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Random variables 

Random variable 

Probability distribution function (PDF) 

“The probability that a random var iable,  

x,  is found between 𝑥~𝑥 + 𝑑𝑥”  = 𝑃 𝑥 𝑑𝑥 

𝑃 𝑥  

𝑥 

𝑑𝑥 

e.g.) Gaussian distr ibution  

The sum of probabilities is one, i.e.  normalized.  

 𝑃 𝑥 𝑑𝑥 = 1 

Its evolution is always fluctuating,  

i.e.  stochastic,  around the mean.  

e.g.) Velocities of Brownian par ticles,  

stock pr ices, cur rency JPY/EUR, etc.  



Chapman-Kolmogorov equation 

𝑃 𝑥𝑘 , 𝑡𝑘 =  ⋯ 𝑊 𝑥𝑘|𝑥𝑘−1 𝑊 𝑥𝑘−1|𝑥𝑘−2 ⋯𝑊 𝑥2|𝑥1 𝑃 𝑥1, 𝑡1 𝑑𝑥𝑘−1⋯𝑑𝑥1 

e.g.) Markov-chain 

𝑡 
𝑡1 𝑡2 ⋯ 𝑡𝑘 𝑡𝑘−1 𝑡𝑘−2 

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑥𝑘−1 𝑥𝑘−2 

Markov process 

Random var iables depend only on the previous values.  

e.g.) 𝑥𝑘 at 𝑡𝑘 is fully determined from 𝑥𝑘−1 at 𝑡𝑘−1.  

𝑃 𝑥𝑘 , 𝑡𝑘 =  𝑊 𝑥𝑘|𝑥𝑘−1 𝑃 𝑥𝑘−1, 𝑡𝑘−1 𝑑𝑥𝑘−1 

Chapman-Kolmogorov eq.  

𝑊 𝑥𝑘|𝑥𝑘−1  ,  transition probability: 

The probability for  𝑥𝑘−1 to become 𝑥𝑘 



Master equation 

𝑃 𝑥, 𝑡 + Δ𝑡 =  𝑊 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 𝑑𝑥′ 

𝑃 𝑥, 𝑡 + Δ𝑡 − 𝑃 𝑥, 𝑡 =  𝑊 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 𝑑𝑥′ − 𝑃 𝑥, 𝑡  𝑊 𝑥′|𝑥 𝑑𝑥 ′ 

                                  =  𝑊 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 − 𝑊 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥′ 

Chapman-Kolmogorov eq.  

𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 =  𝑇 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 − 𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥′ Master eq. 

Transition rate 𝑇 𝑥|𝑥′ ≡ lim
∆𝑡→0

𝑊 𝑥|𝑥′

∆𝑡
 

gain loss 

cf.) Note the similar ity with the Boltzmann equation! 

 𝑊 𝑥′|𝑥 𝑑𝑥′ = 1 

Transition probabilities are normalized to one: 

𝑡 𝑡 + 𝑑𝑡 

𝑥 𝑥′ 

⋮ 

⋮ 



Fokker-Planck equation 

𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 =  𝑇 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 − 𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥′ Master eq. 

Multiplied by an arbitrary function, ℎ 𝑥 ,  and integrated over  x, 

 ℎ 𝑥
𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 𝑑𝑥 =  ℎ 𝑥 𝑇 𝑥|𝑥′ 𝑃 𝑥′, 𝑡 − ℎ 𝑥 𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥𝑑𝑥′ 

           =  ℎ 𝑥′ − ℎ 𝑥 𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥𝑑𝑥′ 
Exchange 

x with x’ 

Taylor  expansion, Δ𝑥 ≡ 𝑥′ − 𝑥 ≪ 1 (cf.  van Kampen’s small noise expansion).  

ℎ 𝑥′ − ℎ 𝑥 =  
1

𝑛!

𝜕𝑛ℎ

𝜕𝑥𝑛
∆𝑥𝑛

∞

𝑛=1

 

Integrating the r ight-hand-side by par ts,  

 ℎ 𝑥
𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 𝑑𝑥 =   

1

𝑛!

