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Competitive Burnout in the Laboratory: 

Equilibrium Selection in a Two-Stage Sequential Elimination Game 

Abstract

We examine experimentally equilibrium selection in a two-stage sequential elimination

contest in which a group of contestants competes to win a single prize. Only a subset of 

the participants survives the first stage. In the second stage, the survivors compete once 

more, with the winner taking home the prize. This game has a continuum of equilibria, 

many of which are Pareto-rankable, but only one of these equilibria satisfies the 

Coalition-Proof Nash Equilibrium (CPNE) refinement. That equilibrium involves 

“burning out” by using all of one’s resources in the first stage. It is Pareto-dominated by 

many other equilibria. We show that CPNE is not a good predictor of behavior when four 

people compete for two second-stage spots, but that it does predict well when eight 

people compete for the two available spots. Announcing the successful bids at the end of 

each stage has little impact on equilibrium selection. 

Keywords: all-pay auction, burning out, coalition-proof Nash equilibrium, contests, 

experiment.
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1. Introduction

Contests are an important fact and pervasive aspect of economic life. A contest is a 

game in which players compete over a prize by making irreversible outlays. Election 

campaigns, rent-seeking games, R & D races, competition for monopolies, litigation, 

wars, and sports are all examples of contests.

A common feature of contests is that they involve multiple stages where the set of 

contestants is narrowed in successive stages of the contest until a winner is finally

chosen. Another feature of contests is that the players may be constrained in terms of how 

much effort or outlay they can expend (e.g., Che and Gale, 1997, 1998; Gravious et al., 

2002). In a sequential elimination contest with such a constraint, it may be rational for 

contestants to expend all their efforts in earlier stages, thus burning out and having 

nothing left to offer in subsequent stages. Amegashie (2004) shows that under certain 

conditions burning out in this manner may be equilibrium-consistent rational behavior 

even though the ultimate prize is won only if a contestant is successful in all stages 

including the final one. 

However, in this setting the burning-out equilibrium is not the only equilibrium.

There are also equilibria in which the players do not burn out. Indeed, there is a 

continuum of equilibria, many of which are Pareto-rankable. The presence of multiple

Pareto-rankable equilibria suggests that it is desirable for the players to coordinate on 

Pareto-dominant equilibria.  Since the burning-out equilibrium is always Pareto-

dominated by many other equilibria, it is never Pareto optimal to burn out.

Similar kinds of coordination problems are common in many economic contexts. A 

frequently-cited example is the case of team production. If low effort on the part of one 

worker reduces the marginal products of other team members, it may not be optimal for a 

particular worker to exert high effort when the efforts of another are low. In this case, the 
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team may be stuck in a low-effort equilibrium even though all team members would be 

better off in a high-effort equilibrium. An interesting aspect of this kind of coordination 

problem is that while both low-effort and high-effort outcomes are Nash equilibria, the 

latter Pareto-dominate the former. Indeed, there may be a continuum of Pareto-rankable 

equilibria.

Economists and game theorists have proposed solutions to equilibrium selection in 

such games. Some of these include focal points (Schelling, 1960), belief-learning 

(Camerer and Ho, 1999), and Pareto dominance (Harsanyi and Selten, 1988). A growing 

area of research examines coordination games experimentally in order to shed light on 

the issue of equilibrium selection (e.g., Van Huyck et al., 1990; Van Huyck et al., 1991; 

Camerer and Knez, 1994; Van Huyck et al., 2001; Anderson et al., 2001; Berninghaus et 

al., 2002).1 Generally, this literature finds that smaller groups reach more efficient 

equilibria than larger groups, especially when play is repeated with a fixed group of 

participants.

This paper contributes to this line of research by examining equilibrium selection in a 

two-stage sequential elimination contest in which a group of contestants competes to win 

a single prize. Only a subset of the participants survives the first stage. In the second 

stage, the survivors compete once more, with the winner taking home the prize. Like the 

weak-link team-production coordination game described above, the sequential 

elimination game has a continuum of Nash equilibria. In contrast to the weak-link 

coordination game, which has a continuum of Pareto-rankable equilibria, many but not 

necessarily all of the equilibria in the sequential elimination game are Pareto-rankable. A 

more significant contrast between the two games is that the main point of a sequential 

elimination contest is not cooperation to produce a high return for the group, but 

competition to win a single valuable prize. Thus, in the sequential elimination game, the 

1 Chapter 7 of Camerer (2003) provides an excellent summary of this literature. 
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equilibrium selected through some process of coordination by group members affects the 

earnings of the group as a whole even as its members compete for the ultimate prize. Is 

cooperation to maximize group welfare possible in such a competitive context?

A refinement of Nash equilibrium, in particular the Coaliton-Proof Nash Equilibrium

(henceforth CPNE) concept (Bernheim et al., 1987), suggests that the answer to this 

question is no. The unique CPNE involves the exertion of maximum effort to the point of 

complete competitive burnout during the first stage of the game, leaving no resources to 

utilize during the second stage. From the perspective of the competing participants, this 

burning-out CPNE is Pareto-dominated by many other equilibria in the game. Since the 

CPNE refinement produces strikingly different outcomes than Pareto-dominance, this is a 

challenging context in which to assess the predictive power of the refinement.

In the next section, we describe and analyze the two-stage sequential elimination

game. Section 3 presents the experimental design and section 4 discusses the results. 

Section 5 concludes the paper. 

2. A Two-Stage Sequential Elimination Game 

In Amegashie (2004), the following game is presented. Consider N  3 risk-neutral 

agents contesting for a prize with valuations commonly known to be V1  V2  … VN-1

VN > 0, where Vi is the valuation of the i-th contestant, i = 1, 2, …, N-1, N. The contest is 

divided into two stages. In the first stage, the F contestants with the highest bids or effort 

levels are chosen to compete in a second stage from which the ultimate winner is chosen, 

where 2  F < N. Ties are broken randomly in each stage. Formally, the contest success 

function in stage one is: 
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where P 1i = the probability of advancing from stage one to stage two and ei = the effort

level of player i. In stage two, the contestant with the highest bid wins. Note that the 

contest in each stage is an all-pay auction.2

Following Che and Gale (1997, 1998) and Gravious et al. (2002), suppose all 

contestants face a common budgetary or effort constraint or cap, B > 0. These papers give 

examples of caps in contests: caps on campaign contributions, salary caps in US 

professional sports3, and caps on how fast Formula 1 racing cars can move. Also, a cap 

on effort arises because human beings naturally have a limit on how much effort they can 

expend.

Suppose B can be allocated between the two stages. Let ei and xi be the bid or effort 

levels of the i-th contestant in stages 1 and 2 respectively, where ei + xi  B. We assume

that ei and xi also represent the cost of expending effort, i.e. the cost function of effort is 

linear. In each stage, the contestants move simultaneously.

Let ),...,,()~( 2111 Nii eeePeP  and ),...,,()~( 2122 Fii xxxPxP be the success 

probabilities of the i-th contestant in stages 1 and 2 respectively.  Denote the equilibrium

success probabilities by  and  for the i-th contestant.)~( **
1 eP i )~( **

2 xiP

In stage two, the equilibrium expected payoff of the i-th contestant, conditional on 

making it to that stage, is . Focusing on a subgame perfect Nash 

equilibrium and applying backward induction, the equilibrium payoff to the i-th 

contestant in stage one is .

