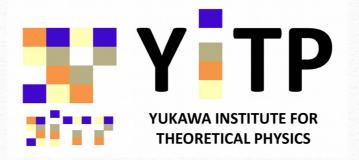
Flow equation, conformal symmetry and AdS geometries

30 July 2018 @ MISC, Kyoto-Sangyo Univ.

Shuichi Yokoyama

Yukawa Institute for Theoretical Physics



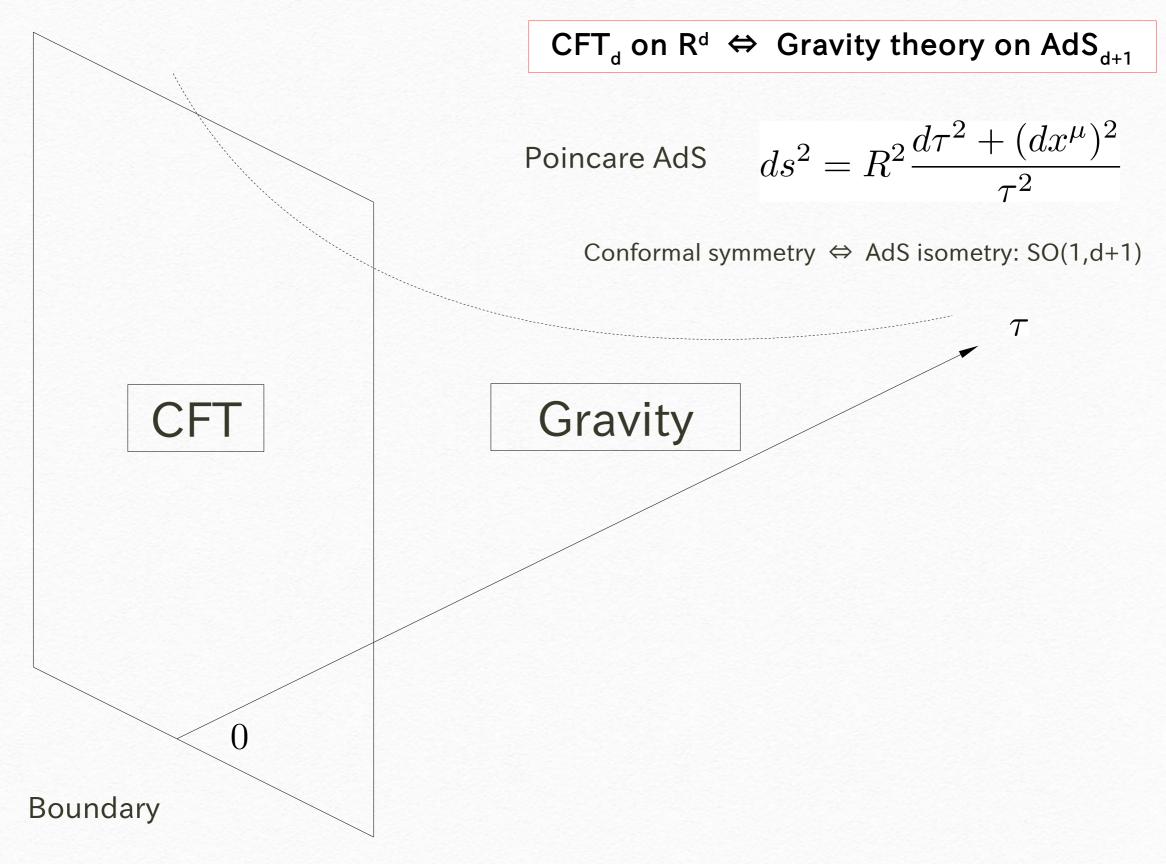
 Ref.
 S.Aoki-SY
 ArXiv:1707.03982
 PTEP (2018) 031B01

 S.Aoki-SY
 ArXiv:1709.07281
 NPB 933 (2018)

 S.Aoki-J.Balog-SY
 ArXiv:1804.04636
 VPB 933 (2018)

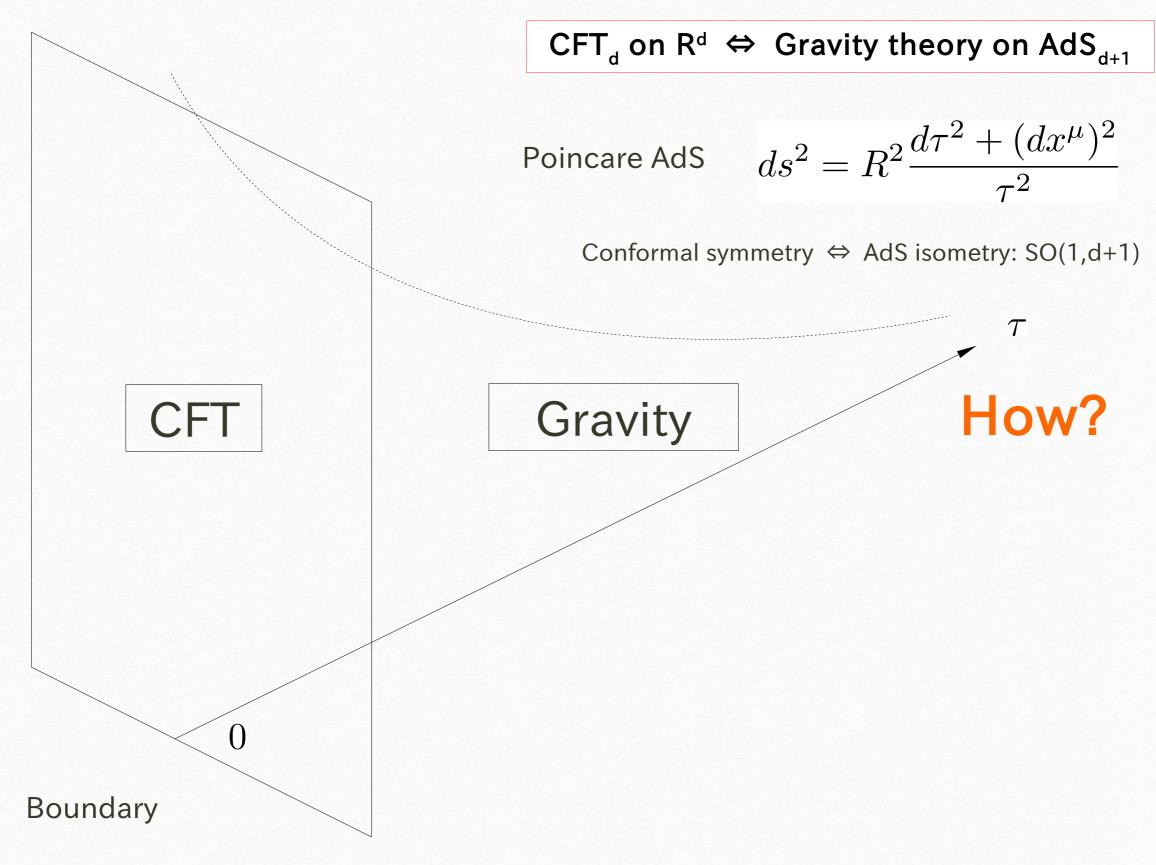
Holography and AdS/CFT

[Maldacena '97]



Holography and AdS/CFT

[Maldacena '97]



AdS radial direction from CFT

1. Relevant RG flow

Construction of gravity solutions corresponding to UV and IR CFTs in the asymptotic regions. [Girardello-Petrini-Porrati-Zaffaroni '98] [Distler-Zamora '98] [de-Boer-Verlinde-Verlinde '99] [Skenderis '00]

2. Wilsonian RG flow

The Wilsonian cut-off will correspond to sharp cut-off at the AdS radial direction [Heemskerk-Polchinski '10]

3. Stochastic quantization

Euclidean path integral \equiv Equilibrium limit of statistical mechanical system coupled to a heat bath. [Lifshytz-Periwal '00]

4. Entanglement entropy

continuous multi-scale entanglement renormalization ansatz (cMERA) [Swingle '09]...