𝜕𝑛ℎ

𝜕𝑥𝑛
∆𝑥𝑛

∞

𝑛=1

𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥𝑑𝑥′ 

                                                         =  ℎ 𝑥  
−1 𝑛

𝑛!

𝜕𝑛

𝜕𝑥𝑛

∞

𝑛=1

∆𝑥𝑛𝑇 𝑥′|𝑥 𝑃 𝑥, 𝑡 𝑑𝑥𝑑𝑥′ 



Fokker-Planck equation 

 ℎ 𝑥
𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 𝑑𝑥 =  ℎ 𝑥  

−1 𝑛

𝑛!

𝜕𝑛

𝜕𝑥𝑛

∞

𝑛=1

𝛼𝑛 𝑥 𝑃 𝑥, 𝑡 𝑑𝑥 

𝛼𝑛 𝑥 ≡  ∆𝑥
𝑛𝑇 𝑥′|𝑥 𝑑𝑥′ 

The n-th moment of transition rate 

Because ℎ 𝑥  is arbitrary, the rest of terms should be equal:  

𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 =  

−1 𝑛

𝑛!

𝜕𝑛

𝜕𝑥𝑛

∞

𝑛=1

𝛼𝑛 𝑥 𝑃 𝑥, 𝑡  

Kramers-Moyal expansion 

The expansion truncated at 𝑛 = 2 is the so-called Fokker-Planck eq. 

𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 = −

𝜕

𝜕𝑥
𝛼1 𝑥 𝑃 𝑥, 𝑡 +

1

2

𝜕2

𝜕𝑥2
𝛼2 𝑥 𝑃 𝑥, 𝑡  

“Drift” “Diffusion” 



Fokker-Planck equation 

𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 = −𝐴 𝑡

𝜕

𝜕𝑥
𝑥𝑃 𝑥, 𝑡 +

𝐵 𝑡

2

𝜕2

𝜕𝑥2
𝑃 𝑥, 𝑡  

e.g.) Fokker-Planck eq. with time dependent coefficients: 

𝑃 𝑥, 𝑡 =
1

2𝜋𝜌
exp −

𝑥 − 𝑥 2

2𝜌
 

𝑑

𝑑𝑡
𝑥 = 𝐴 𝑡 𝑥  

𝑑

𝑑𝑡
𝜌 = 2𝐴 𝑡 𝜌 + 𝐵 𝑡  

The mean,  𝑥 ,  and variance,  𝜌 = 𝑥2 − 𝑥 2,  are the solutions of the following equations: 

Exercise) Please show that the Gaussian is a solution of 

the Fokker-Planck eq. with time dependent coefficients.  

The solution is a Gaussian distribution: 



Langevin equation 

“Brownian particle (a macroscopic sphere immersed into liquid)” is a physical model of 

stochastic process which can be descr ibed by the Langevin eq. : 

𝑚
𝑑

𝑑𝑡
𝐯 𝑡 = −𝑚𝛾𝐯 𝑡 + 𝐑 𝑡  

Drag force 

(macro) 

Random force 

(micro) 

Uncorrelated “white noise” 

• Mean value is zero, 𝐑 𝑡 = 0 
• Correlation-time is zero, 𝐑 𝑡 ∙ 𝐑 0 = 2𝑅0𝛿 𝑡  

• Integrating over 𝑡 = 0~∞,  𝑅0 =  𝐑 𝑡 ∙ 𝐑 0 𝑑𝑡
∞

0
 

• Uncorrelated with previous velocities, 𝐑 𝑡 ∙ 𝐯 0 = 0 

𝑡 

𝑅 𝑡  

𝐯 𝑡 ∙ 𝐯 0

𝐯 0 ∙ 𝐯 0
= 𝑒−𝛾𝑡 

e.g.) Velocity autocor relation decays exponentially 

𝐯 𝑡 = 𝐯 0 +
1

𝑚
 𝑒𝛾𝑡′𝐑 𝑡′ 𝑑𝑡′
𝑡

0

𝑒−𝛾𝑡 
The solution is 



Langevin equation 

Fluctuation-dissipation theorem (FDT) 

𝛾 =
𝑅0
3𝑚𝑘𝐵𝑇

=
1

3𝑚𝑘𝐵𝑇
 𝐑 𝑡 ∙ 𝐑 0 𝑑𝑡
∞

0

 