***
2

*
2 )~( iiii xVxP

**
2

**
1

*
1 )~( iiii eeP

2 See Baye et. al. (1996); Hillman and Riley (1989); and Clark and Riis (1998) for analyses of all-pay
auctions.
3 As noted by Gravious et al. (2002), in the year 2000, NFL teams faced a salary cap of $62,172,000. This 
was a cap on the aggregate amount they could spend on their top 51 salaried players.
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The solution to this game is summarized in the following proposition:

Proposition 1: Consider a two-stage contest where the contest in each stage is an all-pay 

auction and the contestants have valuations commonly known to be V1  V2  … VN-1

VN. If F  2 contestants are chosen in the first stage to compete in the second stage and 

all the contestants face a common budget (effort) constraint, B, which can be allocated 

between the two stages, then a given equilibrium effort allocation (e*, B-e*) between the 

two stages induces a corresponding equilibrium number of active contestants, K, such 

that  = (F/K)[(1/F)V*
i i – (B-e*)] – e*  0 for e* [0, B], i = 1, 2, …, K-1, K and  = 

(F/(K+1))[(1/F)V

*
i

i – (B-e*)] – e* < 0 for e* [0, B], i = K+1, K+2,…, N-1, N and F < K 

 N.  In any equilibrium, the active contestants i = 1, 2, …, K-1, K bid e* in stage one 

and B-e* in stage two and the rest bid zero in each stage.
4

Proof: In any equilibrium the expected payoff for the i-th active player is  = 

(F/K)[(1/F)V

*
i

i – (B-e*)] – e*  0, i = 1, 2, …, K-1, K. If F  3, a player who deviates from

this equilibrium by bidding marginally more than e* in stage one guarantees entry to 

stage two, but will then lose in stage two with certainty since he will be joined by, at least 

two players who, having bid e* in stage one, have bigger caps in stage 2. There exists a 

pure-strategy equilibrium in the stage-two subgame in which the players with the bigger 

cap in stage two will bid their cap, yielding an expected payoff lower than the 

equilibrium expected payoff for the player who deviated. If F = 2, a player who deviates 

by bidding marginally more than e* in stage one guarantees entry to stage two, but will 

be joined by a player who bid e* in stage one and hence has a bigger cap in stage two. In 

this case, there is no equilibrium in pure-strategies in the stage-two subgame. However, 

in any mixed-strategy equilibrium in stage two, the player with the smaller cap will get a 

4 Equilibria may also exist in which a player with a lower valuation is active (i.e., bids a positive amount in 
at least one of the stages) while a player with a higher valuation bids nothing in either stage. The existence
of such an equilibrium requires that the difference in valuations between these two players be sufficiently
small. We do not focus on such equilibria. Note also that we assume that if a player is indifferent between
participating in the contest and staying out, he will participate.
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zero expected payoff 5 which is less than the expected payoff in the symmetric

equilibrium in which everyone bids e* in stage one. Hence, it is not profitable for any 

player to deviate by bidding more than e* if F = 2.  A player who bids less than e* in 

stage one will lose with certainty in that stage, yielding an expected payoff lower than the 

equilibrium expected payoff. Hence there is no profitable deviation from the equilibrium

stated in the proposition for an active player. The players i = K +1,…, N-1, N, have no 

incentive to participate if [F/(K+1)][(1/F)Vi – (B-e*)] – e* < 0 for e* [0, B].Q.E.D.

According to proposition 1, a different value of e* may induce a different number of 

active contestants, K. If K and e* vary simultaneously, a Pareto ranking of the different 

equilibria is not straightforward. For the sake of exposition, we initially investigate the 

Pareto ranking of equilibria that share a common number of active participants, K. For a 

given K, all such equilibria can be ranked by noting that / e* = F/K – 1 < 0. Hence 

the equilibrium with the lowest e* gives the highest expected payoff and the equilibrium

with the highest e* gives the lowest expected payoff for i = 1, 2,…, K-1, K.  This of 

course implies that the burning-out equilibrium in which e* = B, the highest possible e*, 

is Pareto-dominated by all other equilibria with the same number of active participants, 

K, since each of those equilibria has an e* < B. 

*
i

As indicated above, a general Pareto ranking of the different equilibria is less 

straightforward when comparing equilibria with different K’s. When equilibria with 

different K’s exist, the burning-out equilibrium may not be Pareto-dominated by all other 

equilibria. To see this, consider a burning-out equilibrium with K1 active contestants and 

N-K1 passive contestants. Then there can be no equilibrium with less than K1 contestants. 

The reason is that any contestant in the burning-out equilibrium that has K1 contestants 

will want to participate actively in any hypothetical equilibrium with less than K1

contestants, given our assumption that a player who is indifferent between participating 

5 See appendix A for a proof of this result, adapted with slight modifications from Amegashie (2004). 
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in the contest and staying out will participate. It follows that only K1 contestants can 

sustain a burning-out equilibrium. The remaining equilibria are those with K1 or more

players. Hence the burning-out equilibrium has the lowest number of players. It is 

possible that some players are better off in the burning-out equilibrium than in some other 

equilibrium with more active players and hence less chance of winning the prize. We

construct an example in Appendix B1 showing that the burning-out equilibrium can 

weakly Pareto-dominate another equilibrium with a larger number of active participants. 

However, there will always be many equilibria, including all of those with the same

number of participants as the burning-out equilibrium, that will Pareto-dominate burning 

out.

If we apply the Coalition-Proof Nash Equilibrium (CPNE) refinement,6 which allows 

for joint deviations, the burning-out equilibrium, in which e* = B, is the only surviving 

pure-strategy equilibrium. To see this, consider an equilibrium in which all the 

contestants in stage one bid e* < B. Suppose a group of M contestants deviate by bidding 

marginally more than e* in stage one7. If M = F  2, then they are all guaranteed entry to 

stage two. Their payoff will be  = (1/F)Vd
i i – B > 0. It is easy to show that  >  as 

long as (1/F)V

d
i

*
i

i – (B-e*) > 0 which is true for all active players. Note that such a deviation 

by the M = F players is immune to further deviations by sub-coalitions of this deviating 

group, since each coalition member’s probability of success in stage one is already at a 

maximum (i.e., 1). Hence, there exists a profitable joint deviation from any equilibrium

where e* < B.8 Neither a single nor joint deviation is feasible at e* = B. Thus, e* = B is 

the unique pure-strategy CPNE. This leads to the following proposition: 

6 See Bernheim et. al (1987) for a discussion of CPNE.

7 In the experiment, only integer bids were permitted. Thus, in our experimental context, a bid marginally
more than e* may be interpreted as a bid of e* + 1. 

8
Notice that a deviation by M > F players to bid more than e* is not immune to further deviations by a sub-

coalition of F players. This deviation is also not profitable for a deviation by M < F players because they 
will be joined by, at least, one player who has a bigger cap in stage 2. In any case, to show that any
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Proposition 2: Consider a two-stage contest where the contest in each stage is an all-pay 

auction and the contestants have valuations commonly known to be V1  V2  … VN-1

VN. If  F  2  contestants are chosen in the first stage to compete in the second stage and 

all the contestants face a common budget (effort) constraint, B, which can be allocated 

between the two stages, then there exists a continuum of symmetric pure-strategy Nash 

equilibria in which each active contestant bids e*  [0, B] in stage one and B – e* in 

stage two but e* = B is the only coalition-proof Nash equilibrium.

