1 Introduction

Some days ago, Stefan Luding asked one of the authors (Hisao Hayakawa) how to derive the transport coefficients of two-dimenisonal smooth but inelastic disks used in our previous paper[1]. Since we have already lost the technical note for the calculation, we have reexamined the validity of our calculation starting from the paper by Jenkins and Richman.[2] The calculation has been performed by Kuniyasu Saitoh, and Hisao Hayakawa has checked its validity.

2 Comments

In this note, Eq. (a)* represents the equation (a) in the paper of Jenkins and Richman [2]. For example, if we write Eq. (100)*, which means the equation (100) in Ref.[2]. On the other hand, "our paper" in this note means the Ref. [1].
It should be noted that the tangential restitution coefficient β is equal to -1 because we have mapped the system onto a system of smooth disks. Thus, from Eq. (9)* and (10)*, a is equal to zero and r is equal to $(1+e) / 2$, where e is the normal restitution constant.

3 Energy loss rate

From Eqs. (102)* and (103)*, the energy sources $\chi_{\alpha \alpha}$ and χ_{3} are respectively given by

$$
\begin{equation*}
\chi_{\alpha \alpha}=-\frac{\xi(1-e)}{2 \sigma^{2}}\left[8 T-3 \pi^{1 / 2} \sigma T^{1 / 2}(\nabla \cdot \mathbf{v})\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{33}=0 \tag{2}
\end{equation*}
$$

where σ, T and \mathbf{v} are the diameter of a disk, the granular temperature which is $T \equiv\left\langle(\mathbf{c}-\mathbf{v})^{2}\right\rangle / 2$ and the velocity field. Here, the bulk viscosity ξ appears in Eq.(1) which is defined by Eq. (99)**1:

$$
\begin{equation*}
\xi \equiv \frac{8 m}{\sigma \pi^{3 / 2}} v^{2} g_{0} r T^{1 / 2} \tag{3}
\end{equation*}
$$

where m is the mass of a disk. We should note that we adopt the different definition of the granular temperature from Ref.[2], where we have used $T \equiv m\left\langle(\mathbf{c}-\mathbf{v})^{2}\right\rangle / 2$ with the mass of a disk m. This is because the granular temperature should have the dimension of the energy. From Eq. (3) the prefactor of Eq. (1) can be rewritten as

$$
\begin{equation*}
-\frac{\xi(1-e)}{2 \sigma^{2}}=-\frac{4 m v^{2}\left(1-e^{2}\right)}{\sigma^{3} \pi^{3 / 2}} g_{0} T^{1 / 2} \tag{4}
\end{equation*}
$$

where v and g_{0} are respectively the area fraction and the radial distribution function at contact. Subsituting this into Eq.(1), we rewrite $\chi_{\alpha \alpha}$ as

$$
\begin{equation*}
\chi_{\alpha \alpha}=-\frac{4 m v^{2}\left(1-e^{2}\right)}{\sigma^{3} \pi^{3 / 2}} g_{0} T^{1 / 2}\left[8 T-3 \pi^{1 / 2} \sigma T^{1 / 2}(\nabla \cdot \mathbf{v})\right] \tag{5}
\end{equation*}
$$

[^0]Introducing the mass density $\rho=n m=4 m v /\left(\pi \sigma^{2}\right)=\rho_{p} v$ and mass density of each disk $\rho_{p}=4 m /\left(\pi \sigma^{2}\right), \chi_{\alpha \alpha}$ further can be rewritten as

$$
\begin{equation*}
\chi_{\alpha \alpha}=-\frac{1-e^{2}}{\sigma \rho_{p} \pi^{1 / 2}} \rho^{2} g_{0} T^{1 / 2}\left[8 T-3 \pi^{1 / 2} \sigma T^{1 / 2}(\nabla \cdot \mathbf{v})\right] . \tag{6}
\end{equation*}
$$

Now, let us replace $\chi_{\alpha \alpha}$ by the energy loss rate χ by collisions by using the relation $\chi=-\chi_{\alpha \alpha} / 2$. (Compare Eq. (60)* with Eq. (15) in our paper [1].) Thus, the energy loss rate due to collisions is given by

$$
\begin{equation*}
\chi=\frac{1-e^{2}}{2 \sigma \rho_{p} \pi^{1 / 2}} \rho^{2} g_{0} T^{1 / 2}\left[8 T-3 \pi^{1 / 2} \sigma T^{1 / 2}(\nabla \cdot \mathbf{v})\right] . \tag{7}
\end{equation*}
$$