Squar ing the solution and taking an statistical (ensemble) average,  

𝐯 𝑡 2 = 𝐯 0 2 𝑒−2𝛾𝑡 +
2𝑒−2𝛾𝑡

𝑚
 𝑒𝛾𝑡

′
𝐑 𝑡′ ∙ 𝐯 0 𝑑𝑡′

𝑡

0

+
𝑒−2𝛾𝑡

𝑚2
 𝑒𝛾 𝑡

′+𝑡′′ 𝐑 𝑡′ ∙ 𝐑 𝑡′′ 𝑑𝑡′𝑑𝑡′′
𝑡

0

 

                 = 𝐯 0 2 𝑒−2𝛾𝑡 +
𝑅0

𝑚2𝛾
1 − 𝑒−2𝛾𝑡  

Thermal equilibr ium:  𝑚

2
𝑣 𝑡 2 =

𝑚

2
𝑣 0 2 =

3

2
𝑘𝐵𝑇 

∴ 𝑣 𝑡 2 = 𝑣 0 2 =
3𝑘𝐵𝑇 

𝑚
 

3𝑘𝐵𝑇 

𝑚
=
3𝑘𝐵𝑇 

𝑚
𝑒−2𝛾𝑡 +

𝑅0
𝑚2𝛾
1 − 𝑒−2𝛾𝑡   →   

𝑅0
𝑚2𝛾
  𝑡 → ∞  



Langevin equation 

Multiplying the Langevin eq. by 𝐫 𝑡  and taking a statistical (ensemble) average,  

𝑚 𝐫 𝑡 ∙
𝑑

𝑑𝑡
𝐯 𝑡 = −𝑚𝛾 𝐫 𝑡 ∙ 𝐯 𝑡 + 𝐫 𝑡 ∙ 𝐑 𝑡  

𝐫 𝑡 ∙ 𝐑 𝑡 = 0 𝐫 ∙ 𝐯 =
1

2

𝑑2

𝑑𝑡2
𝐫2 𝐫 ∙

𝑑

𝑑𝑡
𝐯 =
1

2

𝑑2

𝑑𝑡2
𝐫2 − 𝐯2 

Random force is space-independent! 

𝑑2

𝑑𝑡2
𝐫 𝑡 2 + 𝛾

𝑑

𝑑𝑡
𝐫 𝑡 2 = 2 𝐯 𝑡 2 =

6𝑘𝐵𝑇

𝑚
 

Differential equation of  𝑟 𝑡 2  

∴ 𝐫 𝑡 2 =
6𝑘𝐵𝑇

𝑚𝛾
𝑡 −
1

𝛾
+
1

𝛾
𝑒−𝛾𝑡  

≈

3𝑘𝐵𝑇

𝑚
𝑡2 short time scale, 𝛾𝑡 ≪ 1

6𝑘𝐵𝑇

𝑚𝛾
𝑡 long time scale, 𝛾𝑡 ≫ 1

 

Mean-square displacement (MSD) 

log 𝑡 

lo
g
𝐌
𝐒
𝐃

 ~𝑡 

~𝑡2 

log 𝛾−1 

Normal diffusion 

Ballistic 



Langevin equation 

Diffusion coefficient 
𝐷 ≡ lim

𝑡→∞

𝐫 𝑡 − 𝐫 0 2

6𝑡
=
𝑘𝐵𝑇

𝑚𝛾
 

 𝐯 𝑡 ∙ 𝐯 0 𝑑𝑡
∞

0

= 𝐯 0 2  𝑒−𝛾𝑡𝑑𝑡
∞

0

=
3𝑘𝐵𝑇

𝑚𝛾
 

Time-integral of the velocity autocor relation function 

𝐫 𝑡 2 ≈
6𝑘𝐵𝑇

𝑚𝛾
𝑡 

𝐫 0 = 𝟎 

Green-Kubo formula 
𝐷 =
1

3
 𝐯 𝑡 ∙ 𝐯 0 𝑑𝑡
∞

0

 

Note the similar ity with the FDT! 