We experimentally investigate the following issues. First, how does the value of the 

prize affect the effort or bid level? Given K active contestants bidding e = e* with e* 

[0, B], a risk neutral player i should bid e* in stage one and B-e* in stage two if 

(F/(K+1))[(1/F)Vi – (B-e*)] – e*  0 and should bid zero in both stages if 

(F/(K+1))[(1/F)Vi – (B-e*)] – e* < 0. Actual players need not be risk-neutral. 

Nonetheless, for each player there should be a critical valuation level consistent with their 

level of risk aversion that would induce a bid of e* rather than zero. 

Second, do we observe the burning out predicted by the CPNE refinement despite the 

fact that this unique CPNE is Pareto-dominated by other pure-strategy Nash equilibria? 

The burning-out equilibrium is especially interesting because of its somewhat counter-

intuitive prediction that active contestants expend all their energies or resources in stage 

one, get burned-out, and thus have nothing left to offer in stage two. Under what if any 

circumstances will rational players allocate all their efforts in stage one when there is 

another stage ahead? Will there be a process of convergence to the burning-out CPNE 

over the rounds of a finite repeated game?  Will the feedback received between rounds 

make a difference to the convergence process?

equilibrium with e* < B is not CPNE, we only need to show that there exists a coalition size which can
deviate profitably.
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Third, how does the number of players affect the equilibrium. Earlier experimental

studies of coordination games have shown that coordination on Pareto-superior outcomes

is harder to sustain with more players. For example, Camerer and Knez (1994) argue that 

coordination on Pareto-superior outcomes in their minimum-effort coordination game

was difficult to sustain for more than two players because forming beliefs about the 

behavior of other players becomes more complex with larger numbers. While two players 

only have to worry about each other’s beliefs, the introduction of additional players 

forces everyone to think about the beliefs that each player has about the others in order to 

predict behavior. In our framework the uniqueness of the burning-out CPNE is 

independent of the number of players. However, the predictive power of the burning-out 

CPNE may depend on the number of players, since the higher the number of players, the 

more likely it is that some coalition of F  2 players will deviate from a non burning-out 

equilibrium.

3. Experimental Design 

We ran twelve sessions with participants who were undergraduate students at the 

University of Guelph. They were recruited in the University Centre. A thirteenth session 

was run using economics professors at the University of Guelph.  Participants received a 

$3.00 Canadian show-up fee. The rest of their earnings depended on their performance in 

the game.  Average earnings were $13.20 Canadian, equal to about $10.00 US, inclusive 

of the show-up fee. The sessions lasted about one hour.

Upon entering the room, participants were asked to take a seat and were assigned a 

player number. Written instructions were distributed.9 The instructions were then read 

aloud while participants followed along on their own copies. The experiment lasted for 

eight periods, each of which was divided into two stages. At the beginning of each 

9 A copy of the instructions is attached as Appendix C.
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period, each participant was asked to draw an envelope containing an information slip 

from a box held by the experimenter. The randomly selected information slip told each 

participant his/her potential prize value. There were four different prize values. 

Participants were also told the prize values assigned to the other players. The potential 

prize values determined the monetary payoff of each participant if he/she won the prize at 

the end of stage two. The information slip also indicated that each participant had an 

endowment of 50 tokens, some or all of which could be used to place bids in stages one 

and two. Each token was worth two cents Canadian. Any tokens that were not used in 

either stage could be cashed in at the end of the game.

In stage one, participants were given the opportunity to bid any integer amount of 

tokens between zero and their budgetary caps of 50. After writing their bids in the 

designated space on their information slips, participants raised their hands and the 

experimenter collected the slips. Participants understood that once bids were placed, the 

amount bid would not be returned, regardless of whether or not they won the prize. The 

two participants with the highest bids were then privately informed that they would move

on to stage two. Ties were broken randomly by a draw. Other participants were informed

privately that they would not be moving on. Their earnings for the period were 50 tokens 

minus their stage-one bids. 

The two participants who reached stage two were then given the opportunity to bid 

any amount of tokens from zero up to whatever number of tokens remained after their 

stage-one bids by writing the desired amount in the designated space on their information

slips. The participants who had not reached stage two were asked to write zero in the 

designated space so that it would not be obvious which two players were still in the 

game. The person who placed the highest stage-two bid was then privately informed that 

he/she had won the prize, which was worth the amount that had been indicated on his/her 

information slip. As in stage one, a random draw was used to determine the final winner 

if both participants bid the same amount.

11
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At the end of each period, the information slips were returned to each participant, 

indicating his/her earnings for the period. Earnings were equal to the 50-token 

endowment plus the payoff from playing the game. Thus, the earnings of the final winner 

consisted of the 50-token endowment, minus the tokens bid in stages one and two, plus 

the prize value drawn at the beginning of the period. The earnings of the other 

participants consisted of the 50-token endowment, minus the bid or bids placed during 

the period. 

At the beginning of a new period, each participant drew a new information slip at 

random containing a new prize value. Tokens from earlier periods could not be used in 

the new period. Each participant began each period with exactly 50 tokens. 

We ran four treatments, which are summarized in Table 1.

Treatment 1 - Four persons, no announcement of winning bids: In the first 

treatment, four persons participated in the game. Participants were informed at the end of 

stage one whether or not they would advance to stage two. However, they were not given 

any information about the level of the successful bids. Similarly, at the end of stage two, 

continuing participants were informed whether or not they had won the prize. However, 

they were not told the level of the winning bid. 

Treatment 2 - Four persons, announcement of winning bids: Once again in 

treatment 2, four persons participated in the game. However, in this treatment, the two 

stage-one bids of those moving on to stage two were publicly announced after stage one 

and the stage-two bid of the final winner was publicly announced after stage two. 

Treatment 3 - Eight persons, no announcement of winning bids:  In treatment 3, 

eight persons participated in the game.  As in treatment 1, successful wins were not 

announced.

Treatment 4 - Eight persons, announcement of winning bids:  In treatment 4, 

eight persons participated in the game.  As in treatment 2, successful bids were 

announced.

12
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In treatments 1 and 2, the prize values, which were assigned randomly to the four 

participants, were set at 100, 170, 230 and 300 tokens. Consider a risk-neutral participant 

who believed the other three participants would also behave as if they were risk-neutral.

If such a participant drew the possibility of winning the 100-token prize, proposition 1 

indicates that he/she would bid zero in both stages for all non-zero equilibria since 

(F/K+1)[(1/F)Vi – (B-e*)] – e* < 0, for e* (0, B] in this case. If e* = 0, then 

(F/K+1)[(1/F)Vi – (B-e*)] – e* = 0. Given the assumption that a player who is indifferent 

between participating in the contest and staying out will participate, the risk-neutral 

player with a valuation of 100 tokens would bid zero in stage one and B = 50 in stage 

two. However, if such a risk-neutral participant drew the possibility of winning one of the 

other three prizes, proposition 1 indicates that he/she would bid 0  e*  B in equilibrium

in stage one and x* = B – e* in stage two since (F/K+1)[(1/F)Vi – (B-e*)] – e* > 0 in 

these cases. In appendix B2 we show that the burning-out CPNE in which K = 3 and e* = 

B = 50 is the worst equilibrium in the sense that it is Pareto-dominated by all of the other 

Nash equilibria in the four-player case. We also demonstrate that e* = 1 and K = 3 is the 

Pareto-optimal equilibrium in this case. 

In treatments 3 and 4, the prize values were doubled relative to treatments 1 and 2 in 

order to hold expected earnings constant across the four- and eight-person treatments.

