弱い重力予想と現象論

Toshifumi Noumi

(Kobe University)

based on arXiv:1802.04287 w/Stefano Andriolo, Daniel Junghans, Gary Shiu

25th June 2018 @ 益川塾

主なメッセージ - 弱い重力予想 (Weak Gravity Conjecture) $\leftarrow \nu \forall \neg \neg$ 量子重力理論には質量比電荷や axion の崩壊係数に上下限値 $\frac{q}{m} > 1$ $f > M_{\rm Pl}$

→ インフレーションや暗黒物質の模型への示唆

- Tower Weak Gravity Conjecture [Andriolo-Junghans-TN-Shiu '18] 無限個の荷電粒子がタワー状に存在 (cf. KK tower, string spectrum)

two key words: Landscape and Swampland (沼地)

two key words: Landscape and Swampland (沼地)
Probably, you have heard of
the word "String Theory Landscape"

there seem to exist almost infinite vacua in string theory

- how to compactify the extra dimensions
- how to put D-branes, …

there seem to exist almost infinite vacua in string theory

- how to compactify the extra dimensions
- how to put D-branes, …

a complementary view of landscape

[Vafa '05]

two key words: Landscape and Swampland (沼地)

Q. Is my QFT model consistent with quantum gravity?

landscape :
models with healthy UV completion

swampland : apparently consistent, but problematic

clarifying boundaries of landscape and swampland is important for both the theory and phenomenology

- "consistency requirements" on phenomenological models
- if the nature favors what we think in swamplands, we need to change our criteria to construct UV theories

Weak Gravity Conjecture is a typical example for criteria to distinguish swampland from landscape % relevant to axion inflation, dark matter scenarios, … in the rest of my talk

- 1. Weak Gravity Conjecture
- a criterion to distinguish landscape from swampland
- 2. WGC vs positivity bounds
 - possible connections to other QFT principles
 - our proposal: Tower Weak Gravity Conjecture

1. Weak Gravity Conjecture

to motivate Weak Gravity conjecture, let me start with a widely accepted statement: **no continuous global symmetry in quantum gravity**

black hole entropy

BH enjoys thermodynamic properties [Bekenstein, Hawking,...] in particular, its entropy S is $S = \frac{A}{4}$ (A : horizon area)

in quantum gravity (= microscopic description of gravity) we expect that BH entropy is statistical entropy $S = -\text{tr}(\rho \ln \rho)$ indeed, string theory explicitly showed that it is the case at least for certain black holes [Strominger-Vafa '96]

no global symmetry in quantum gravity

no-hair theorem:

event horizon \rightarrow global symmetry charge cannot be observed

cf. elemag charge is observable via background gauge field

global symmetry

gauge symmetry

no global symmetry in quantum gravity

no-hair theorem:

event horizon \rightarrow global symmetry charge cannot be observed

cf. elemag charge is observable via background gauge field

statistical BH entropy in theories w/continuous global symmetry require ensemble of states wth \forall global charge

- \rightarrow generically large degeneracy & divergent entropy
- \rightarrow no continuous global symmetry in quantum gravity!?

% consistent with string theory, AdS/CFT etc

[ex. Susskind 95', Banks-Seiberg 10']

```
global symmetry = gauge symmetry at g = 0
```

 \rightarrow natural to expect a lower bound on the gauge coupling

Weak Gravity Conjecture

[ArkaniHamed-Motl-Nicolis-Vafa 06']

weak gravity conjecture provides a quantitative bound by postulating finiteness of the # of stable states % to make extremal BH (no hawking radiation) unstable, require existence of a particle satisfying $q \ge m$

work in the unit $Q_{\text{ext}} = M_{\text{ext}}$

Weak Gravity Conjecture

[ArkaniHamed-Motl-Nicolis-Vafa 06']

weak gravity conjecture provides a quantitative bound by postulating finiteness of the # of stable states % to make extremal BH (no hawking radiation) unstable, require existence of a particle satisfying $gq \ge "1" \cdot \frac{m}{M_{\rm Pl}}$

work in the unit $Q_{\text{ext}} = M_{\text{ext}}$

- no rigorous proof, so it is still a conjecture
- but consistent with all known examples in string theory
- if true, various phenomenological implications