5. bilocal field

Relative coordinate of bi-local field in vector models [Das-Jevicki '03]

6. Flow equation

Smearing operators so as to resolve a UV singularity in the coincidence limit

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

AdS radial direction from CFT

1. Relevant RG flow

Construction of gravity solutions corresponding to UV and IR CFTs in the asymptotic regions. [Girardello-Petrini-Porrati-Zaffaroni '98] [Distler-Zamora '98] [de-Boer-Verlinde-Verlinde '99] [Skenderis '00]

2. Wilsonian RG flow

The Wilsonian cut-off will correspond to sharp cut-off at the AdS radial direction [Heemskerk-Polchinski '10]

3. Stochastic quantization

Euclidean path integral \equiv Equilibrium limit of statistical mechanical system coupled to a heat bath. [Lifshytz-Periwal '00]

4. Entanglement entropy

continuous multi-scale entanglement renormalization ansatz (cMERA) [Swingle '09]...

5. bilocal field

Relative coordinate of bi-local field in vector models [Das-Jevicki '03]

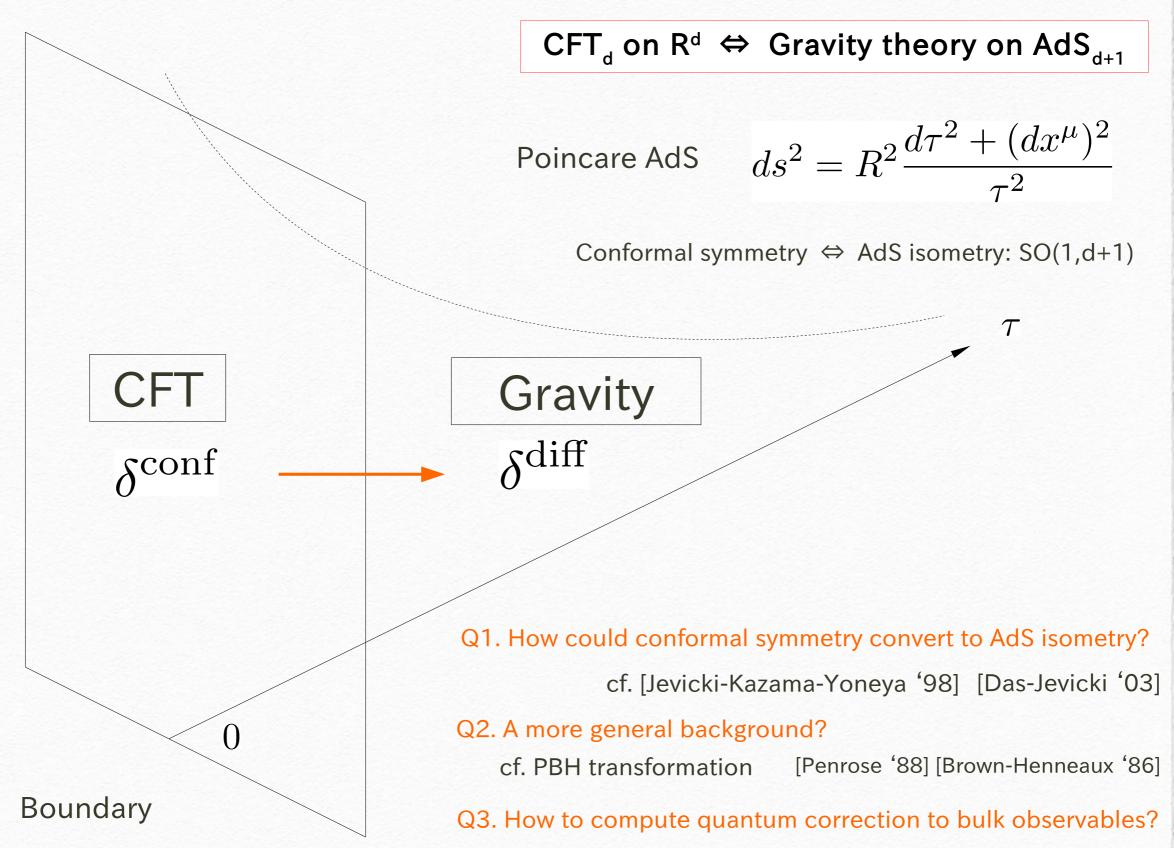
6. Flow equation

Smearing operators so as to resolve a UV singularity in the coincidence limit

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

Holography and AdS/CFT

[Maldacena '97]



Plan

1. Introduction

2. Flow equation & induced metric Induced metric = information metric

3. Conformal symmetry → AdS isometry
 ← Answer for Q1

4. Generalization to conformally flat manifolds

4.1. Primary flow equation

Answer for Q2

4.2. AdS metric with conformally flat boundary

5. Summary

Plan

✓ 1. Introduction

2. Flow equation & induced metric

3. Conformal symmetry → AdS isometry

4. Generalization to conformally flat manifolds

4.1. Primary flow equation

4.2. AdS metric with conformally flat boundary

5. Quantum corrections

6. Summary

Flow equation

(Gradient) flow equation

Equation to smear operators to resolve a UV singularity in the coincidence limit

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

(Gradient) flow equation

Equation to smear operators to resolve a UV singularity in the coincidence limit

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

Consider QFT with n real component scalar field in d dimensions

Flow equation

$$\frac{\partial \phi^a(x;t)}{\partial t} = -\left. \frac{\delta S_f(\varphi)}{\delta \varphi^a(x)} \right|_{\varphi(x) \to \phi(x;t)} \qquad \phi(x;0) = \varphi(x)$$

t: flow time, $\phi(x;t)$: flowed field

(Gradient) flow equation

Equation to smear operators to resolve a UV singularity in the coincidence limit

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

Consider QFT with n real component scalar field in d dimensions

Flow equation

$$\frac{\partial \phi^a(x;t)}{\partial t} = -\left. \frac{\delta S_f(\varphi)}{\delta \varphi^a(x)} \right|_{\varphi(x) \to \phi(x;t)} \qquad \phi(x;0) = \varphi(x)$$

t: flow time, $\phi(x;t)$: flowed field

Comments

(I) If S_f coincide with the action of the theory S

→ the flow equation is called the gradient one.