Both are given by time-integrals of autocor relation! 

cf.) Long-time tails 

𝐯 𝑡 ∙ 𝐯 0   ~  𝑡−𝑑 2  (in a long-time limit, in d-dimension) 

cf.) Green-Kubo formula for  transpor t coefficients: 

Shear viscosity 𝜂 = lim
𝐤 →0

1

𝑘𝐵𝑇𝑉
 𝛔𝐤

⊥ 𝑡 ∙ 𝛔𝐤
⊥ 0 𝑑𝑡

∞

0

 



Langevin equation 

Langevin equation (1 -dimension) 

𝑑

𝑑𝑡
𝑥 = −𝛾𝑥 + 𝑅 𝑡  

The n-th moment 

𝛼𝑛 𝑥 = lim
∆𝑡→0

1

∆𝑡
 ∆𝑥𝑛𝑊 𝑥′|𝑥 𝑑𝑥′ = lim

∆𝑡→0

∆𝑥𝑛

∆𝑡
 

∴ Δ𝑥 ≈ −𝛾𝑥Δ𝑡 +  𝑅 𝑡′ 𝑑𝑡′
𝑡+Δ𝑡

𝑡

 

NOT 𝑅 𝑡 ∆𝑡 ! 

𝑡 𝑡 + Δ𝑡 

𝑥 𝑡  

𝑅 𝑡  

“slow variable” 

“fast variable” 

𝛼1 𝑥 = lim
∆𝑡→0

∆𝑥

∆𝑡
= lim
∆𝑡→0
−𝛾𝑥 +

1

∆𝑡
 𝑅 𝑡′ 𝑑𝑡′
𝑡+Δ𝑡

𝑡

= −𝛾𝑥 

e.g.) 

⋯  does not work on 𝑥 

𝛼2 𝑥 = lim
∆𝑡→0

∆𝑥2

∆𝑡
= lim
∆𝑡→0

𝛾𝑥 2Δ𝑡 − 2𝛾𝑥 𝑅 𝑡′ 𝑑𝑡′
𝑡+Δ𝑡

𝑡

+
1

∆𝑡
 𝑅 𝑡′ 𝑅 𝑡′′ 𝑑𝑡′𝑑𝑡′′
𝑡+∆𝑡

𝑡

= 𝑅0 

Fokker-Planck eq. 𝜕

𝜕𝑡
𝑃 𝑥, 𝑡 = 𝛾

𝜕

𝜕𝑥
𝑥𝑃 𝑥, 𝑡 +

𝑅0
2

𝜕2

𝜕𝑥2
𝑃 𝑥, 𝑡  

𝑥 ⋮ 

𝑡 𝑡 + Δ𝑡 

⋮ 

Sample 1 
Sample 2 
Sample 3 Take an average over  all possible 𝑥′ 

𝑥′ 



Generalized Langevin equation 

𝑚
𝑑

𝑑𝑡
𝐯 𝑡 = −𝑚 𝛾 𝑡 − 𝑡′ 𝐯 𝑡′ 𝑑𝑡′

𝑡

0

+ 𝐑 𝑡  

Viscosity coefficient has “memory” 

Correlated “colored noise” 

𝐑 𝑡 ∙ 𝐑 0 = 𝑚𝑘𝐵𝑇𝛾 𝑡  

i.e.  Cor relation time is finite 

𝑡 

𝑅 𝑡  

Multiplying the generalized Langevin eq. by 𝐯 0  and taking statistical average,  

the velocity autocor relation function obeys 

𝑑

𝑑𝑡
𝐯 𝑡 ∙ 𝐯 0 =  𝛾 𝑡 − 𝑡′ 𝐯 𝑡′ ∙ 𝐯 0 𝑑𝑡′

𝑡

0

 

e.g.) 𝛾 𝑡 = 𝛾 0 𝑒−𝑡 𝜏  
𝐯 𝑡 ∙ 𝐯 0

𝐯 0 ∙ 𝐯 0
=
𝛾1𝑒
−𝛾2𝑡 − 𝛾2𝑒

−𝛾1𝑡

𝛾1 − 𝛾2
 Mixing two relaxation time 

scales, 𝛾1
−1 and 𝛾2

−1 
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