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1 Introduction

Some days ago, Stefan Luding asked one of the authors (Hisao Hayakawa) how to derive the transport coefficients of

two-dimenisonal smooth but inelastic disks used in our previous paper[1]. Since we have already lost the technical note for

the calculation, we have reexamined the validity of our calculation starting from the paper by Jenkins and Richman.[2] The

calculation has been performed by Kuniyasu Saitoh, and Hisao Hayakawa has checked its validity.

2 Comments

In this note, Eq. (a)* represents the equation (a) in the paper of Jenkins and Richman [2]. For example, if we write

Eq. (100)*, which means the equation (100) in Ref.[2]. On the other hand, ”our paper” in this note means the Ref. [1].

It should be noted that the tangential restitution coefficientβ is equal to−1 because we have mapped the system onto a

system of smooth disks. Thus, from Eq. (9)* and (10)*,a is equal to zero andr is equal to (1+ e)/2, wheree is the normal

restitution constant.

3 Energy loss rate

From Eqs. (102)* and (103)*, the energy sourcesχαα andχ3 are respectively given by

χαα = −
ξ(1− e)

2σ2

[
8T − 3π1/2σT1/2(∇ · v)

]
, (1)

and
χ33 = 0 , (2)

whereσ, T andv are the diameter of a disk, the granular temperature which isT ≡ 〈(c−v)2〉/2 and the velocity field. Here,

the bulk viscosityξ appears in Eq.(1) which is defined by Eq. (99)**1:

ξ ≡ 8m

σπ3/2
ν2g0rT 1/2 , (3)

wherem is the mass of a disk. We should note that we adopt the different definition of the granular temperature from

Ref.[2], where we have usedT ≡ m〈(c− v)2〉/2 with the mass of a diskm. This is because the granular temperature should

have the dimension of the energy. From Eq. (3) the prefactor of Eq. (1) can be rewritten as

−ξ(1− e)
2σ2

= −4mν2(1− e2)
σ3π3/2

g0T1/2 , (4)

whereν andg0 are respectively the area fraction and the radial distribution function at contact. Subsituting this into Eq.(1),

we rewriteχαα as

χαα = −
4mν2(1− e2)
σ3π3/2

g0T1/2
[
8T − 3π1/2σT1/2(∇ · v)

]
. (5)

*1 They usedα in their paper[2]
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Introducing the mass densityρ = nm= 4mν/(πσ2) = ρpν and mass density of each diskρp = 4m/(πσ2), χαα further can be

rewritten as

χαα = −
1− e2

σρpπ1/2
ρ2g0T1/2

[
8T − 3π1/2σT1/2(∇ · v)

]
. (6)

Now, let us replaceχαα by the energy loss rateχ by collisions by using the relationχ = −χαα/2. (Compare Eq. (60)* with

Eq. (15) in our paper [1].) Thus, the energy loss rate due to collisions is given by

χ =
1− e2

2σρpπ1/2
ρ2g0T1/2

[
8T − 3π1/2σT1/2(∇ · v)

]
. (7)

4 Pressure tensor

The pressure tensor given by Eq. (59)* is

Pαβ = ρTδαβ + ρaαβ + Θαβ , (8)

where, thanks to Eq. (98)*,Θαβ is given by

Θαβ = (2ρTνg0r − ξ∇ · v)δαβ − αD̂αβ + νg0rρaαβ (9)

with deviatoric strain ratêDαβ = (∂xαvβ + ∂xβvα)/2− δαβ∇ · v/2. Therefore the pressure tensorPαβ is written as

Pαβ =
[
ρT(1+ 2rνg0) − α∇ · v] δαβ − αD̂αβ + (1+ rνg0)ρaαβ . (10)

Sinceρaαβ ∝ −D̂αβ as in Eq. (67)* in Ref.[2], the pressure tensor can be written as the following form

Pαβ =
[
p− ξ∇ · v] δαβ − ηD̂αβ, (11)

whereη is the viscosity. The pressurep and the bulk viscosityξ in Eq,(11) is given by

p ≡ ρT [
1+ 2rνg0

]
= ρT

[
1+ (1+ e)νg0

]
, (12)

and

ξ =
8m

σπ3/2
ν2g0rT 1/2 =

4m

σπ3/2
(1+ e)ν2g0T1/2 . (13)

where we have used Eq. (99)* or Eq. (3). Thus, what we should do is to determine the viscosityη.