(II) If S_f coincide with the free theory

- \rightarrow the flow equation becomes the heat equation.
- \rightarrow the operator ϕ is smeared similarly as in finite temperature t.

(III) General solution \rightarrow "flow kernel method".

"Flow kernel method"

1. Rewrite the flow equation in the heat equation form.

$$\frac{\partial O(x;t)}{\partial t} = -\hat{H}O(x;t) \qquad O(x;0) = O(x)$$

2. Introduce the flow kernel (density).

$$\frac{\partial \rho(x,y;t)}{\partial t} = -\hat{H}\rho(x,y;t) \quad \rho(x,y;0) = \delta^d(x-y)$$

3. A general solution is given by

$$O(x;t) = \int d^d y \rho(x,y;t) O(y)$$

"Flow kernel method"

1. Rewrite the flow equation in the heat equation form.

$$\frac{\partial O(x;t)}{\partial t} = -\hat{H}O(x;t) \qquad O(x;0) = O(x)$$

2. Introduce the flow kernel (density).

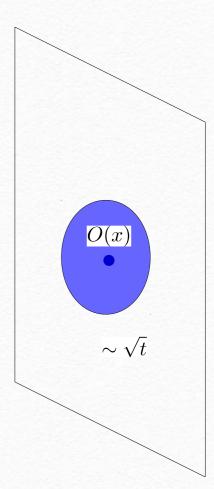
$$\frac{\partial \rho(x, y; t)}{\partial t} = -\hat{H}\rho(x, y; t) \quad \rho(x, y; 0) = \delta^d(x - y)$$

3. A general solution is given by

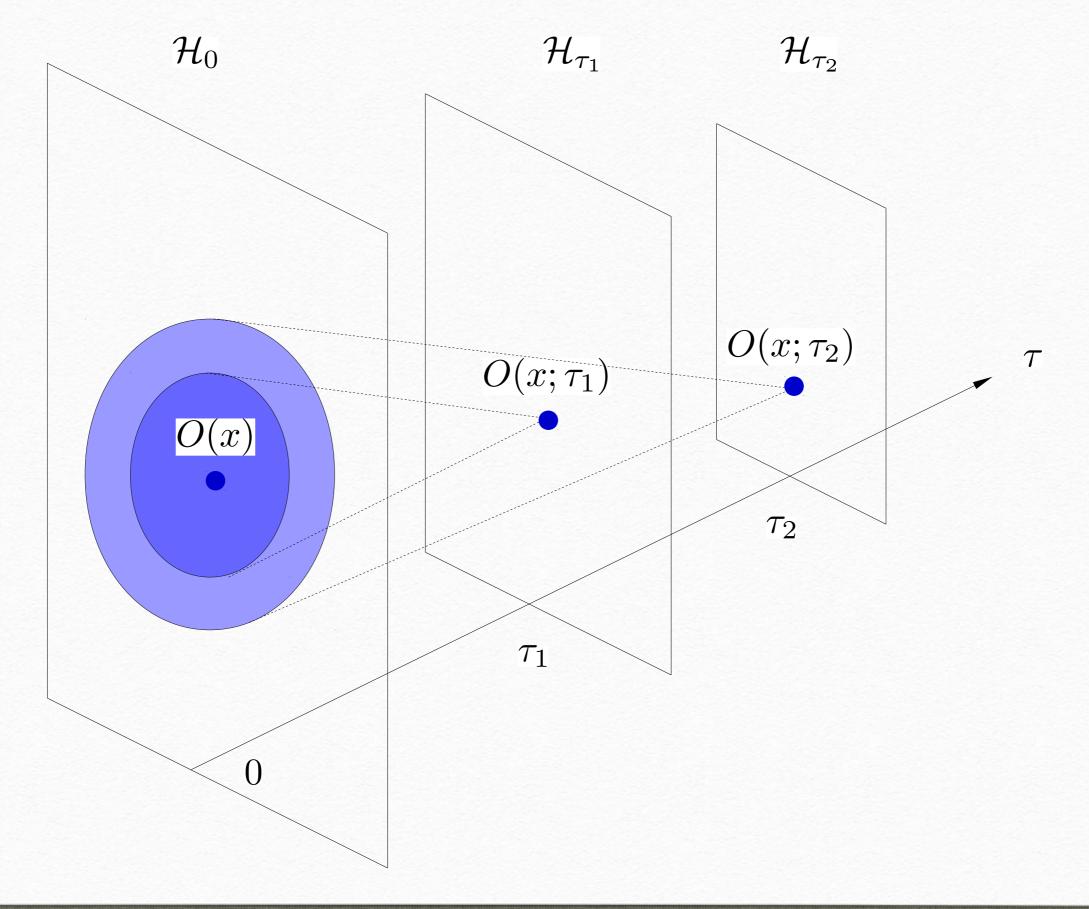
$$O(x;t) = \int d^d y \rho(x,y;t) O(y)$$

Ex. Free flow

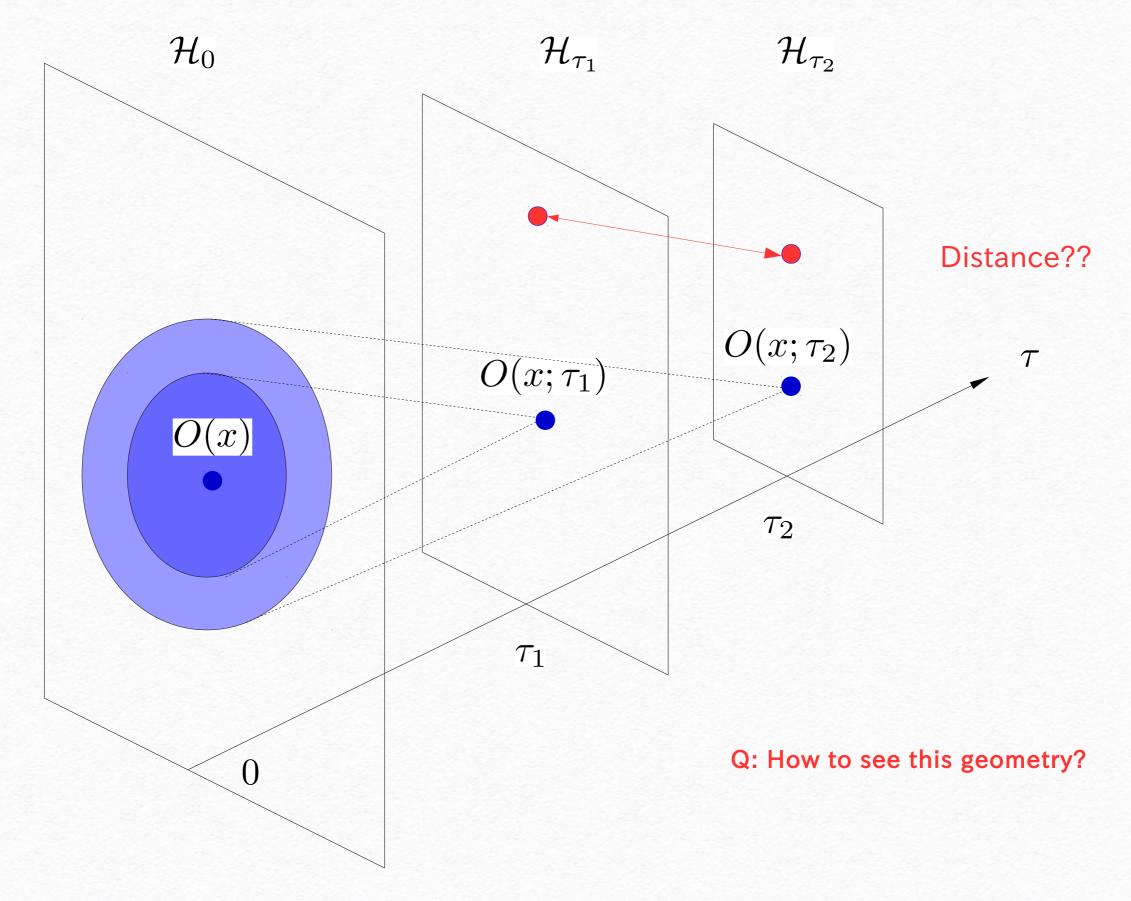
$$\rho(x,y;t) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{(x-y)^2}{4t}}$$