4 Pressure tensor

The pressure tensor given by Eq. (59)* is

$$
\begin{equation*}
P_{\alpha \beta}=\rho T \delta_{\alpha \beta}+\rho a_{\alpha \beta}+\Theta_{\alpha \beta}, \tag{8}
\end{equation*}
$$

where, thanks to Eq. (98)*, $\Theta_{\alpha \beta}$ is given by

$$
\begin{equation*}
\Theta_{\alpha \beta}=\left(2 \rho T v g_{0} r-\xi \nabla \cdot \mathbf{v}\right) \delta_{\alpha \beta}-\alpha \hat{D}_{\alpha \beta}+v g_{0} r \rho a_{\alpha \beta} \tag{9}
\end{equation*}
$$

with deviatoric strain rate $\hat{D}_{\alpha \beta}=\left(\partial_{x_{\alpha}} v_{\beta}+\partial_{x_{\beta}} v_{\alpha}\right) / 2-\delta_{\alpha \beta} \nabla \cdot \mathbf{v} / 2$. Therefore the pressure tensor $P_{\alpha \beta}$ is written as

$$
\begin{equation*}
P_{\alpha \beta}=\left[\rho T\left(1+2 r \nu g_{0}\right)-\alpha \nabla \cdot \mathbf{v}\right] \delta_{\alpha \beta}-\alpha \hat{D}_{\alpha \beta}+\left(1+r \nu g_{0}\right) \rho a_{\alpha \beta} . \tag{10}
\end{equation*}
$$

Since $\rho a_{\alpha \beta} \propto-\hat{D}_{\alpha \beta}$ as in Eq. (67)* in Ref.[2], the pressure tensor can be written as the following form

$$
\begin{equation*}
P_{\alpha \beta}=[p-\xi \nabla \cdot \mathbf{v}] \delta_{\alpha \beta}-\eta \hat{D}_{\alpha \beta}, \tag{11}
\end{equation*}
$$

where η is the viscosity. The pressure p and the bulk viscosity ξ in $\mathrm{Eq},(11)$ is given by

$$
\begin{equation*}
p \equiv \rho T\left[1+2 r v g_{0}\right]=\rho T\left[1+(1+e) v g_{0}\right], \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi=\frac{8 m}{\sigma \pi^{3 / 2}} v^{2} g_{0} r T^{1 / 2}=\frac{4 m}{\sigma \pi^{3 / 2}}(1+e) v^{2} g_{0} T^{1 / 2} . \tag{13}
\end{equation*}
$$

where we have used Eq. (99)* or Eq. (3). Thus, what we should do is to determine the viscosity η.
Using Eq. (67)*, (68)* and (69)*, $\rho a_{\alpha \beta}$ in Eq. (10) is given by

$$
\begin{equation*}
\rho a_{\alpha \beta}=-\frac{2 m T^{1 / 2}}{\sigma \pi^{1 / 2} g_{0}(5-3 r)}\left[1+v g_{0}(3 r-2) r\right] \hat{D}_{\alpha \beta} . \tag{14}
\end{equation*}
$$

It should be noted that Eq. (70)* should be multiplied by r. Now, the sum of the second term and the third term on the right hand side of Eq. (10) becomes

$$
\begin{align*}
\eta \hat{D}_{\alpha \beta} & \equiv \xi \hat{D}_{\alpha \beta}-\left(1+r v g_{0}\right) \rho a_{\alpha \beta} \\
& =\left[\xi+\frac{2 m T^{1 / 2}}{\sigma \pi^{1 / 2} g_{0}(5-3 r)}\left[1+v g_{0}(3 r-2) r\right]\left(1+r v g_{0}\right)\right] \hat{D}_{\alpha \beta} \\
& =\frac{m}{\sigma \pi^{1 / 2}}\left[\frac{8}{\pi} v^{2} g_{0} r+\frac{2}{(5-3 r) g_{0}}\left[1+\left(3 r^{2}-r\right) v g_{0}+r^{2}(3 r-2) v^{2} g_{0}^{2}\right]\right] T^{1 / 2} \hat{D}_{\alpha \beta} . \tag{15}
\end{align*}
$$