The prize values were accordingly set at 200, 340, 460 and 600 tokens. Each of these 

prize values was randomly assigned to two of the eight participants. Employing the same

reasoning as above, risk neutrality implies a bid of zero for those drawing the 200-token 

prize in stages one and two when 20 < e*  B. When 16.667 < e*  20, the equilibrium

calls for one of the players with the 200-token valuation to bid e* in stage one and B – e* 

in stage two, while the other bids zero in both stages. Both of the players with the 200-

token valuations will bid e* in stage one and B – e* in stage two in any equilibrium in 

which 0  e*  16.667.  Those drawing any of the other prize values will place a bid of 0 

 e*  B in equilibrium in stage one and x* = B – e* in stage two.
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In appendix B3, we show that the burning-out CPNE in which K = 6 and e* = B = 50 

is the worst equilibrium in the sense that it is dominated by all other equilibria in the 

eight-player case. In appendix B4, we demonstrate that there are two Pareto-optimal Nash 

equilibria that are not themselves Pareto-rankable in the eight-person case: K = 8, e* = 0 

and K = 6, e* = 21. 

Three sessions of each treatment were run using undergraduate student participants 

and were analyzed in a two-by-two factorial design framework. One session of treatment

2 was run using economics professors. We hypothesized that both announcements of the 

winning bids and larger numbers of players might facilitate convergence to the burning-

out CPNE. In the case of announcements, we guessed that if everyone learned how much

those moving on to stage two had bid in stage one, it might encourage attempts to bid 

even higher. In the case of eight-person versus four-person competitions, we reasoned 

that more competitors would increase the likelihood of coalition formation and defection, 

pushing bids higher. 

4. Results 

We focus our analysis on the stage-one bids. The Coalition Proof Nash Equilibrium

(CPNE) refinement calls for all participants for whom the prize value is sufficiently large 

to burn out by bidding their entire 50-token endowment in the first stage. Participants for 

whom the prize value is not large enough to justify bidding withdraw from the contest by 

bidding zero. Of course, any outcome in which all active participants bid a common

amount in stage one is consistent with a Nash equilibrium. The CPNE is Pareto inferior to 

all of the other pure-strategy Nash equilibria in both the four- and eight-person 

treatments.

Figures 1 to 5 present representative results from five of the 13 experimental

sessions, one from each of the student treatments as well as the one session with 

economics professors as participants. The bars in the figures indicate the bids placed by 

14

EES 2004 : Experiments in Economic Sciences - New Approaches to Solving Real-world Problems

103



the individual participants in the first stage of each period. The bars are ordered by 

participant number identically in each period. Asterisks indicate bids of zero.

As the figures indicate, the Pareto-optimal equilibria (e* = 1, K= 3 in the four-person

treatments; e* = 0, K = 8 or e* = 21, K = 6 in the eight-person treatments) were not 

achieved in any of the experimental sessions. The economics professors playing the four-

person announcement treatment, illustrated in Figure 3, came closest, converging to a bid 

of about e* = 20, K=3, which was nonetheless still a whopping 19 tokens above the 

Pareto-optimal equilibrium bid for the four-person case. Eight-person sessions converged 

to a bid very close to the CPNE, while four-person sessions did not.

The figures also indicate that some participants placed a bid of zero. However, only 

in the case of the economics professors did the bidding behavior suggest reasonably 

consistent risk neutrality. In every period with the exception of period 2, the economics

professor who drew the lowest prize value of 100 bid zero. In both periods 2 and 8, the 

professor who had drawn the second-lowest prize value of 170 also placed a zero bid, 

showing some risk aversion. In the student sessions, some participants who drew low 

prize values bid positive amounts, while some who drew higher prize values bid zero. 

Thus, there is evidence of both risk-averse and risk-loving behavior. 

If participants had different attitudes toward risk, the prize value required to produce 

a level of expected earnings high enough to warrant a positive bid at a given e* would 

differ from person to person. However, one would nonetheless expect the overall 

probability of a positive bid to be higher, the higher the prize value drawn. In fact, those 

drawing the lowest prize bid zero 30% of the time, those drawing the second lowest prize 

bid zero 15% of the time, those drawing the second highest prize bid zero 6% of the time,

and those drawing the highest prize bid zero just 4% of the time. These observations 

indeed suggest a positive relationship between the probability of a positive bid and the 

prize value drawn. To examine this issue more formally, we employ a three-level 
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hierarchical logit model and estimate it using the data from the twelve student sessions.10

The binary dependent variable is equal to one if a positive bid is placed and zero if a zero 

bid is placed. We hypothesize that the probability of a positive bid will be positively 

related to the prize value drawn, while controlling for the period of play, possible 

treatment effects, and random effects related to the actions of individual participants over 

time and to particular sessions across individuals. 

Level 1 is a logit model, defined for each individual participant ‘i’ in every session 

‘s’over the eight periods of play ‘t’: 

log[Ptis/(1-Ptis)] = 0is + 1is(PERt) + 2is(NVtis),                                                       (1) 

where Ptis is the probability of a positive bid in period ‘t’ for individual ‘i’ in session ‘s’, 

PERt is the period number minus eight in period ‘t’, NVtis is the normalized prize value in 

period ‘t’ for individual ‘i’ in session ‘s’, and the ’s are individual–level coefficients. 

Subtracting eight from the period number allows the effect of treatment variables that 

may interact with the period of play to be tested during the last period of the game when 

convergence to an equilibrium is most likely to have occurred. The prize value is 

normalized to correspond with the expected earnings it represents by dividing prize 

values by the number of participants in the session, either four or eight. 

The level-2 model takes account of possible individual-specific random effects on 

the level-1 coefficients:

0is = 00s + 0is

1is = 10s + 1is (2)

2is = 20s + 2is,

where the ’s are session-level coefficients and the ’s represent individual-specific 

random effects. 

10 Raudenbush and Bryk (2002), and Snijders and Bosker (1999) both provide excellent discussions of
hierarchical linear and logit models (also called mixed models or random-effects models) incorporating
both fixed and random effects.
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The level-3 model takes account of possible session-specific treatment and random

effects on the level-2 coefficients: 

00s = 000 + 001(NAs) + 002(8Ps) + 00s

10s = 100 + 101(NAs) + 102(8Ps) + 10s                                                                  (3) 

20s = 200 + 201(NAs) + 202(8Ps) + 20s,

where the ’s are level-3 coefficients and the ’s represent possible session-specific 

random effects.  The treatment dummy variable NAs is equal to 0 for sessions in which 

the winning bids are announced and 1 if they are not announced. The treatment dummy

variable 8Ps is equal to 0 for the four-person treatments and 1 for the eight-person 

treatments. Combining the three sets of equations, we estimate:

log[Ptis/(1-Ptis)] = 000 + 001(NAs) + 002(8Ps) + 100(PERt) + 101(PERt×NAs) + 

102(PERt×8Ps) + 200(NVtis) + 201(NVtis×NAs) + 202(NVtis×8Ps) + 0is              (4) 

+ 1is(PERt) + 2is(NVtis) + 00s + 10s(PERt) + 20s(NVtis).

