近赤外線分光撮像観測による Wolf-Rayet星探索: 「Pa-α」フィルターによる観測

奥村真一郎(日本スペースガード協会)、 田中培生、高橋英則(東京大学)、 他TAOグループ

はじめに

。CIV/Ks比によるWC型星の探索

。 ぐんま天文台 (北天) (miniTAO (南天)

Pa-αによる観測が可能

NIR Line List (cf. Hillier 1985, AJ, 90, 1514; Eenens, Williams, Wade 1991, MNRAS, 252, 300)

Wavelength (nm)	Transition	Wavelength (nm)	Transition	Wavelength (nm)	Transition
934.8	Hell(8-5)	1692.6	Hell(12-7)	923.4	CII(5s ² S-4p ² P)
937.0	Hell(17-6)	1700.7	Hel(4d ³ D-3p ³ P)	936	CIII(4p ¹ P-4s ¹ S)
954.5	Hell(16-6)	1736.7	H(10-4)	971.1	CIII(3d ³ D-3p ³ P)
976.5	Hell(15-6)	1736	NIV(9-8)	989.I	CII(3d ⁴ D-3p ⁴ P)
1005.2	H(7-3),Hell(14-6)	1818.1	H(9-4),Hell(18-8)	1055	CIV(12-9)
1013.3	Hell(5-4)	1863.9	Hell(6-5)	1163	CIV(14-10)
1042.2	Hell(13-6)	1875.6	H(4-3),Hell(8-6)	9	CIV(8-7)
1083.0	Hel(2p ³ P-2s ³ S)	1945.1	H(8-4)	1199	CIII(4p ³ P-4s ³ S)
1094.1	H(6-3),Hell(12-6)	2037.9	Hell(15-8)	1256	CIII(9-7)
1162.8	Hell(7-5)	2058.1	Hel(2p ¹ P-2s ¹ S)	1374	CIII(7-6)
1167.7	Hell(11-6)	2099.7	NV(11-9)	1395	CII(5p ² P-4d ² D)
1190	NIV(8-7)	2112.0	Hel(4s ³ S-3p ³ P)	1435	CIV(4p ² P-4s ² S)
1196.9	Hel(5d ³ D-3p ³ P)	2113.2	Hel(4s ¹ S-3p ¹ P)	1575	CIII(13-9)
1282.2	H(5-3),Hell(10-6)	2116	NIII(8-7)	1736	CIV(9-8)
1312.0	NIV(2s4d ¹ D-2s4p ¹ P)	2166.1	H(7-4),Hell(14-8)	1785	CII(4d ² D-4p ² P)
1476.5	Hell(9-6)	2189.1	Hell(10-7)	1800	CIII(10-8)
1488.1	Hell(14-7)	2247.I	NIII(5s ² S-5p ² P)	1801	CIV(14-11)
1556.1	H(16-4)	2348	Hell(13-8)	1891	$CII(4p^2P-4s^2S)$
1570.5	H(15-4)			2078	CIV(3d ² D-3p ² P)
1571.9	Hell(13-7)			2108	CIII(5p ¹ P-5s ¹ S)
1588.5	H(14-4)			2117	CIII(8-7)
1611.4	H(13-4)			2278	CIV(15-12)
1641.2	H(12-4)			2318	CIV(17-13)
1681.1	H(11-4)			2325	CIII(5p ³ P-5s ³ S)

Pa-a/Ks 比 (N187/Ks 比)から

WC(5-9), WNなどWR星(HeIIによる寄与)
 LBV, YHG等 (Pa-aそのもの)

等の天体をピックアップすることが可能

N187/Ks比の定量解析

- 。 星(黒体)からの光(レイリージーンズを仮定)
 → (N187/Ks)intial = 0.043
- CIV/Ks比 → A215
- さらに大気吸収のファクター
 ~0.25-0.55@1.8756µm (best > 0.7, worse < 0.25)

Atmospheric transmittance in $Pa\alpha$ filter range

average transmittance (1871-1879nm) = 0.70 (0.1mm), 0.54 (0.3mm), 0.39 (0.6mm), 0.25 (1.2mm), 0.13 (2.5mm) PWV @ TAO site: best < 0.1mm; nominal 0.3-0.6mm; worse > 1mm

Wavelength (micron)

N187/Ks比の定量解析

- 。星(黒体)からの光(レイリージーンズを仮定)
 → (N187/Ks)intial = 0.043
- CIV/Ks比 → A215
- さらに大気吸収のファクター ~0.25-0.55@1.8756µm (best > 0.7, worse < 0.25)
 例えばA215=2.05の場合 (N187/Ks)total=0.006~0.013

解析例

CIV/Ks imaging of 3 Galactic Center clusters (5'x5')

Detection of known and candidates WR

Mauerhan+ 2010; Wang+ 2010

HST/NICMOS Pa**α** survey image ~50% are stars in clusters; ~50% are isolated (inter-cluster) stars extinction law from Nishiyama+ 2006

N187(Pa-α)観測

mini-TAO (チャナントール山、5600m) ANIR, 2009/6/9,11(Ks), 2009/6/10,11(N187)

解析例 1 Quintuplet

[19WR] WR102 c(WN6) ca(WC8-9) d(WN9)da(WC9?d)LHO76(WC9d) LHO79(WC9d) db(WC9?d) dc(WC9d) dd(WC9d)e(WC8) ea(WN9) f(WC8) g(WC8) h(WC9) ha(WC8/9d) hb(WN9) i(WN9) j(WC<8) k(WN9)

N187/Ks ratio @Quintuplet

解析例2 SgrA*

[42WR] WRI00a(WN7) WR101 a(WC8-9) b(WN8)c(WN9)d(WC9)da(WN7) db(WN9) dc(WN8) dd(WN7)de(WCLd) df(WCLd) dg(WCLd) dh(WCLd) di(WC9) e(WN8) ea(WCLd) f(WC9) fa(WC5-6d) g(WC9) h(WN8-WC9)

i(WC8-9) j(WN9) ja(WN9) k(WN9) I(WN9)m(WN8-9) ma(WC8-9) n(WC8-9) na(WCLd) nb(WC) nc(WN8) nd(WN9) o(WN5-6) oa(WC9) ob(WC9) oc(WN9) od(WCLd) oe(WCLd) of(WC9) og(WCLd) oh(WC9) oi(WC9)

N187/Ks ratio @Sgr A*

まとめ

Pa-α (N187) フィルターにより取得した データを利用し、N187/Ks比について考察 WR、LBV等の検出に有効