Substituting $r=(1+e) / 2$ into Eq. (15) we obtain

$$
\begin{align*}
\eta \hat{D}_{\alpha \beta} & =\frac{m}{\sigma \pi^{1 / 2}}\left[\frac{4}{\pi}(1+e) v^{2} g_{0}+\frac{4}{(7-3 e) g_{0}}\left[1+\frac{1}{4}(1+e)(3 e+1) v g_{0}+\frac{1}{8}(1+e)^{2}(3 e-1) v^{2} g_{0}^{2}\right]\right] T^{1 / 2} \hat{D}_{\alpha \beta} \\
& =\frac{4 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{7-3 e} g_{0}^{-1}+\frac{(1+e)(3 e+1)}{4(7-3 e)} v+\left[\frac{(1+e)(3 e-1)}{8(7-3 e)}+\frac{1}{\pi}\right](1+e) v^{2} g_{0}\right] T^{1 / 2} \hat{D}_{\alpha \beta} . \tag{16}
\end{align*}
$$

Thus, the shear viscosity is given by

$$
\begin{equation*}
\eta \equiv \frac{4 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{7-3 e} g_{0}^{-1}+\frac{(1+e)(3 e+1)}{4(7-3 e)} v+\left[\frac{(1+e)(3 e-1)}{8(7-3 e)}+\frac{1}{\pi}\right](1+e) v^{2} g_{0}\right] T^{1 / 2} \tag{17}
\end{equation*}
$$

where we have used the relations

$$
\begin{align*}
3 r^{2}-r & =\frac{1}{4}(1+e)(3 e+1) \tag{18}\\
r^{2}(3 r-2) & =\frac{1}{8}(1+e)^{2}(3 e-1) \tag{19}\\
5-3 r & =\frac{1}{2}(7-3 e) . \tag{20}
\end{align*}
$$

5 Transport coefficients associate with the density gradient and the heat conductivity

The (translational) energy flux is given by Eq. (61)*:

$$
\begin{equation*}
q_{\alpha}=\frac{1}{2} \rho a_{\alpha \beta \beta}+\frac{1}{2} \Theta_{\alpha \beta \beta} . \tag{21}
\end{equation*}
$$

Here, $\rho a_{\alpha \beta \beta} / 2$ and $\Theta_{\alpha \beta \beta} / 2$ are given by Eq. (89)* and (100)*, respectively. First, with the help of Eq. (100)*, we rewrite the energy flux q_{α} as

$$
\begin{align*}
q_{\alpha} & =\frac{1}{2} \rho a_{\alpha \beta \beta}-\xi \nabla T+\frac{3}{2} r v g_{0} \cdot \frac{1}{2} \rho a_{\alpha \beta \beta} \\
& =\left(1+\frac{3}{2} r v g_{0}\right) \frac{1}{2} \rho a_{\alpha \beta \beta}-\xi \nabla T . \tag{22}
\end{align*}
$$

Now, we introduce κ_{ρ} and λ_{ρ} as

$$
\begin{equation*}
\frac{1}{2} \rho a_{\alpha \beta \beta} \equiv-\kappa_{\rho} \nabla T-\lambda_{\rho} \nabla \rho, \tag{23}
\end{equation*}
$$

where κ_{ρ} and λ_{ρ} are respectively given by

$$
\begin{equation*}
\kappa_{\rho}=\frac{4 m T^{1 / 2}}{\sigma g_{0} r(17-15 r) \pi^{1 / 2}}\left[1+\frac{3}{2} v g_{0} r^{2}(4 r-3)\right], \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\rho}=-\frac{3 \sigma \pi^{1 / 2}(2 r-1)(1-r)}{2 v g_{0}(17-15 r)} T^{3 / 2} \frac{d\left(v^{2} g_{0}\right)}{d v} . \tag{25}
\end{equation*}
$$

To derive Eqs. (24) and (25) we have used Eq.(89)* in Ref.[2]. Thus, the energy flux q_{α} becomes

$$
\begin{align*}
q_{\alpha} & =-\left[\kappa_{\rho}\left(1+\frac{3}{2} r v g_{0}\right)+\xi\right] \nabla T-\lambda_{\rho}\left(1+\frac{3}{2} r v g_{0}\right) \nabla \rho \\
& \equiv-\kappa \nabla T-\lambda \nabla \rho . \tag{26}
\end{align*}
$$

Here, the heat conductivity κ and the transport coefficient λ associated with the density gradient are given by

$$
\begin{equation*}
\kappa=\kappa_{\rho}\left(1+\frac{3}{2} r v g_{0}\right)+\xi \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=\lambda_{\rho}\left(1+\frac{3}{2} r v g_{0}\right) \tag{28}
\end{equation*}
$$

respectively.

