting function, Eq. (14).

Figure 3 displays the CPDs for contact-to-contact,W (r′|r), plotted against the distance
from the mean overlap, Ξ ≡ ξ′ − f(ξ, θ). In Fig. 3(a), we fix the initial angle and angle
difference to θ = −π/4 and ∆θ ≡ θ′ − θaffine = 0, respectively, while we change the ratio
from α = 10−3 to 10−2. In Fig. 3(b), the initial angle and ratio are fixed to θ = −π/4 and
α = 10−3, respectively, while the angle difference changes from |∆θ| = 0 to 5∆γ (i.e. from
|θ̇| = 0 to 5). In Fig. 3(c), the ratio and angle difference are given by α = 10−3 and ∆θ = 0,
respectively, but we change the initial angle from θ = −π/3 to π/3. From these results,
the CPDs are symmetric around the mean value and change their shapes depending on
the ratio, α, and angle difference, ∆θ, while they are independent of the initial angle,
i.e. the CPDs are isotropic implying that fluctuations of forces are equiprobable in all
directions. Therefore, we can decompose the CPDs as

W (r′|r) = C(θ′|θ)Z(ξ′|r) , (14)

where C(θ′|θ) is another CPD of θ′ which was θ before simple shear deformation. Note that
C(θ′|θ) depends only on the angle difference, ∆θ, but not on the initial angle, θ, i.e. C(θ′|θ)
is also isotropic, implying that the probability of angle fluctuations is also equiprobable
in all directions. The θ′-independent function is given by a Gaussian distribution,

Z(ξ′|r) = 1√
2πv

e−Ξ2/2v2 , (15)

where the lines in Fig. 3 represent Eq. (14) with the Gaussian distribution, Eq. (15).

5 Summary

In this study, we have investigated microscopic mechanical changes of granular materi-
als under simple shear deformations by the master equation and MD simulations. We have
found that, though microscopic affine responses are deterministic, microscopic non-affine
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responses fluctuate around mean values as a result of complicated non-affine displacements
during relaxation. Such the stochastic evolution or restructuring of force-chain networks
is well captured by the mean overlap, Eq. (13), and CPD, Eq. (14), where anisotropic
mechanical responses of granular materials are well described by the sinuous functions
for the excess slope and offset, Eq. (12), and the CPD for contact-to-contact is found
to be the isotropic Gaussian distribution function, Eq. (15). Therefore, the fluctuations
of overlaps (forces) and angles are equiprobable in all directions even though mechanical
responses of granular materials are anisotropic in average.
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