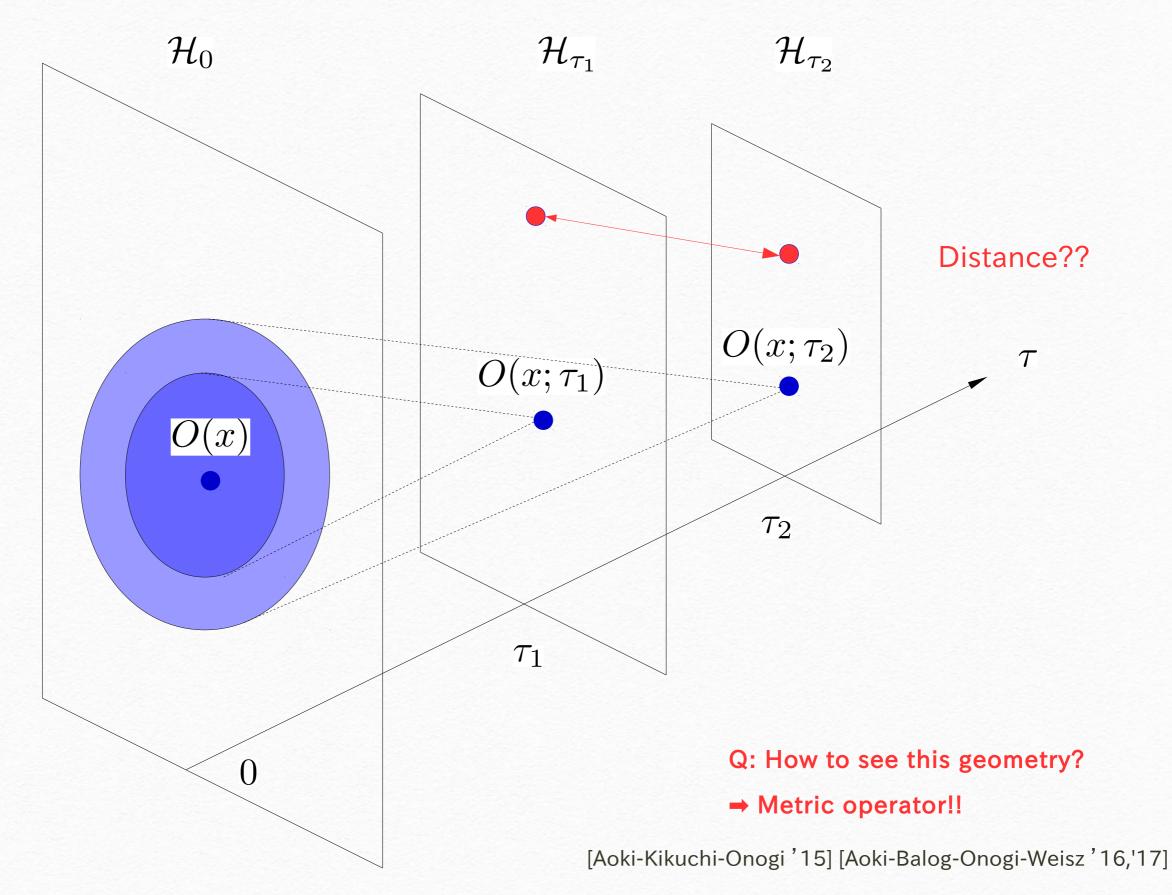
Sketch of smearing and extra direction



Sketch of smearing and extra direction



Sketch of smearing and extra direction



Metric operator & induced metric

cf. [Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

Metric operator and induced metric

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

<u>Def.</u> (Dimensionless normalized operator)

$$\sigma(x;t) := \frac{O(x;t)}{\sqrt{\langle O(x;t)^2 \rangle_{CFT}}}$$

"Operator renormalization"

NOTE: $\langle \sigma(x;t)\sigma(x;t)\rangle_{CFT}=1$

<u>Def.</u> (Metric operator and induced metric)

$$\hat{g}_{MN}(x;t) := R^2 \frac{\partial \sigma(x;t)}{\partial z^M} \frac{\partial \sigma(x;t)}{\partial z^N} \qquad g_{MN}(z) := \langle \hat{g}_{MN}(x;t) \rangle_{CFT}$$

R: constant of length dimension $z^M = (x^{\mu}, \tau)$ with $\tau = \sqrt{2dt}$

Metric operator and induced metric

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

<u>Def.</u> (Dimensionless normalized operator)

$$\sigma(x;t) := \frac{O(x;t)}{\sqrt{\langle O(x;t)^2 \rangle_{CFT}}}$$

"Operator renormalization"

NOTE: $\langle \sigma(x;t)\sigma(x;t)\rangle_{CFT}=1$

<u>Def.</u> (Metric operator and induced metric)

$$\hat{g}_{MN}(x;t) := R^2 \frac{\partial \sigma(x;t)}{\partial z^M} \frac{\partial \sigma(x;t)}{\partial z^N} \qquad g_{MN}(z) := \langle \hat{g}_{MN}(x;t) \rangle_{CFT}$$

R: constant of length dimension $z^M = (x^{\mu}, \tau)$ with $\tau = \sqrt{2}dt$

<u>Result 1</u> Induced metrics with the free flow equation become the AdS metric for a couple of vector models in the free or critical limit.

