memo - granular shear flow 20098 K. Saitoh, 2002L0/9 H. Hayakawa, 20Q020/13 (final) H. Hayakawa and K. Saitoh 1

1 Introduction

Some days ago, Stefan Luding asked one of the authors (Hisao Hayakawa) how to derive the tranSjpiehtoef
two-dimenisonal smooth but inelastic disks used in our previous paper[1]. Since we have already lost the technical note for
the calculation, we have reexamined the validity of our calculation starting from the paper by Jenkins and Richman.[2] The
calculation has been performed by Kuniyasu Saitoh, and Hisao Hayakawa has checked its validity.

2 Comments

In this note, Eqg. (a)* represents the equation (a) in the paper of Jenkins and Richman [2]. For example, if we write
Eqg. (100)*, which means the equation (100) in Ref.[2]. On the other hand, "our paper” in this note means the Ref. [1].

It should be noted that the tangential restitutionfiiogentg is equal to-1 because we have mapped the system onto a
system of smooth disks. Thus, from Eq. (9)* and (1&fs equal to zero andis equal to (1+ €)/2, wheree is the normal
restitution constant.

3 Energy loss rate

From Egs. (102)* and (103)*, the energy sourggs andys are respectively given by
_ -9

Koo = =25 [8T - 320 TY2(V - v)| , @)

and
x33=0, (2

whereo, T andv are the diameter of a disk, the granular temperature whithgs/(c — v)?)/2 and the velocity field. Here,
the bulk viscosity appears in Eq.(1) which is defined by Eq. (99)*

_ 8m , 12
.f = m)/ gol’T N (3)

wherem is the mass of a disk. We should note that we adopt tfferdint definition of the granular temperature from
Ref.[2], where we have us&tl= m{(c — v)?)/2 with the mass of a disk. This is because the granular temperature should
have the dimension of the energy. From Eq. (3) the prefactor of Eq. (1) can be rewritten as

£l-e  4mA(1-€d)
202 T o332

goTY2, 4)

wherey andgp are respectively the area fraction and the radial distribution function at contact. Subsituting this into Eq.(1),

we rewritey,, as
_ _4AmA1-¢&)

= A Dt - 2021w ). ®

*1 They usedr in their paper[2]
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Introducing the mass densjty= nm= 4mv/(rc?) = ppv and mass density of each disk = 4m/(7c2), xa. further can be
rewritten as

~¢ p?goT*2[8T = 32 TVA(V - v)| . (6)

Xaa = — o'ppnl/z

Now, let us replacg.. by the energy loss rajeby collisions by using the relatign = —y../2. (Compare Eg. (60)* with
Eq. (15) in our paper [1].) Thus, the energy loss rate due to collisions is given by

x= zip_—;l/zngoﬂ/z 8T - 320 TY2(V - v)| . (7)
4 Pressure tensor
The pressure tensor given by Eqg. (59)* is
Pop = pT6ap + p8sp + Oup 8)
where, thanks to Eq. (98)8,; is given by
Oup = (20Tvgor — £V - V)Sap — @Dagp + vQol paap (9)
with deviatoric strain ratéaﬁ = (Ox, Vg + Ox,Va) /2 — 84V - v/2. Therefore the pressure tendy is written as
Pas = [pT(L + 2rvgo) — @V - V] 8ap — @Dug + (1 + vGo)paygs - (10)
Sincepays « —If)aﬁ asin Eq. (67)* in Ref.[2], the pressure tensor can be written as the following form
Pus = [P = €V - V] 645 — 1Daps (11)

wheren, is the viscosity. The pressupeand the bulk viscosity in Eq,(11) is given by

p=pT[1+2rvgo] =pT [1+ (1+€)vgo] , (12)
and 8m 4m
- 2 12 _ 2. T1/2
&= A Qo T = 0-71-3/2(1 +evgoT 7. (13)

where we have used Eq. (99)* or Eq. (3). Thus, what we should do is to determine the vigcosity
Using Eq. (67)*, (68)* and (69)*pa,s in Eq. (10) is given by
2mTY/?
 onl/2gy(5 - 3r)

It should be noted that Eq. (70)* should be multipliedry. Now, the sum of the second term and the third term on the
right hand side of Eq. (10) becomes

PBgp = [1+vGo(3r — 2)r] Doy - (14)

nlﬁaﬁ = fljaﬁ - (1 + rVgO)paaﬁ
2mTY? R
= [§ + orl2go(B—3) [1+vgo(3r-2)r](1+ ngo)] Dap

-_m [?yzgor L2 [1 +(3r2 —r)vgy + r2(3r - 2)vzg§]] TY2D,p. (15)
Vs —or')Jo
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Substituting = (1 + €)/2 into Eq. (15) we obtain

m

. 4 )
nDgs = — [;(1 +€vgo +

_ 4
(7- 390

(1+¢€)Be-1)

_4m 1 5, (@A+e(3e+1)
[ T T a7-39

T oonl2|7-3e™

Thus, the shear viscosity is given by

4m 1

-1

8(7- 3¢)

1+e)Be+1) 1+e)(3e-1) 1

n

oni/2

where we have used the relations

5 Transport coefficients associate with the density gradient and the heat

conductivity

7-3e™

8(7-39 ' x

4(7- 3e)

3F2-r= %(1 +6)(3e+1)
r’(Br-2) = %(1 +e?%(3e-1)

1
5-3r= 5(7—3e).