Table 2 reports the results. The prize value is positively related to the probability of a 

positive bid as hypothesized, rejecting the null hypothesis with a two-tailed p-value of 

0.076, which corresponds to a one-tailed p-value of 0.038. We can thus reject the null in 

the direction of the hypothesized positive relationship. Neither the period variable nor 

either of the treatment variables or their interactions is significantly related to the 

probability of a positive bid. Thus, the positive relationship between prize value and the 

probability of a positive bid appears to be invariant to both the period in which the prize 

is drawn and the four treatments. If we drop all of the insignificant variables, maintaining

only NV and the individual-specific and session-specific random effects, the two-tailed p-

value on NV falls to 0.001, strongly supporting the hypothesized relationship.11

11 If the data from the professor treatment is added to the estimation of equation 4, the two-tailed p-value
becomes 0.019 and all the other variables remain insignificant. When the insignificant variables are 
dropped the two-tailed p-value becomes 0.000.
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We are primarily interested in how close participants came to the burning-out CPNE 

in the various treatments. The CPNE is consistent with some participants bidding zero in 

stage one if they determine that the expected gains from bidding are not worth the cost. 

Of course, if everyone bid zero in stage one, they would be playing a different Nash 

equilibrium. Nothing close to this ever happened in any period of any session. In the 

CPNE, while some participants may bid zero, many others burn out by bidding their 

entire 50-token endowment in stage one of the game. Since a bid of either zero or 50 is 

consistent with the burning-out CPNE, we define EQDIST = Min(50-Bid, Bid-0) as the 

dependent variable in a three-level hierarchical linear model.

The level-1 model is defined over time ‘t’ for each individual participant ‘i’ in each 

session ‘s’ to account for convergence over the course of the game as: 

EQDISTtis = 0is + 1is(PERt) + tis,                                                                           (5) 

where tis is an observation-specific disturbance term. The level-2 model takes into 

account the possibility of individual-level random effects: 

0is = 00s + 0is

1is = 10s + 1is, (6)

The level-3 model introduces the session-specific treatment effects, which are now our 

primary focus of interest, as well as session-specific random effects: 

00s = 000 + 001(NAs) + 002(8Ps) + 00s

10s = 100 + 101(NAs) + 102(8Ps) + 10s.                                                                 (7) 

Initially, we included interaction effects between NA, the no-announcement dummy, and 

8P, the eight-person dummy at level 3. These effects were very far from significance and 

therefore dropped from the model. Combining equations (5), (6), and (7), we estimate:

EQDISTtis = 000 + 001(NAs) + 002(8Ps) + 100(PERt) + 101(PERt×NAs) + 

102(PERt×8Ps) + 0is + 1is(PERt) + 00s + 10s(PERt) + tis.                                    (8) 

Table 3 outlines the results. It is important to remember that there are eight periods in 

the game and that PER is defined as the period number minus eight. Thus, the estimated
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intercept and coefficients on both NA and 8P are calculated with respect to the last 

period. The intercept is equal to about 14.5 and highly significant (p = 0.000), indicating 

that in the last period of the four-person sessions with announcements, bids were about 

14.5 tokens away from the burning-out CPNE. NA is insignificant, implying that whether 

or not there was an announcement made no difference to the distance from the burning-

out CPNE in the last period. The insignificance of the interaction between PER and NA 

indicates that whether or not there was an announcement did not affect the speed of 

convergence to the CPNE either. 

In contrast, 8P is negative and highly significant (p = 0.000), indicating that more

players push participants significantly closer to the CPNE. The sum of 000 + 002, which 

represents an estimate of the distance from the CPNE in the last period of the eight-

person sessions, is insignificant, indicating that bids were very close to the burning-out 

CPNE in the eight-person case.

The coefficient on PER is not significant, implying that in the four-person games,

there is no significant movement towards or away from the CPNE. However, the 

interaction between PER and 8P is negative and highly significant (p=0.009), indicating 

that in the eight-person sessions the period-to-period movement towards the CPNE was 

significantly higher than in the four-person case.  The sum of 100 + 102, which 

represents that movement, is significant (p = 0.001) and equal to about –1.41, indicating 

that from period to period, bids moved about 1.41 tokens closer to the burning-out CPNE 

in the eight-person case. 

How did participants behave in stage two? Table 4 summarizes stage-two bids in the 

student sessions. In all of the pure-strategy Nash equilibria, both participants who reach 

stage two after bidding identical amounts as required by all the pure-strategy equilibria in 

stage one, should bid all of their remaining endowments in the second stage. In 16 out of 

the 17 cases in which the announcement indicated that the two players entering stage two 

19

EES 2004 : Experiments in Economic Sciences - New Approaches to Solving Real-world Problems

108



were tied in stage one, both players did in fact bid all of their remaining endowments in 

stage two as predicted. The professors did so in four out of four tied cases. 

There were cases, however, in which the announcement revealed that the two 

participants entering stage two bid different amounts in stage one, despite the fact that 

such behavior is not part of a pure-strategy Nash equilibrium. If the highest stage-one bid 

was just one token higher than the second-highest bid, the player who had bid less in 

stage one could win for sure by using all of his/her remaining resources in stage two. 

Furthermore, if the highest stage-one bid was more than one token higher than the 

second-highest bid, the player who had bid less in stage one could win for sure even 

without using all of his/her remaining resources in stage two. In either case, the player 

who had bid more in stage one might thus give up and bid zero in stage two. If the player 

who had bid less in stage one knew this might happen, he/she might try to get away with 

bidding a low amount. On the other hand, if the player who had bid more anticipated this, 

he/she would not give up after all.  Since in these cases the participants in the stage-two 

subgame have unequal caps, there is no pure-strategy equilibrium for the subgame, but 

only an equilibrium in mixed strategies (Che and Gale, 1997).  Out of the 15 instances in 

which the announced winning stage-one bids differed by one token, both players bid the 

rest of their endowments nine out of 15 times, one player bid the rest of his/her 

endowment five out of 15 times, and neither player bid the rest of his/her endowment one 

out of 15 times.  In the professor session, one player bid the rest of his/her endowment

three out of three times in this case. Out of the 16 instances in which the announced 

winning stage-one bids differed by more than one token, both players bid the rest of their 

endowments five out of 16 times, one player bid the rest of his/her endowment eight out 

of 16 times, and neither player bid the rest of his/her endowment three out of 16 times. In 

the one professor case, neither player bid the rest of her/her endowment.

In the treatments where the successful bids were not announced, a participant 

moving on to stage two would only know his own stage-one bid and whether there had 
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been zero, one, or two random draws. Since such draws were used only in the event of a 

tie for one or both of the two winning positions, the following inferences could be drawn. 

If there were two draws, three or more players must have been tied, requiring two draws 

to choose the two players who would advance to stage two. Thus, in this case, the two 

advancing players could determine that they must have bid identical amounts in stage one 

and thus have identical caps in stage two. This is of course consistent with all of the pure-

strategy equilibria of the game, each of which requires the advancing players to bid the 

rest of their endowments in stage two. This actually occurred in six out of the seven no-

announcement cases in which there were two draws. If there was only one draw, the two 

players advancing to stage two could determine that they had bid different amounts in 

stage one. The one with the highest bid had advanced to stage two without the need for a 

draw, while the draw was used to break a tie for the second advancing position. However, 

neither player would have any way of knowing which one of them had placed the higher 

bid. In this instance, in five out of six cases, both players used up all of their remaining

resources. Having no draw was consistent with either a tie or no tie between the bids of 

the two advancing players. Thus, no inference could be drawn about the relative size of 

the caps in stage two. Out of the 34 cases of this type, both players bid all of their 

remaining resources 23 times, one player bid all of his/her resources nine times and 

neither player bid all of his/her resources twice. In general, when the two advancing 

participants knew that they faced identical caps in stage two, they selected the strategy 

associated with a pure-strategy equilibrium 22 out of 24 times.  In other cases, more

mixed strategies were selected. 