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

<u>Result 2</u> An induced metric becomes quantum information metric for a general QFT. [Aoki-SY '17]

<u>Result 3</u> An induced metric defined in this way becomes AdS for a general CFT. [Aoki-SY '17]

[S.Aoki-SY '17] PTEP (2018) 031B01

(Bure metric for a density matrix)

Def.

$$D(\rho, \rho + d\rho)^2 = \frac{1}{2} \operatorname{tr}(d\rho \, G)$$

ho : density matrix G: hermitian 1 form operator satisfying $ho \, G + G \,
ho = d
ho$

For a pure state, G is given by $\ G=d\rho$

(Bure metric for a density matrix)

$$D(\rho, \rho + d\rho)^2 = \frac{1}{2} \operatorname{tr}(d\rho \, G)$$

ho : density matrix G: hermitian 1 form operator satisfying $ho \, G + G \,
ho = d
ho$

For a pure state, G is given by $\ G=d\rho$

For $\forall z = (x, \tau)$, we can assign a density matrix such that

$$\rho_z = |\sigma(x;t)\rangle \langle \sigma(x;t)|, \quad |\sigma(x;t)\rangle := \sigma(x;t)|0\rangle, \quad \langle \sigma(x;t)| := \langle 0|\sigma(x;t)|$$
$$z^M = (x^\mu, \tau) \text{ with } \tau = \sqrt{2dt}$$

Def. (Inner product)

Def.

 $\langle \sigma(x;t) | \sigma(w;s) \rangle := \langle \sigma(x;t) \sigma(w;s) \rangle_{CFT}$

(Bure metric for a density matrix)

$$D(\rho, \rho + d\rho)^2 = \frac{1}{2} \operatorname{tr}(d\rho \, G)$$

ho : density matrix G: hermitian 1 form operator satisfying $ho \, G + G \,
ho = d
ho$

For a pure state, G is given by $\ G=d
ho$

For $\forall z = (x, \tau)$, we can assign a density matrix such that

$$\rho_z = |\sigma(x;t)\rangle \langle \sigma(x;t)|, \quad |\sigma(x;t)\rangle := \sigma(x;t)|0\rangle, \quad \langle \sigma(x;t)| := \langle 0|\sigma(x;t)|$$
$$z^M = (x^\mu, \tau) \text{ with } \tau = \sqrt{2dt}$$

<u>Def.</u> (Inner product) $\langle \sigma(x;t) | \sigma(w;s) \rangle := \langle \sigma(x;t) \sigma(w;s) \rangle_{CFT}$

We measure the infinitesimal distance between 2pt in the bulk manifold by the information metric for the density matrices of associated pure states.

$$ds_z^2 := D(\rho_z, (\rho + d\rho)_z)^2 = \frac{1}{2} \operatorname{tr}(d\rho_z d\rho_z) = g_{MN}(z) dz^M dz^N,$$

cf. Fischer information metric

Def.

 $|\Psi_{\lambda}\rangle$: Vacuum state for $H_0 + \lambda V$

 $|\langle \Psi_{\lambda} | \Psi_{\lambda+\delta\lambda} \rangle|^2 = 1 - 2G_{\lambda\lambda}\delta\lambda^2 + \cdots$

Plan

✓ 1. Introduction

- 2. Flow equation & induced metric
 - 3. Conformal symmetry \rightarrow AdS isometry

4. Generalization to conformally flat manifolds

- 4.1. Primary flow equation
- 4.2. AdS metric with conformally flat boundary
- 5. Quantum corrections
- 6. Summary

Consider a CFT with a scalar primary operator O with conformal dimension Δ

Consider a CFT with a scalar primary operator O with conformal dimension Δ

Consider a free flow equation

This can be solved as

$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \qquad O(x;0) = O(x)$$
$$O(x;t) = e^{t\partial^2} O(x)$$

Consider a CFT with a scalar primary operator O with conformal dimension Δ

Consider a free flow equation

This can be solved as

$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \qquad O(x;0) = O(x)$$
$$O(x;t) = e^{t\partial^2} O(x)$$

The 2pt function is

$$G_0(x;t|y;s) := \langle O(x;t)O(y;s) \rangle_{\rm CFT} = e^{(t\partial_x^2 + s\partial_y^2)} \langle O(x)O(y) \rangle_{\rm CFT}$$

Poincare symmetry:

$$G_0(x;t|y;s) = {}^{\exists}G_0((x-y)^2,t+s)$$

Scaling property:

$$G_0(\lambda x; \lambda^2 t | \lambda y; \lambda^2 s) = \lambda^{-2\Delta} G_0(x; t | y; s)$$

$$\Rightarrow \quad G_0(x;t|y;s) = \frac{1}{(t+s)^{\Delta}} F_0\left(\frac{(x-y)^2}{t+s}\right) \qquad \qquad \mathsf{F}_0: \text{ a smooth function}$$

Consider a CFT with a scalar primary operator O with conformal dimension Δ

Consider a free flow equation
$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \qquad O(x;0) = O(x)$$

This can be solved as
$$O(x;t) = e^{t\partial^2} O(x)$$

The 2pt function is
$$G_0(x;t|y;s) := \langle O(x;t)O(y;s) \rangle_{CFT} = e^{(t\partial_x^2 + s\partial_y^2)} \langle O(x)O(y) \rangle_{CFT}$$

Poincare symmetry:
$$G_0(x;t|y;s) = {}^{\exists}G_0((x-y)^2,t+s)$$

Scaling property:
$$G_0(\lambda x;\lambda^2 t|\lambda y;\lambda^2 s) = \lambda^{-2\Delta}G_0(x;t|y;s)$$

 $\Rightarrow \qquad G_0(x;t|y;s) = \frac{1}{(t+s)^{\Delta}}F_0\left(\frac{(x-y)^2}{t+s}\right)$
F₀: a smooth function

The 2pt function of normalized field $G(x;t|y;s) := \langle \sigma(x;t)\sigma(y;s) \rangle_{CFT} = \left(\frac{2\sqrt{ts}}{t+s}\right)^{\Delta} F\left(\frac{(x-y)^2}{t+s}\right)$ $F(x) \equiv F_0(x)/F_0(0), \ F(0) = 1, \ 2dF'(0) = -\Delta$ Explicit computation: $F(x) = \frac{\Gamma(d/2)}{\Gamma(\Delta)\Gamma(d/2 - \Delta)} \int_0^1 dv \, v^{\Delta - 1}(1-v)^{d/2 - \Delta - 1} e^{-xv/4}.$

<u>NOTE</u>: UV singularity is resolved (regularized) \Leftrightarrow F is a smooth function for x>0.