5.1 Heat conductivity κ

In this subsection, let us write the explicit expression of the heat conductivity κ,
From Eqs.(3), (26) and (24), we obtain the heat conductivity κ as

$$
\begin{align*}
\kappa & =\frac{4 m T^{1 / 2}}{\sigma \pi^{1 / 2} g_{0} r(17-15 r)}\left[1+\frac{3}{2} r^{2}(4 r-3) v g_{0}\right]\left(1+\frac{3}{2} r v g_{0}\right)+\frac{8 m}{\sigma \pi^{3 / 2}} r v^{2} g_{0} T^{1 / 2} \tag{29}\\
& =\frac{4 m T^{1 / 2}}{\sigma \pi^{1 / 2} g_{0} r(17-15 r)}\left[1+\frac{3}{2} r\left(4 r^{2}-3 r+1\right) v g_{0}+\frac{9}{4} r^{3}(4 r-3) v^{2} g_{0}^{2}\right]+\frac{8 m}{\sigma \pi^{3 / 2}} r v^{2} g_{0} T^{1 / 2} \tag{30}\\
& =\frac{4 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{r(17-15 r)} g_{0}^{-1}+\frac{3\left(4 r^{2}-3 r+1\right)}{2(17-15 r)} v+\frac{9 r^{2}(4 r-3)}{4(17-15 r)} v^{2} g_{0}+\frac{2}{\pi} r v^{2} g_{0}\right] T^{1 / 2} . \tag{31}
\end{align*}
$$

Substituting $r=(1+e) / 2$ into the above equation, κ is rewritten as

$$
\begin{equation*}
\kappa=\frac{16 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{(1+e)(19-15 e)} g_{0}^{-1}+\frac{3\left(2 e^{2}+e+1\right)}{8(19-15 e)} v+\left\{\frac{9(1+e)^{2}(2 e-1)}{64(19-15 e)}+\frac{1}{4 \pi}\right\}(1+e) v^{2} g_{0}\right] T^{1 / 2} . \tag{32}
\end{equation*}
$$

Here, we have used the following relations

$$
\begin{align*}
17-15 r & =\frac{1}{2}(19-15 e) \tag{33}\\
r(17-15 r) & =\frac{1}{4}(1+e)(19-15 e) \tag{34}\\
4 r^{2}-3 r+1 & =\frac{1}{2}\left(2 e^{2}+e+1\right) \tag{35}\\
r^{2}(4 r-3) & =\frac{1}{4}(1+e)^{2}(2 e-1) . \tag{36}
\end{align*}
$$

We should note that the third term on the right hand side of Eq. (32) differs from our paper[1]. Indeed, one of the coefficients used $r(4 r-2)$ instead of the correct form $r^{2}(4 r-2)$, and the coefficient $1 / 4 \pi$ in the last term on the right hand side of Eq. (32) is different from $1 / 2 \pi$.

5.2 Transport coefficient λ

In this subsection, let us write the explicit form of λ.
Substituting (25) into Eq.(26) we obtain

$$
\begin{equation*}
\lambda=-\frac{3 \sigma \pi^{1 / 2}(2 r-1)(1-r)}{2 v g_{0}(17-15 r)} T^{3 / 2} \frac{d\left(v^{2} g_{0}\right)}{d v}\left(1+\frac{3}{2} r v g_{0}\right) \tag{37}
\end{equation*}
$$

With the aid of $r=(1+e) / 2, \lambda$ is rewritten as

$$
\begin{equation*}
\lambda=-\frac{3 e(1-e)}{8(19-15 e)} \sigma \pi^{1 / 2}\left[4 g_{0}^{-1}+3(1+e) v\right] \frac{1}{v} \frac{d\left(v^{2} g_{0}\right)}{d v} T^{3 / 2} \tag{38}
\end{equation*}
$$

where we have used the relations

$$
\begin{align*}
1+\frac{3}{2} r v g_{0} & =\frac{1}{4} g_{0}\left[4 g_{0}^{-1}+3(1+e) v\right], \tag{39}\\
(2 r-1)(1-r) & =\frac{1}{2} e(1-e), \tag{40}\\
2(17-15 r) & =19-15 e . \tag{41}
\end{align*}
$$

5.3 Summary in the dimensional form

In this subsection, we explicitly list the collisional energy loss rate and all the transport coefficients.