5. Conclusion 

We have examined equilibrium selection in a two-stage sequential elimination

game with a continuum of equilibria in the first stage. Many of these equilibria can be 

ranked according to the Pareto criterion. A set of such rankable equilibria resembles the 
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continuum of Pareto-rankable equilibria in the weak-link coordination game. In that 

game, groups of two and to a lesser extent three are better able than larger groups to 

maintain a Pareto-dominant equilibrium over a series of periods in which the game is 

repeated in a partner protocol. Our game differs from such weak-link games in that the 

main point is not to cooperate, but to win the prize. In addition, in our game but not in 

weak-link games, the Coalition-Proof Nash Equilibrium refinement rules out all 

equilibria but the one in which everyone who chooses to bid burns out by bidding all of 

their resources in stage one. In all of our treatments, this is the least efficient pure-

strategy equilibrium in the sense that it is Pareto-dominated by all of the other equilibria. 

Our first finding is that some players withdraw from the game by bidding zero, 

while others bid substantial amounts. This is reminiscent of a laboratory result that 

emerged unexpectedly in Muller and Schotter’s (2003) recent experimental examination

of a model developed by Moldovanu and Sela (2001) in which players had different costs 

of effort. Although Moldovanu and Sela’s theoretical model predicted that the amount of 

effort exerted should be a continuous inverse function of cost, the laboratory results 

indicated a discontinuity:   higher-cost players generally gave up, expending little effort, 

while lower-cost players generally tried hard, exerting a lot of effort. In the Amegashie

(2004) model, the cost of effort is identical for all players, but prize valuations can 

differ.12 The specific version of the Amegashie model adopted in this paper predicts that 

players with lower valuations will withdraw from the contest by bidding zero, while 

players with higher valuations will compete for the prize by bidding substantial amounts

in the first stage of a two-stage game, a prediction that is corroborated by the data. 

When augmented by the CPNE refinement, the Amegashie model goes further, 

predicting that active players will use up all of their resources to place the highest 

12 However, as shown by Baye et. al (1996) and Clark and Riis (1998), a contest where the players have 
different valuations but a common cost of effort is analytically equivalent to a contest where the players 
have common valuations but different costs of effort.
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possible stage-one bids. Our second finding is that while CPNE predicts quite well for 

eight-person groups, it does not predict well for four-person groups. However, even in the 

case of the smaller groups, the Pareto-optimal equilibrium has no predictive power at all. 

Rather small groups seem to coordinate on an equilibrium in between that predicted by 

the Pareto criterion and that predicted by CPNE. The likelihood of stage-one burnout 

amongst the active bidders seems to depend on the number of people competing for entry 

into the second stage where the possibility exists of winning the prize. When eight people 

compete for two chances to win one prize, we frequently observe burnout or near burnout 

in the first stage of the two-stage game. Thus, the stage-one burnout predicted by the 

Coalition-Proof Nash Equilibrium refinement arises consistently only when there is 

sufficient competition:  early burnout is indeed competitive burnout in the laboratory.
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Table 1 

Summary of Treatments

4-person group 8-person group 

Without announcement
(eight periods) 

3 sessions with students 3 sessions with students 

With announcement
(eight periods) 

3 sessions with students 
1 session with economics
professors (excluded from

statistical analysis) 

3 sessions with students 

Table 2 

Positive versus Zero Bid Results 

Repeated Measures Three-level Hierarchical Logit Model with Random Effects on 
Intercept, Period and Normalized Valuation, using Full PQL (Penalized Quasi-
Likelihood) Estimation.

Equation estimated:  log[Ptis/(1-Ptis)] = 000 + 001(NAs) + 002(8Ps) + 100(PERt) + 

101(PERt×NAs) + 102(PERt×8Ps) + 200(NVtis) + 201(NVtis×NAs) + 202(NVtis×8Ps) + 

0is + 1is(PERt) + 2is(NVtis) + 00s + 10s(PERt) + 20s(NVtis)

Independent Variables Estimate t value Pr > |t| 

Intercept 0.004332 0.004 0.997
No Announcement (NA) -0.635910 -0.516 0.618
8 Participants (8P) -0.980644 -0.762 0.465
Adjusted Period (PER) 0.008298 0.059 0.954
NA  PER 0.045866 0.331 0.748

8P  PER -0.191543 -1.272 0.236

Normalized Valuation (NV) 0.052823 1.999 0.076
NA  NV 0.037350 1.262 0.239

8P  NV -0.009759 -0.320 0.756
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Table 3 

Distance from Burning-out CPNE Results 

Repeated Measures Three-level Hierarchical Linear Model with Random Effect on 
Intercept and Adjusted Period using Full Maximum Likelihood. 

Equation estimated:  EQDISTtis = 000 + 001(NAs) + 002(8Ps) + 100(PERt) + 

101(PERt×NAs) + 102(PERt×8Ps) + 0is + 1is(PERt) + 00s + 10s(PERt) + tis.

Independent Variables Estimate t value Pr > |t| 

Intercept [ 000] 14.544341 6.053 0.000

No Announcement (NA) [ 001] 0.425206 0.155 0.881

8 Participants (8P) [ 002] -15.001736 -5.464 0.000

Adjusted Period (PER) [ 100] -0.159603 -0.474 0.646

PER×NA [ 101] -0.227421 -0.615 0.553

PER×8P  [ 102] -1.254216 -3.347 0.009

Other Hypothesis Tests 

000 + 002 -0.457395 -0.195 0.850

100 + 102 -1.413819 -4.577 0.001

Table 4 

Summary of Stage-Two Behavior in Student Sessions 

Announce-

ment

Stage One 

Winning Bids 

Both spend 

rest of 

Endowment

One spends rest 

of Endowment 

None spend 

rest of 

Endowment

Total

Yes Tie 16 1 0 17
Yes Difference = 1 9 5 1 15
Yes Difference >1 5 8 3 16
No Two chosen

randomly
6 1 1 8

No One chosen
randomly

5 1 0 6

No No random
draw

23 9 2 34
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Figure 1

Four Persons Without Announcement
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Figure 2

Four  Persons With Announcement
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Figure 3

Four Professors With Announcement
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Figure 4

Eight Persons Without Announcement
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Figure 5

Eight Persons With Announcement
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Appendix A: Proof that in an all-pay auction with two players who have different 

caps, the player with the smaller cap gets a zero expected surplus if the cap is 

sufficiently small 

Consider stage two of the game (an all-pay auction) where there are two active 

players with different caps. For the sake of argument, suppose the players are 1 and 2, 

with valuations V1 and V2 and caps B1 and B2, where B2 < B1  B and V1 > V2 > B2. Note 

that V2 > B2 since (1/F)Vi – B > 0, for all active players. We follow the proof in Che and 

Gale (1997), although in their model the players have different caps but the same

valuations.

 If B2 = 0, then the only equilibrium is in pure strategies in which player 2 bids 

zero and player 1 bids a small but positive amount.

Now suppose B2 > 0. First, there is no equilibrium in pure strategies. The proof is 

straightforward, so it is omitted. There is an equilibrium in mixed strategies (Che and 

Gale, 1997). Second, no player has a mass point at any bid x (0, B2) in stage two. 