[S.Aoki-SY '17] PTEP (2018) 031B01

cf. [Jevicki-Kazama-Yoneya '98]

[Aoki-SY '17]

Conformal transformation:

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\text{conf}}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

[Aoki-SY '17]

Conformal transformation:

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\text{conf}}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

 $\delta^{\rm conf}\sigma(x;t) = -\left\{2\lambda - 4(b_{\mu}x^{\mu})\right\}t\partial_{t}\sigma(x;t) - \left\{\delta x^{\mu} + 2t(d-2-\Delta)b^{\mu}\right\}\partial_{\mu}\sigma(x;t) + 4t^{2}b^{\mu}\partial_{\mu}\partial_{t}\sigma(x;t)$

[Aoki-SY '17]

Conformal transformation:

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\text{conf}}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

 $\delta^{\rm conf}\sigma(x;t) = -\left\{2\lambda - 4(b_{\mu}x^{\mu})\right\}t\partial_{t}\sigma(x;t) - \left\{\delta x^{\mu} + 2t(d-2-\Delta)b^{\mu}\right\}\partial_{\mu}\sigma(x;t) + 4t^{2}b^{\mu}\partial_{\mu}\partial_{t}\sigma(x;t)$

∃ Higher derivative term → Naively does not work for special conformal transformation...

cf. [Das-Jevicki '13] or Das's talk in 'Strings and Fields 2017'

[Aoki-SY '17]

Conformal transformation:

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\text{conf}}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

 $\delta^{\rm conf}\sigma(x;t) = -\left\{2\lambda - 4(b_{\mu}x^{\mu})\right\}t\partial_{t}\sigma(x;t) - \left\{\delta x^{\mu} + 2t(d-2-\Delta)b^{\mu}\right\}\partial_{\mu}\sigma(x;t) + 4t^{2}b^{\mu}\partial_{\mu}\partial_{t}\sigma(x;t)$

∃ Higher derivative term → Naively does not work for special conformal transformation...

Let us decompose this into the following. cf. [Das-Jevicki '13] or Das's talk in 'Strings and Fields 2017'

$$\begin{split} \delta^{\text{conf}} \sigma(x;t) &= \delta^{\text{diff}} \sigma(x;t) + \delta^{\text{extra}} \sigma(x;t), \\ \delta^{\text{diff}} \sigma(x;t) &= -\left(\bar{\delta}t\partial_t + \bar{\delta}x^{\mu}\partial_{\mu}\right)\sigma(x;t), \quad \delta^{\text{extra}}\sigma(x;t) = 4t^2b^{\nu}\partial_{\nu}(\partial_t + \frac{\Delta+2}{2t})\sigma(x;t), \\ \text{where} \quad \bar{\delta}x^{\mu} &= \delta x^{\mu} + 2dtb^{\mu}, \\ \bar{\delta}t &= (2\lambda - 4(b_{\mu}x^{\mu}))t \end{split}$$

[Aoki-SY '17]

Conformal transformation:

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\rm conf}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

 $\delta^{\rm conf}\sigma(x;t) = -\left\{2\lambda - 4(b_{\mu}x^{\mu})\right\}t\partial_{t}\sigma(x;t) - \left\{\delta x^{\mu} + 2t(d-2-\Delta)b^{\mu}\right\}\partial_{\mu}\sigma(x;t) + 4t^{2}b^{\mu}\partial_{\mu}\partial_{t}\sigma(x;t)$

∃ Higher derivative term → Naively does not work for special conformal transformation...

Let us decompose this into the following.

cf. [Das-Jevicki '13] or Das's talk in 'Strings and Fields 2017'

[Aoki-SY '17]

Conformal transformation:

Let us decompose this into the following.

$$\delta x^{\mu} = a^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + \lambda x^{\mu} + b^{\mu}x^{2} - 2x^{\mu}(b_{\nu}x^{\nu}),$$

$$\delta^{\text{conf}}O(x) = -\delta x^{\mu}\partial_{\mu}O(x) - \frac{\Delta}{d}(\partial_{\mu}\delta x^{\mu})O(x)$$

 $\delta^{\rm conf}\sigma(x;t) = -\left\{2\lambda - 4(b_{\mu}x^{\mu})\right\}t\partial_{t}\sigma(x;t) - \left\{\delta x^{\mu} + 2t(d-2-\Delta)b^{\mu}\right\}\partial_{\mu}\sigma(x;t) + 4t^{2}b^{\mu}\partial_{\mu}\partial_{t}\sigma(x;t)$

∃ Higher derivative term → Naively does not work for special conformal transformation...

cf. [Das-Jevicki '13] or Das's talk in 'Strings and Fields 2017'

Plan

✓ 1. Introduction

- 2. Flow equation & induced metric
- ✓ 3. Conformal symmetry \rightarrow AdS isometry

4. Generalization to conformally flat manifolds

- 4.1. Primary flow equation
- 4.2. AdS metric with conformally flat boundary
- 5. Quantum corrections
- 6. Summary

How can we generalize the result of flat space boundary to a more general curved boundary?

A curved manifold need to admit CFT to live. → Restrict ourselves to a conforamlly flat manifold.

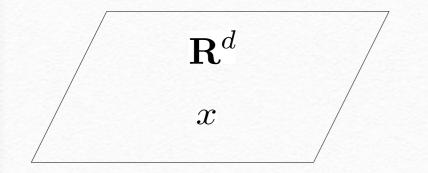
How can we generalize the result of flat space boundary to a more general curved boundary?

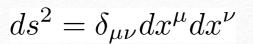
A curved manifold need to admit CFT to live. → Restrict ourselves to a conforamlly flat manifold.

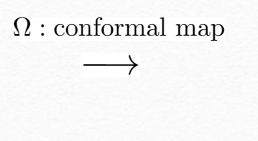
We need to construct a flow equation associated with the curved manifold. But how?

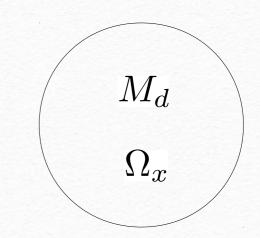
$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \quad \to \quad ???$$

Setup



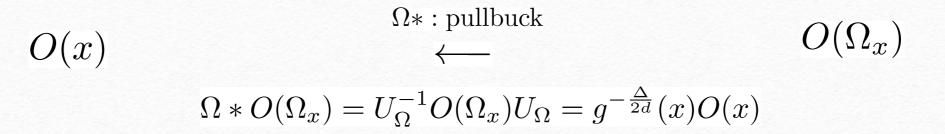






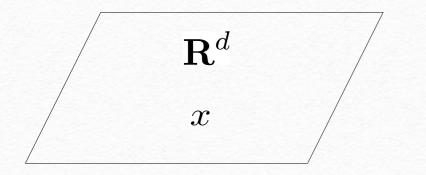
$$(ds^2)_{M_d} = g^{\frac{1}{d}}(x)\delta_{\mu\nu}dx^{\mu}dx^{\nu}$$

the conformal factor

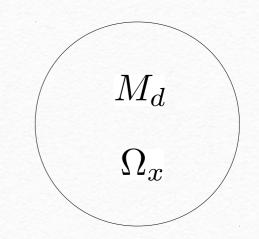


Primary flow

 Ω : conformal map

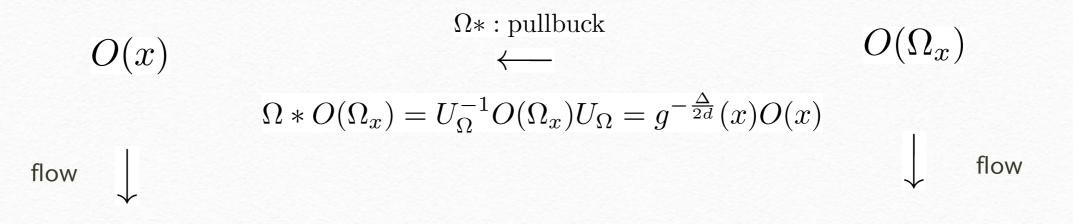


$$ds^2 = \delta_{\mu\nu} dx^\mu dx^\nu$$



$$(ds^2)_{M_d} = g^{\frac{1}{d}}(x)\delta_{\mu\nu}dx^{\mu}dx^{\nu}$$

the conformal factor



O(x;t) ???