The (translational ) energy flux is given by Eq. (61)*:

_l i
Qo = zpafxﬁﬁ 2 app -

1+ %(1 +e)(3e+ 1)vgo + %(1 +6)3(3e- 1)vzggH TY2D,,

+ E] 1+ e)vzgo] TY2D,,.
Ve

1+ e)vzgo] T2,

(16)

17

(18)
(19)

(20)

(21)

3

Here,pa,z3/2 and®,zs/2 are given by Eq. (89)* and (100)*, respectively. First, with the help of Eq. (100)*, we rewrite the

energy fluxq, as

Now, we introduce, anda, as

1 3 1
Go = 5P ~ EVT + 5190 " 5P3agp

3 1
= (1 ¥ Ervgo) 5PBaps —EVT .

1
Epaﬂﬁﬁ = _KpVT - /lpVP 5

wherex, and, are respectively given by

and

Kp =

A, =

4mTY/2

3
M 114 Sygr24r-3)|,
Gor (17— 1n)ni2 | 1+ 279 (4 =3)

~ 3oat?(2r = 1)(1-r) 132 d(v*go)
2vgo(17 - 15r) dv

(22)

(23)

(24)

(25)
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To derive Egs. (24) and (25) we have used Eq.(89)* in Ref.[2]. Thus, the energy,fhiecomes

Qo = — |:Kp (1 + grvgo) +&|VT =2, (1 + grvgo) Vp

= —«kVT - AVp.

Here, the heat conductivityand the transport céigcient A associated with the density gradient are given by

K=K, (1 + grvgo) + &,

and
3
=2, (1+ Ervgo) s

respectively.

5.1 Heat conductivity

In this subsection, let us write the explicit expression of the heat conduatjvity
From Egs.(3), (26) and (24), we obtain the heat conductivdg

4mTY2
T onl2gor(17 - 15r)
4mTY2
onl/2gor(17 — 15r)
4m 1 1 3(A%2-3r+1) 9% -3) , 2 , |1
_ z TYV2,
[r(l?— % Toaro1en Ut aar—1m) %

1+ gr2(4r - 3)vgo

3 8m 12
(1+ Ervgo) + mrv QOT

+

m
rv2goT?

3 9
1+ Er(4r2 —3r+1)vgo + Zr3(4r - 3)2g3 —

T ool

Substituting = (1 + €)/2 into the above equation,is rewritten as

~ 16m[ 1 L, 3022+e+1) +{9(1+e)2(2e—1) 1

1 2 12
T o T+ 9uo-159% T 81o-159 T\ 6a(19-159) 47r} 3+ 90] ™.

Here, we have used the following relations
17- 150 = %(19— 15€)
r(17-15r) = %(1 +6)(19- 150)
42 -3r+1= %(2e2+e+1)

r2(4r —3) = %(1 +e)?(2e-1).

We should note that the third term on the right hand side of Eq. (3®rdifrom our paper[1]. Indeed, one of the
codficients used(4r — 2) instead of the correct form?(4r — 2), and the coficient 1/4x in the last term on the right hand

side of Eq. (32) is dferent from ¥ 2.

(26)

27)

(28)

(29)

(30)

(C1Y)

(32

(33)
(34)
(35)

(36)

4
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5.2 Transport coefficient A

In this subsection, let us write the explicit form af
Substituting (25) into Eq.(26) we obtain

12(9r — 1)(1— 2
_ Sor#2r - 1)(1-1) 152d0°Go) (1+ grvgo) :

2vgo(17 — 15r) dv
With the aid ofr = (1 + €)/2, A is rewritten as
_ 38(1 - e) 1/2 1 1 d(Vzgo) 3/2
A= 81— 155" [495" +3(1+ &)y =g T,

where we have used the relations
3 1 1
1+ 5% = 70 [4g0 +3(1+ e)v],

@2r-11a-r)= %e(l -e),
2(17-15) =19- 15

5.3 Summary in the dimensional form

In this subsection, we explicitly list the collisional energy loss rate and all the transpd@itogs.

X = mngﬂ“z [8T - 372 TH2(V - v)|
p=pT[1+(1+€vg]
¢= %(1 +€)vPgoT?
n= 0.‘:32 [7 _13e (_)1 + @ Z((;)(_Sze; 1) (@ ;(?(_32;) &) + 7—]; a+ e)yzgo] T2
- ;7?1?2 1+ e)(119— 15¢) %'+ Séﬁzgi i;e)l b 9%;(332_(2165;)1) * % @+ e)vzgo] T2
A= —%O‘TIUZ [4951 +3(1+ e)v] %MG—?&TS/Z.

6 Non-dimensionalization

Now, we non-dimensionalize the expressions for the transpofiicieats listed in the previous section.
Using the dimensionless temperatdrelimensionless pressure and the transporfficents are given by

p* = p(v)o

& =)o
= ()6t
K" = k(v)oH?
A= Ane¥2.

@37

(38)

(39)

(40)
(41)

(42)
(43)
(44)
(45)

(46)

(47)

(48)
(49)
(50)
(51)
(52)
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Finally, the functiong(v), £(v), n(v), k(v) andA(v) in the dimensionless forms are given by

p(v) = %v[l + (1 + €)vgo]

£0) = \,iz(u Yo

x|l 1 4 (1+€(3e+1) (1+e)Be-1) 1
n0) = \/;[7 3% * a7-39 | 8w-39 ‘x|t e)Vzgo]
B 1 L, 302R+e+l) [91+e2(2e-1) 1
K0) = Vor (1+e(19- 15e)‘9’°1 T 8(19-159) ' T| 6a(1o-15%9 ar

2
A() = - \/2[4%1 +3(1+e)] %w.

In the table | of our paper[1], the radial distribution functignis represented bg(v). Note that there are two mistakes for

1+ e)Vzgo]

(53)

(54)

(55)

(56)

(57)

the third term ofk in the table I, in which the first term of the third term misus¢4r — 3) instead of2(4r — 3), and ¥ 2r

in the last term on the right hand side«g?) in the table | should be replaced by4r.

gogd
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