Without loss of generality, suppose the contrary that player 1 has a mass point at

x (0, B2), say at x1.  Then the probability that player 2 wins rises discontinuously as a 

function of his bid at . Hence there is some  > 0 such that player 2 will bid on the 

interval [ - , ] with zero probability. But then player 1 is better off bidding -

instead of  since his probability of winning is the same. This contradicts the hypothesis 

that putting a mass point at x (0, B

1x

1x

x

1x 1x

1

2) is an equilibrium strategy. Third, only one player 

can receive a strictly positive expected surplus. Suppose instead that both players receive 

positive expected surpluses. Then both players must have the same infimum bid. If not, 

the player with the strictly lower infimum would lose with probability one when he bids 

below the other player’s infimum bid, so his expected surplus cannot be strictly positive, 

since every bid in the support of his equilibrium mixed strategy must yield the same

expected surplus. If both players have the same infimum bid, x > 0, then in order for each 

of them to win with positive probability when bidding x , they must both have mass

31

EES 2004 : Experiments in Economic Sciences - New Approaches to Solving Real-world Problems

120



points at x . But this is not possible since no player puts a positive mass at x (0, B2) and 

B2 cannot be either player’s lowest bid since there is no pure-strategy equilibrium. Hence, 

only one player can have a strictly positive expected surplus. Finally, the player with the 

bigger cap (i.e., player 1) gets a positive expected surplus and therefore player 2’s 

expected surplus is zero. To see this, note that player 1 can guarantee himself a positive 

expected surplus by submitting a bid above B2. Since there exists a bid that guarantees 

player 1 a positive expected surplus, this player cannot make a zero expected surplus in a 

mixed-strategy equilibrium. Hence player 2 (i.e., the player with the smaller cap) gets a 

zero expected surplus. QED.

Appendix B 

B1: An example to show that a burning-out equilibrium can weakly Pareto-

dominate a non-burning-out equilibrium with higher K. 

Consider N players with valuations, V1 = 600, V2 = 600, V3 = 460, V4 = 460, V5 = 

340, V6 = 340, Vi = 100 for i = 7, 8, …, N. The cap is B = 50 and F = 2. 

Then K= 6 and e* = B is an equilibrium because (1/6)Vi – B > 0 for i = 1, 2,, …, 

6. If players 7 to N bid B = 50 they will each get a negative payoff. However, K = N, e* 

= 0 is also an equilibrium because (2/N)(Vi/2 – 50)  0 for i = 1, 2, …, N. The players 

indexed 7 to N are neither better off nor worse off in this equilibrium than in the six-

player burning-out equilibrium, since expected payoffs equal zero in both cases. For the 

burning-out equilibrium to Pareto-dominate K = N, e* = 0, we require (2/N)(Vi/2 – 50) 

(1/6)Vi – 50, or equivalently, if N  6(Vi – 100)/(Vi – 300) for i = 1, 2,, …, 6 with strict 

inequality for at least one i. Given the players’ valuations above, this is true if N  36. 

QED.
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B2: (i) Proof that K = 3 and e* = B = 50 is dominated by all other pure-strategy 

equililbria in the four-player case, and (ii) Proof that e* = 1 and K = 3 dominates all 

other pure-strategy equilibra in the four-player case 

There are four players with valuations V1 = 300, V2 = 230, V3 = 170, and V4 = 

100. The cap is B = 50 and F = 2. 

Part (i): First, K = 3 and e* = B = 50 is an equilibrium because (1/3)Vi – B > 0 for 

i = 1, 2, 3. If player 4 bids B = 50 given K = 3, his payoff is negative because 100/4 – 50 

< 0. Given K = 3, we know from the discussion in the text that all other equilibria for 

which K = 3 (i.e., 0 < e* < 50) Pareto-dominate K = 3, e* = B = 50. 

Note that there is no equilibrium with K < 3 players since any player who 

participated in the three-player burning-out equilibrium would also participate in any 

hypothetical equilibrium having less than three players. Hence we only need to compare

the equilibria with K = 4 to the three-player burning-out equilibrium.

For K = 4 to be an equilibrium, we require that (2/4)[(1/2)Vi – (50-e*)] – e*  0 

for i = 1, 2, 3, 4.  This holds so long as e*  (1/2)Vi – 50 or, substituting the lowest 

valuation for  Vi , e*  0. Hence, the only equilibrium is e* = 0 given K = 4. Now the 

equilibrium in which K = 4 and e* = 0 Pareto-dominates the three-player burning-out 

equilibrium if (2/4)[(1/2)Vi – 50]  (1/3)Vi – 50, with strict inequality for at least one i, i 

= 1, 2, 3. This holds if Vi  300. Hence players 2 and 3 are better off in the equilibrium

with K = 4 and e* = 0 and players 1 and 4 are no worse off. Hence K = 3, e* = B is the 

worst equilibrium. QED.

Part (ii): First, note that player 4 gets a zero expected payoff whether K = 3 or 4. 

Given K = 3, the equilibrium which gives the highest payoff is the equilibrium with the 

lowest effort, e*, in stage one. Since we only allow integer bids in our experiments, the 

lowest such bid in stage one consistent with K=3 is e* = 1. Hence to show that K = 3, e* 

= 1 is the best equilibrium, we need to compare this equilibrium to K = 4, e* = 0. To do 

this, we need to show that
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(2/3)[(1/2)Vi – (50 – 1)] – 1  (2/4)[(1/2)Vi – 50], for i = 1, 2, 3, with strict inequality for,

at least, one i. This holds if Vi  104, with strict inequality for at least one i. This is true, 

given V1 = 300, V2 = 230, and V3 = 170. QED.

B3: Proof that K = 6 and e* = B = 50 is Pareto-dominated by all other pure-strategy 

equilibria in the eight-player case. 

There are eight players with valuations, V1 = 600, V2 = 600, V3 = 460, V4 = 460, 

V5 = 340, V6 = 340, V7 = 200, and V8 = 200. The cap is B = 50 and F = 2. 

First, K= 6 and e* = B, is an equilibrium because (1/6)Vi – B > 0 for i = 1, 2,, …, 

6. If either player 7 or player 8 bids B = 50, he/she will each get a negative expected 

payoff. Given K = 6, we know from the text that all other equilibria (i.e., 0  e* < 50), if 

they exist, Pareto-dominate K = 6, e* = B = 50.

Note that there is no equilibrium with K < 6 players since any player who 

participated in the six-player burning-out equilibrium would also participate in any 

hypothetical equilibrium having less than six players. Hence we only need to compare the 

equilibria with K = 7 and K = 8 to the six-player burning-out equilibrium.

We now need to show that in any equilibrium with K = 7 or K = 8, players 7 and 

8 get an expected payoff greater than or equal to zero and players 1 to 6 get expected 

payoffs greater than or equal to (1/6)Vi – B with strict inequality for at least one i.  Since 

players 7 and 8 get a zero payoff in the six-player equilibrium and cannot be forced to 

choose a negative expected payoff in any other possible equilibrium, we focus primarily

on players 1 to 6 unless otherwise indicated. 

Any equilibrium with K = 7, 8 Pareto dominates the six-player burning-out 

equilibrium if (F/K)[(1/F)Vi – (B-e*)] – e*  (1/6)Vi – B, with strict inequality for at least 

one i, i = 1, 2, 3,…, 6. Solving for e*, gives 

e*  B + 
FK

6/K1
Vi ,        (1)
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i = 1, 2,…,5, 6. 

If (1) holds for V1 = V2 = 600, then it holds for lower Vi with strict inequality. 