 $\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t)$

How can we generalize the result of flat space boundary to a more general curved boundary?

A curved manifold need to admit CFT to live. → Restrict ourselves to a conforamlly flat manifold.

We need to construct a flow equation associated with the curved manifold. But how?

$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \quad \to \quad ???$$

We request the following 2 conditions:

(1) There exists a flow time \tilde{t} associated with M_d corresponding to the flow time t on R^d such that the flowed operator inserted at Ω_x is related to the flowed one at x by the pullback of a conformal map Ω :

$$\Omega * O(\Omega_x; \tilde{t}) = U_{\Omega}^{-1} O(\Omega_x; \tilde{t}) U_{\Omega} = g^{-\frac{\Delta}{2d}}(x) O(x; t)$$

② The flow equation is invariant under the scale transformation.

Primary flow equation

How can we generalize the result of flat space boundary to a more general curved boundary?

A curved manifold need to admit CFT to live. → Restrict ourselves to a conforamlly flat manifold.

We need to construct a flow equation associated with the curved manifold. But how?

$$\frac{\partial O(x;t)}{\partial t} = \partial^2 O(x;t) \quad \to \quad ???$$

 $\tilde{t} = g^{\frac{1}{d}}(x)t$

We request the following 2 conditions:

(1) There exists a flow time \tilde{t} associated with M_d corresponding to the flow time t on R^d such that the flowed operator inserted at Ω_x is related to the flowed one at x by the pullback of a conformal map Ω :

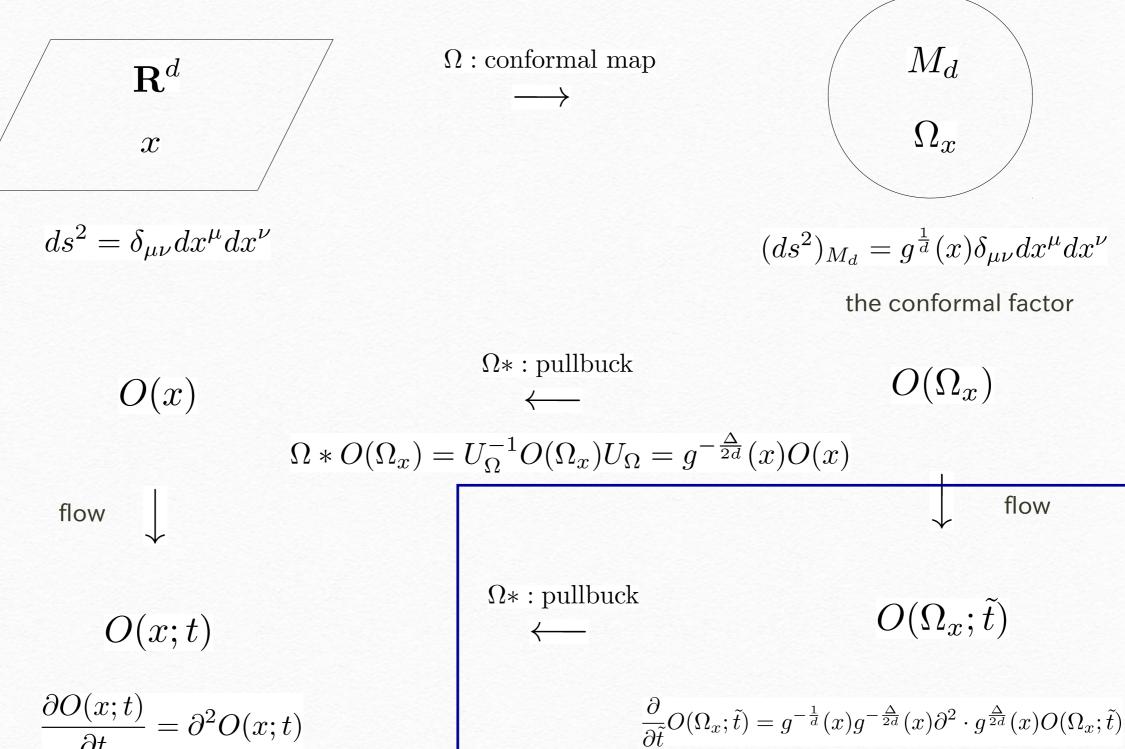
$$\Omega * O(\Omega_x; \tilde{t}) = U_{\Omega}^{-1} O(\Omega_x; \tilde{t}) U_{\Omega} = g^{-\frac{\Delta}{2d}}(x) O(x; t)$$

② The flow equation is invariant under the scale transformation.

Primary flow equation

$$\frac{\partial}{\partial \tilde{t}} O(\Omega_x; \tilde{t}) = g^{-\frac{1}{d}}(x) g^{-\frac{\Delta}{2d}}(x) \partial^2 \cdot g^{\frac{\Delta}{2d}}(x) O(\Omega_x; \tilde{t}), \qquad O(\Omega_x; 0) = O(\Omega_x)$$

Primary flow



Primary flow equation

flow

Q2: Non-trivial curved boundary?

[S.Aoki-SY '17] NPB 933 (2018)

Generalization to curved background

A curved manifold needs to admit CFT to live. \Rightarrow Restrict ourselves to a conformally flat manifold. We need to construct a flow equation associated with the curved manifold.

"Canonical" free flow equation (Primary flow equation)

$$\frac{\partial}{\partial \tilde{t}}O(\Omega_x;\tilde{t}) = g^{-\frac{1}{d}}(x)g^{-\frac{\Delta}{2d}}(x)\partial^2 \cdot g^{\frac{\Delta}{2d}}(x)O(\Omega_x;\tilde{t}), \qquad O(\Omega_x;0) = O(\Omega_x)$$

 $g^{rac{1}{d}}(x)$ the conformal factor

$$\tilde{t} = g^{\frac{1}{d}}(x)t$$

Generalization to curved background

A curved manifold needs to admit CFT to live. → Restrict ourselves to a conformally flat manifold. We need to construct a flow equation associated with the curved manifold.