Using Eq. (67)*, (68)* and (69)*,ρaαβ in Eq. (10) is given by

ρaαβ = −
2mT1/2

σπ1/2g0(5− 3r)
[
1+ νg0(3r − 2)r

]
D̂αβ . (14)

It should be noted that Eq. (70)* should be multiplied byrm. Now, the sum of the second term and the third term on the

right hand side of Eq. (10) becomes

ηD̂αβ ≡ ξD̂αβ − (1+ rνg0)ρaαβ

=

[
ξ +

2mT1/2

σπ1/2g0(5− 3r)
[
1+ νg0(3r − 2)r

]
(1+ rνg0)

]
D̂αβ

=
m

σπ1/2

[
8
π
ν2g0r +

2
(5− 3r)g0

[
1+ (3r2 − r)νg0 + r2(3r − 2)ν2g2

0

]]
T1/2D̂αβ. (15)
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Substitutingr = (1+ e)/2 into Eq. (15) we obtain

ηD̂αβ =
m

σπ1/2

[
4
π

(1+ e)ν2g0 +
4

(7− 3e)g0

[
1+

1
4

(1+ e)(3e+ 1)νg0 +
1
8

(1+ e)2(3e− 1)ν2g2
0

]]
T1/2D̂αβ

=
4m

σπ1/2

[
1

7− 3e
g−1

0 +
(1+ e)(3e+ 1)

4(7− 3e)
ν +

[
(1+ e)(3e− 1)

8(7− 3e)
+

1
π

]
(1+ e)ν2g0

]
T1/2D̂αβ. (16)

Thus, the shear viscosity is given by

η ≡ 4m

σπ1/2

[
1

7− 3e
g−1

0 +
(1+ e)(3e+ 1)

4(7− 3e)
ν +

[
(1+ e)(3e− 1)

8(7− 3e)
+

1
π

]
(1+ e)ν2g0

]
T1/2, (17)

where we have used the relations

3r2 − r =
1
4

(1+ e)(3e+ 1) (18)

r2(3r − 2) =
1
8

(1+ e)2(3e− 1) (19)

5− 3r =
1
2

(7− 3e). (20)

5 Transport coefficients associate with the density gradient and the heat

conductivity

The ( translational ) energy flux is given by Eq. (61)*:

qα =
1
2
ρaαββ +

1
2
Θαββ . (21)

Here,ρaαββ/2 andΘαββ/2 are given by Eq. (89)* and (100)*, respectively. First, with the help of Eq. (100)*, we rewrite the

energy fluxqα as

qα =
1
2
ρaαββ − ξ∇T +

3
2

rνg0 ·
1
2
ρaαββ

=

(
1+

3
2

rνg0

)
1
2
ρaαββ − ξ∇T . (22)

Now, we introduceκρ andλρ as
1
2
ρaαββ ≡ −κρ∇T − λρ∇ρ , (23)

whereκρ andλρ are respectively given by

κρ =
4mT1/2

σg0r(17− 15r)π1/2

[
1+

3
2
νg0r2(4r − 3)

]
, (24)

and

λρ = −
3σπ1/2(2r − 1)(1− r)

2νg0(17− 15r)
T3/2 d(ν2g0)

dν
. (25)
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To derive Eqs. (24) and (25) we have used Eq.(89)* in Ref.[2]. Thus, the energy fluxqα becomes

qα = −
[
κρ

(
1+

3
2

rνg0

)
+ ξ

]
∇T − λρ

(
1+

3
2

rνg0

)
∇ρ

≡ −κ∇T − λ∇ρ . (26)

Here, the heat conductivityκ and the transport coefficientλ associated with the density gradient are given by

κ = κρ

(
1+

3
2

rνg0

)
+ ξ, (27)

and

λ = λρ

(
1+

3
2

rνg0

)
, (28)

respectively.

5.1 Heat conductivity κ

In this subsection, let us write the explicit expression of the heat conductivityκ,

From Eqs.(3), (26) and (24), we obtain the heat conductivityκ as

κ =
4mT1/2

σπ1/2g0r(17− 15r)

[
1+

3
2

r2(4r − 3)νg0

] (
1+

3
2

rνg0

)
+

8m

σπ3/2
rν2g0T1/2 (29)

=
4mT1/2

σπ1/2g0r(17− 15r)

[
1+

3
2

r(4r2 − 3r + 1)νg0 +
9
4

r3(4r − 3)ν2g2
0

]
+

8m

σπ3/2
rν2g0T1/2 (30)

=
4m

σπ1/2

[
1

r(17− 15r)
g−1

0 +
3(4r2 − 3r + 1)

2(17− 15r)
ν +

9r2(4r − 3)
4(17− 15r)

ν2g0 +
2
π

rν2g0

]
T1/2. (31)

Substitutingr = (1+ e)/2 into the above equation,κ is rewritten as

κ =
16m

σπ1/2

[
1

(1+ e)(19− 15e)
g−1

0 +
3(2e2 + e+ 1)
8(19− 15e)