Substituting K = 8, Vi = 600, F = 2, and B = 50 into (1) gives e*  16.667 as the required 

condition. Now for K = 8 to be an equilibrium, we require that (F/K)[(1/F)Vi – (B-e*)] – 

e*  0 for i = 7 and 8. This will also be true as long as e*  16.667. It follows that when 

an equilibrium exists for K = 8, it satisfies the inequality in (1) and thus Pareto-dominates

the six-player burning-out equilibrium.

We now compare equilibria with K = 7 to the six-player burning-out equilibrium.

Substituting K = 7, Vi = 600, F = 2, and B = 50 into (1) gives e*  30 as the required 

condition for Pareto dominance.  For K = 7 to be an equilibrium, we require that 

(F/K)[(1/F)Vi – (B-e*)] – e*  0 for either i = 7 or 8 and [F/(K+1)][(1/F)Vi – (B-e*)] – e* 

< 0 for either i = 7 or 8. Substituting into these two expressions yields 16.667 < e*  20. 

It follows that if players 1 to 7 bid e*  (16.667, 20], then player 8 will stay out of the 

contest.13 Hence equilibria with K = 7 exist for e*  (16.667, 20].14 Since e*  (16.667, 

20] satisfies e*  30, it follows that when an equilibrium exists for K = 7, it satisfies the 

inequality in (1) and thus Pareto-dominates the six-player burning-out equilibrium.

We have therefore proven that any pure-strategy equilibrium Pareto-dominates

the six-player burning-out equilibrium. QED.

B4: Proof that (K = 8, e* = 0) and (K = 6, e* = 21) are the only pure-strategy 

equilibria that are not Pareto-dominated 

Recall that equilibria with K = 7 exist for e*  (16.667, 20]. Hence the best 

equilibrium when K = 7 has e*  16.667. However, since in our experiments, we allow 

13 By symmetry, the roles of players 7 and 8 are interchangeable.
14 For K = 7, there is no equilibrium in which the players with valuations Vi = 200, are active players but
one of the other players is not. As shown above, for player 7 or 8 to be an active player for K = 7, we 
require that e*  20. Then for one of the other players to be non-active, we require that (F/(K+1))[(1/F)Vi – 
(B-e*)] – e* < 0 or (2/8)[(Vi/2 – (50 –e*)] – e* < 0. This gives e* > 40 for Vi = 340. Since e*  20 and e* > 
40 cannot simultaneously hold, it follows that there is no equilibrium with K = 7 where the players with Vi

= 340 are non-active and the players with Vi = 200 are active. There is also no such equilibrium with K < 7. 
A similar argument holds for the players with Vi = 460, 600. 

35

EES 2004 : Experiments in Economic Sciences - New Approaches to Solving Real-world Problems

124



only integer bids, the best equilibrium for K = 7 is at e* = 17. Call this equilibrium (K =7, 

e* = 17). 

When K = 8, the best equilibrium has e* = 0. Call this (K = 8, e* = 0). To find the 

best equilibrium for K = 6, we need to find the lowest value of e* for which K = 6 is an 

equilibrium. When K = 6, then players 7 and 8 will stay out of the contest if

(2/7)[200/2 – (50 – e*)] – e* < 0. This gives e* > 20. Hence the best equilibrium for K = 

6 is at e* = 21, given that we allow only integer bids in our experiments. Call this (K = 6, 

e* = 21). 

First, let’s compare (K = 8, e* = 0) and (K = 7, e* = 17). The payoff of a player 

with valuation, Vi, when K = 8 and e* = 0, is 8i = (1/8)Vi – 12.5. The payoff of a player 

with valuation, Vi, when K = 7 and e* = 17, is 7i = (1/7)(Vi – 185). Therefore, 8i - 7i

= 13.92857143- 0.0178571429Vi > 0 for Vi  [200, 600]. Hence, (K = 8, e* = 0) Pareto-

dominates (K = 7, e* = 17). 

We now compare (K = 8, e* = 0) and (K = 6, e* = 21).  The payoff of a player 

with valuation, Vi, when K = 6 and e* = 21, is 6i = (1/6)Vi – 92/3. Therefore, 

8i - 6i = 18.66667 - 0.04167Vi.  Now 8i - 6i > 0 for Vi = 340 but 8i - 6i < 0 for Vi

= 460 and 600. Hence, (K = 8, e* = 0) and (K = 6, e* = 21) cannot be ranked according to 

the Pareto criterion. QED.

Appendix C:  Experimental Instructions 

This is an experiment in the economics of decision making. The Social Sciences and 

Humanities Research Council of Canada has provided funds for this research. The 

instructions are simple and if you follow them carefully, you may make money in this 

experiment. This money along with a $3.00 participation fee will be paid to you by 

cheque at the end of the session. 

The session will last for eight periods and each period consists of two stages. You 

will be playing with three other persons. Your total earnings will depend on your 
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decisions together with the decisions of the other players and your luck during the 

sessions. You should not communicate with anyone else in the room during the session.

The game uses a fictional currency called tokens. All game transactions are 

denominated in this fictional currency. Your information slip contains the rate that allows 

you to convert the tokens that you earn in the experiment into Canadian dollars. The total 

amount of money you earn in all of the rounds will determine your dollar payoff at the 

end of the game.

At the beginning of each period, you will be asked to draw an information slip from

a box held by the experimenter. On each slip you should enter the date, your assigned 

player number, and the period number.

At the end of stage 2, one of the four persons will be awarded a monetary prize.  The 

value of the prize for you and for the other members of your group will be specified on 

your information slip.  Your prize value may differ from the prize value for the other 

members of your group.  Each information slip will also indicate that you have 50 tokens 

that you may either keep or use in order to bid for the prize. 

In stage 1 of each period, you will be given the opportunity to bid any amount of 

money from zero up to 50 tokens. You are not allowed to bid more than 50 tokens.  Enter 

the value of your bid in the designated space on the information slip. Once you make

your decision, please raise your hand and your information slip will be collected by the 

experimenters.  The person who places the highest bid and the person who places the 

second-highest bid will move on to stage 2. The other two players will earn 50 tokens 

minus their bids in that period. If two players choose the same bid and it is the highest 

bid, they will both move on to stage 2.  If more than two players choose the same bid, and 

it is the highest bid, a random draw will be used to determine which two will move on to 

stage 2.  Finally, if one player places the highest bid and two or more players place the 

same bid and it is the second-highest bid, a random draw will be used to determine which 

one of the latter will move on to stage 2. 
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If you reach stage 2, you will be given the opportunity to bid any amount of money

from zero up to whatever amount of money remains after your stage-1 bid. The person 

who places the highest bid will receive the prize.  Its value will be as specified on that 

person’s information slip. If both players choose the same bid, a random draw will be 

used to determine which of the two will receive the prize. 

If you receive the prize, your total earnings will simply be 50 tokens, minus the 

tokens you bid in both stages, plus the prize value you drew at the beginning of the game.

If you do not receive the prize, your total earnings for each period will just be 50 tokens, 

minus your bid or bids in the period. 

At the end of each period, the amount you have earned in tokens will be indicated 

by the experimenter on your information slip, which will then be returned to you.  Please 

note that you will have 50 tokens allocated to you at the beginning of each period. You 

may not use your earnings from an earlier period to make bids in a later period.

At the end of the session, you will be called up one at a time and paid by cheque the 

total amount that you earned for all periods in the sessions. All slips used in the session 

should be returned at that time.
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