"Canonical" free flow equation (Primary flow equation)

$$\begin{split} \frac{\partial}{\partial \tilde{t}} O(\Omega_x; \tilde{t}) &= g^{-\frac{1}{d}}(x)g^{-\frac{\Delta}{2d}}(x)\partial^2 \cdot g^{\frac{\Delta}{2d}}(x)O(\Omega_x; \tilde{t}), \qquad O(\Omega_x; 0) = O(\Omega_x) \\ g^{\frac{1}{d}}(x) \quad \text{the conformal factor} \qquad \tilde{t} = g^{\frac{1}{d}}(x)t \\ \downarrow \\ \end{split}$$
The induced metric: $\tilde{g}_{\tilde{\tau}\tilde{\tau}}(z) = R^2 \frac{\Delta}{\tilde{\tau}^2}, \\ \tilde{g}_{\tilde{\tau}\mu}(z) = g_{\mu\tilde{\tau}}(z) = -R^2 \frac{\Delta}{\tilde{\tau}} \frac{\partial}{\partial x^{\mu}} \log\{g^{\frac{1}{2d}}(x)\}, \\ \tilde{g}_{\mu\nu}(z) = R^2 \Delta \left[\frac{\partial}{\partial x^{\mu}} \log\{g^{\frac{1}{2d}}(x)\} \frac{\partial}{\partial x^{\nu}} \log\{g^{\frac{1}{2d}}(x)\} + \frac{\delta_{\mu\nu}g^{\frac{1}{d}}(x)}{\tilde{\tau}^2}\right], \\ \text{This is the (local) AdS metric whose radius is Rv } \Delta \text{ with the boundary } M_{\mathtt{d}} \end{split}$

Generalization to curved background

A curved manifold needs to admit CFT to live. → Restrict ourselves to a conformally flat manifold. We need to construct a flow equation associated with the curved manifold.

"Canonical" free flow equation (Primary flow equation)

Plan

✓ 1. Introduction

- 2. Flow equation & induced metric
- ✓ 3. Conformal symmetry \rightarrow AdS isometry
- 4. Generalization to conformally flat manifolds
 - 4.1. Primary flow equation
 - 4.2. AdS metric with conformally flat boundary
 - 5. Quantum corrections
 - 6. Summary

Q3: How to compute quantum correction?

[S.Aoki-J.Balog-SY '18]

Pre-geometric operators

<u>Def.</u> Pre-geometric operators are defined by replacing the metric which appears in the definition of the corresponding (classical) geometric object with the metric operator.

$$\mathcal{O}[g] \to \mathcal{O}[\hat{g}] =: \hat{\mathcal{O}}$$

<u>Ex.</u>

$$\hat{\Gamma}_{LN}^{M}(x;t) = \frac{1}{2}\hat{g}^{MP}(x;t)(\hat{g}_{P\{N,L\}}(x;t) - \hat{g}_{NL,P}(x;t))$$

$$\hat{R}_{LP}{}^{M}{}_{N}(x;t) = \partial_{[L}\hat{\Gamma}_{P]N}^{M}(x;t) + \hat{\Gamma}_{[LQ}^{M}(x;t)\hat{\Gamma}_{P]N}^{Q}(x;t)$$

$$\hat{R}_{PN}(x;t) = \hat{R}_{MP}{}^{M}{}_{N}(x;t),$$

$$\hat{R}(x;t) = \hat{g}^{PN}(x;t)\hat{R}_{PN}(x;t),$$

$$\hat{G}_{MN}(x;t) = \hat{R}_{MN}(x;t) - \frac{1}{2}\hat{g}_{MN}(x;t)\hat{R}(x;t).$$

Bulk interpretation

Taking the expectation value of these operators for a CFT state gives the observable in the bulk evaluated at its corresponding geometry, which obeys Einstein equation:

$$\langle \hat{G}_{AB} \rangle_{\psi} = T_{AB}^{\text{bulk}} |.$$

$$\langle \hat{G}_{AB} \rangle_{\psi} := \langle \psi | \hat{G}_{AB} | \psi \rangle$$

CFT vacuum \Rightarrow Only cosmological constant.

$$T_{AB}^{\text{bulk}}| = -\Lambda g_{AB}$$

CLAIM: This induced Einstein tensor is expected to describe **that of dual quantum gravity**.

In particular, let us compute LHS in the **1/n expansion**:

Quantum correction to bulk CC

<u>Ex.</u> CFT vacuum, O(n) free vector model \rightarrow Quantum correction to cosmological constant. ① Expand the operator around the vacuum:

$$\begin{split} \hat{G}_{AB} &= G_{AB} + \dot{G}_{AB} + \ddot{G}_{AB} + \cdots \\ \mathcal{O}(h^0) \quad \mathcal{O}(h^1) \quad \mathcal{O}(h^2) \qquad h_{AB} = \hat{g}_{AB} - g_{AB} \\ G_{AB} &= G_{AB}[\langle \hat{g} \rangle] = \frac{d(d-1)}{2L^2 \Delta} g_{AB} \qquad \Lambda = -\frac{d(d-1)}{2L^2 \Delta} + \mathcal{O}\left(\frac{1}{n}\right), \\ \ddot{G}_{AB} &= R_{AB} - \frac{1}{2} h_{AB} \dot{R} - \frac{1}{2} g_{AB} \ddot{R} \end{split}$$

② Taking the VEV:

$$\left\langle \hat{G}_{AB} \right\rangle = G_{AB} + \left\langle \ddot{G}_{AB} \right\rangle + \cdots$$

$$\begin{split} \langle \ddot{G}_{AB} \rangle &= \frac{(d-1)d(d+4)}{2nL^2\Delta} g_{AB}. \\ \Lambda &= -\frac{d(d-1)}{2L^2\Delta} \left(1 + \frac{d+4}{2n} \right) + \mathcal{O}\left(\frac{1}{n^2}\right), \quad L_{\text{AdS}}^2 = L^2\Delta \left(1 - \frac{d+4}{2n} \right) + \mathcal{O}\left(\frac{1}{n^2}\right). \end{split}$$

Plan

✓ 1. Introduction

- 2. Flow equation & induced metric
- ✓ 3. Conformal symmetry \rightarrow AdS isometry
- 4. Generalization to conformally flat manifolds
 - 4.1. Primary flow equation
 - 4.2. AdS metric with conformally flat boundary
- 5. Quantum corrections
 - 6. Summary

- An induced metric defined from the normalized flowed field generally corresponds to the quantum information metric.
- For a general CFT, we explicitly showed that the induced metric with the free flow equation always becomes the AdS metric.
- Conformal symmetry converts to AdS isometry after quantum averaging.
- We have constructed a canonical flow equation for a primary scalar operator on a conformally flat manifold, called the primary flow equation.
- The induced metric associated with the primary flow equation becomes AdS with the conformally flat boundary.
- AdS with the conformally flat boundary is obtained from the usual Poincare AdS by a simple bulk diffeomorphism transformation.
- Demonstrate how to compute quantum corrections to bulk observables and compute it explicitly for the cosmological constant.

Future works

How to encode dynamics beyond geometry? For excited states?

working in progress [Aoki-Balog-SY]

- How to reconstruct bulk operator?
- · Canonical choice of a normalized field?
- Finite temperature? BH?
- Spin 1,2 field? Fermion?
- de Sitter construction? Application to the real world?

Future works

How to encode dynamics beyond geometry? For excited states?

working in progress [Aoki-Balog-SY]

- How to reconstruct bulk operator?
- · Canonical choice of a normalized field?
- Finite temperature? BH?
- Spin 1,2 field? Fermion?
- de Sitter construction? Application to the real world?

Thank you!