ν +

{
9(1+ e)2(2e− 1)

64(19− 15e)
+

1
4π

}
(1+ e)ν2g0

]
T1/2 . (32)

Here, we have used the following relations

17− 15r =
1
2

(19− 15e) (33)

r(17− 15r) =
1
4

(1+ e)(19− 15e) (34)

4r2 − 3r + 1 =
1
2

(2e2 + e+ 1) (35)

r2(4r − 3) =
1
4

(1+ e)2(2e− 1). (36)

We should note that the third term on the right hand side of Eq. (32) differs from our paper[1]. Indeed, one of the

coefficients usedr(4r − 2) instead of the correct formr2(4r − 2), and the coefficient 1/4π in the last term on the right hand

side of Eq. (32) is different from 1/2π.
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5.2 Transport coefficient λ

In this subsection, let us write the explicit form ofλ.

Substituting (25) into Eq.(26) we obtain

λ = −3σπ1/2(2r − 1)(1− r)
2νg0(17− 15r)

T3/2 d(ν2g0)
dν

(
1+

3
2

rνg0

)
. (37)

With the aid ofr = (1+ e)/2, λ is rewritten as

λ = − 3e(1− e)
8(19− 15e)

σπ1/2
[
4g−1

0 + 3(1+ e)ν
] 1
ν

d(ν2g0)
dν

T3/2 , (38)

where we have used the relations

1+
3
2

rνg0 =
1
4

g0

[
4g−1

0 + 3(1+ e)ν
]
, (39)

(2r − 1)(1− r) =
1
2

e(1− e), (40)

2(17− 15r) = 19− 15e. (41)

5.3 Summary in the dimensional form

In this subsection, we explicitly list the collisional energy loss rate and all the transport coefficients.

χ =
1− e2

2σρpπ1/2
ρ2g0T1/2

[
8T − 3π1/2σT1/2(∇ · v)

]
(42)

p = ρT
[
1+ (1+ e)νg0

]
(43)

ξ =
4m

σπ3/2
(1+ e)ν2g0T1/2 (44)

η =
4m

σπ1/2

[
1

7− 3e
g−1

0 +
(1+ e)(3e+ 1)

4(7− 3e)
ν +

[
(1+ e)(3e− 1)

8(7− 3e)
+

1
π

]
(1+ e)ν2g0

]
T1/2 (45)

κ =
16m

σπ1/2

[
1

(1+ e)(19− 15e)
g−1

0 +
3(2e2 + e+ 1)
8(19− 15e)

ν +

[
9(1+ e)2(2e− 1)

64(19− 15e)
+

1
4π

]
(1+ e)ν2g0

]
T1/2 (46)

λ = − 3e(1− e)
8(19− 15e)

σπ1/2
[
4g−1

0 + 3(1+ e)ν
] 1
ν

d(ν2g0)
dν

T3/2. (47)

6 Non-dimensionalization

Now, we non-dimensionalize the expressions for the transport coefficients listed in the previous section.

Using the dimensionless temperatureθ, dimensionless pressure and the transport coefficients are given by

p∗ = p(ν)θ (48)

ξ∗ = ξ(ν)θ1/2 (49)

η∗ = η(ν)θ1/2 (50)

κ∗ = κ(ν)θ1/2 (51)

λ∗ = λ(ν)θ3/2. (52)
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Finally, the functionsp(ν), ξ(ν), η(ν), κ(ν) andλ(ν) in the dimensionless forms are given by

p(ν) =
1
2
ν
[
1+ (1+ e)νg0

]
(53)

ξ(ν) =
1
√

2π
(1+ e)ν2g0 (54)

η(ν) =

√
π

2

[
1

7− 3e
g−1

0 +
(1+ e)(3e+ 1)

4(7− 3e)
ν +

[
(1+ e)(3e− 1)

8(7− 3e)
+

1
π

]
(1+ e)ν2g0

]
(55)

κ(ν) =
√

2π

[
1

(1+ e)(19− 15e)
g−1

0 +
3(2e2 + e+ 1)
8(19− 15e)

ν +

[
9(1+ e)2(2e− 1)

64(19− 15e)
+

1
4π

]
(1+ e)ν2g0

]
(56)

λ(ν) = −
√
π

2

[
4g−1

0 + 3(1+ e)ν
] 1
ν

d(ν2g0)
dν

. (57)

In the table I of our paper[1], the radial distribution functiong0 is represented byg(ν). Note that there are two mistakes for

the third term ofκ in the table I, in which the first term of the third term misusedr(4r − 3) instead ofr2(4r − 3), and 1/2π

in the last term on the right hand side ofκ(ν) in the table I should be replaced by 1/4π.
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