$$
\begin{align*}
\chi & =\frac{1-e^{2}}{2 \sigma \rho_{p} \pi^{1 / 2}} \rho^{2} g_{0} T^{1 / 2}\left[8 T-3 \pi^{1 / 2} \sigma T^{1 / 2}(\nabla \cdot \mathbf{v})\right] \tag{42}\\
p & =\rho T\left[1+(1+e) v g_{0}\right] \tag{43}\\
\xi & =\frac{4 m}{\sigma \pi^{3 / 2}}(1+e) v^{2} g_{0} T^{1 / 2} \tag{44}\\
\eta & =\frac{4 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{7-3 e} g_{0}^{-1}+\frac{(1+e)(3 e+1)}{4(7-3 e)} v+\left[\frac{(1+e)(3 e-1)}{8(7-3 e)}+\frac{1}{\pi}\right](1+e) v^{2} g_{0}\right] T^{1 / 2} \tag{45}\\
\kappa & =\frac{16 m}{\sigma \pi^{1 / 2}}\left[\frac{1}{(1+e)(19-15 e)^{2}} g_{0}^{-1}+\frac{3\left(2 e^{2}+e+1\right)}{8(19-15 e)} v+\left[\frac{9(1+e)^{2}(2 e-1)}{64(19-15 e)}+\frac{1}{4 \pi}\right](1+e) v^{2} g_{0}\right] T^{1 / 2} \tag{46}\\
\lambda & =-\frac{3 e(1-e)}{8(19-15 e)} \sigma \pi^{1 / 2}\left[4 g_{0}^{-1}+3(1+e) v\right] \frac{1}{v} \frac{d\left(v^{2} g_{0}\right)}{d v} T^{3 / 2} . \tag{47}
\end{align*}
$$

6 Non-dimensionalization

Now, we non-dimensionalize the expressions for the transport coefficients listed in the previous section.
Using the dimensionless temperature θ, dimensionless pressure and the transport coefficients are given by

$$
\begin{align*}
p^{*} & =p(v) \theta \tag{48}\\
\xi^{*} & =\xi(v) \theta^{1 / 2} \tag{49}\\
\eta^{*} & =\eta(v) \theta^{1 / 2} \tag{50}\\
\kappa^{*} & =\kappa(v) \theta^{1 / 2} \tag{51}\\
\lambda^{*} & =\lambda(v) \theta^{3 / 2} . \tag{52}
\end{align*}
$$

Finally，the functions $p(v), \xi(v), \eta(v), \kappa(v)$ and $\lambda(v)$ in the dimensionless forms are given by

$$
\begin{align*}
& p(v)=\frac{1}{2} v\left[1+(1+e) v g_{0}\right] \tag{53}\\
& \xi(v)=\frac{1}{\sqrt{2 \pi}}(1+e) v^{2} g_{0} \tag{54}\\
& \eta(v)=\sqrt{\frac{\pi}{2}}\left[\frac{1}{7-3 e} g_{0}^{-1}+\frac{(1+e)(3 e+1)}{4(7-3 e)} v+\left[\frac{(1+e)(3 e-1)}{8(7-3 e)}+\frac{1}{\pi}\right](1+e) v^{2} g_{0}\right] \tag{55}\\
& \kappa(v)=\sqrt{2 \pi}\left[\frac{1}{(1+e)(19-15 e)} g_{0}^{-1}+\frac{3\left(2 e^{2}+e+1\right)}{8(19-15 e)} v+\left[\frac{9(1+e)^{2}(2 e-1)}{64(19-15 e)}+\frac{1}{4 \pi}\right](1+e) v^{2} g_{0}\right] \tag{56}\\
& \lambda(v)=-\sqrt{\frac{\pi}{2}}\left[4 g_{0}^{-1}+3(1+e) v\right] \frac{1}{v} \frac{d\left(v^{2} g_{0}\right)}{d v} . \tag{57}
\end{align*}
$$

In the table I of our paper［1］，the radial distribution function g_{0} is represented by $g(v)$ ．Note that there are two mistakes for the third term of κ in the table I ，in which the first term of the third term misused $r(4 r-3)$ instead of $r^{2}(4 r-3)$ ，and $1 / 2 \pi$ in the last term on the right hand side of $\kappa(v)$ in the table I should be replaced by $1 / 4 \pi$ ．

参考文献

［1］K．Saitoh and H．Hayakawa，Phys．Rev．E 75， 021302 （2007）．
［2］J．T．Jenkins and M．W．Richman，Phys．Fluids 28， 3485 （1985）．

[^0]: ${ }^{* 1}$ They used α in their paper[2]