ex. mili-charged dark matter, axion inflation, axion DM, \cdots

- no rigorous proof, so it is still a conjecture
- but consistent with all known examples in string theory
- if true, various phenomenological implications

ex. mili-charged dark matter, axion inflation, axion DM, …

$$\text{``charge > mass'' \iff } \frac{1}{f} > \frac{S_{\text{inst}}}{M_{\text{Pl}}} \iff \frac{f}{M_{\text{Pl}}} \cdot S_{\text{inst}} < 1$$

implications to axion inflation

inflaton potential has to be flat enough (slow-roll condition)

$$V(\phi) \propto e^{-S_{\text{inst}}} \left(1 - \cos\frac{\phi}{f} \right) + \sum_{n \ge 2} e^{-nS_{\text{inst}}} \left(1 - \cos\frac{n\phi}{f} \right)$$

- negligible higher harmonics ($n\geq 2$) $\rightarrow S_{\rm inst}>1$
- long enough periodicity $\rightarrow f > M_{\rm Pl}$

$$\therefore$$
 inconsistent with WGC $\frac{f}{M_{\rm Pl}} \cdot S_{\rm inst} < 1$

recent directions:

- **1. how to evade WGC and realize axion inflation models** [De la Fuente et al '14, Bachlechner et al '15, Choi-Kim '15, Conlon-Krippendorf '16, …]
- 2. constraints on particle physics models (ex. neutrino masses)

[Ooguri-Vafa '16, Ibanez, MartinLozano-Valenzuela '17, Hamada-Shiu '17]

- 3. better understanding & towards a proof of WGC
 - lessons from string theory examples

[Brown et al '15, Heidenreich et al '15, Hebecker-Soler '17, Montero et al '17]

- use of AdS/CFT (holography)

[Nakayama-Nomura '15, Harlow '15, Benjamin et al '16, Montero et al '16]

- relation to positivity bounds

[Cheung-Remmen '14, Andriolo-Junghans-TN-Shiu '18]

recent directions:

- **1. how to evade WGC and realize axion inflation models** [De la Fuente et al '14, Bachlechner et al '15, Choi-Kim '15, Conlon-Krippendorf '16, …]
- 2. constraints on particle physics models (ex. neutrino masses)

[Ooguri-Vafa '16, Ibanez, MartinLozano-Valenzuela '17, Hamada-Shiu '17]

- 3. better understanding & towards a proof of WGC
 - lessons from string theory examples

[Brown et al '15, Heidenreich et al '15, Hebecker-Soler '17, Montero et al '17]

- use of AdS/CFT (holography)

[Nakayama-Nomura '15, Harlow '15, Benjamin et al '16, Montero et al '16]

- relation to positivity bounds

[Cheung-Remmen '14, Andriolo-Junghans-TN-Shiu '18]

2. WGC vs positivity bounds

[Cheung-Remmen '14, Andriolo-Junghans-TN-Shiu '18]

consistency such as unitarity, analyticity and causality

 \rightarrow generically constrain signs of effective interactions

an illustrative example for positivity

a scalar EFT with a shift symmetry $\phi \rightarrow \phi + \text{const}$ $\mathcal{L} = -\frac{1}{2} (\partial_{\mu}\phi)^2 + \frac{\alpha}{\Lambda^4} (\partial_{\mu}\phi)^4 + \dots$ $st \alpha$ shows up, e.g., after integrating out a heavy field σ $\sigma (\partial_\mu \phi)^2$, g $\frac{1}{m^2 + p^2} \bigvee \qquad |p^2| \ll m^2$ the effective coupling is $\alpha = \frac{g^2}{2m^2} \ge 0$

an illustrative example for positivity

a scalar EFT with a shift symmetry $\phi \rightarrow \phi + \mathrm{const}$

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{\alpha}{\Lambda^4} (\partial_{\mu} \phi)^4 + \dots$$

more generally, positivity of α follows only from

- unitarity of UV completion

$$\operatorname{Im} \Longrightarrow \bigcirc \longleftrightarrow = \sum_{n} \left| \longrightarrow (n) \longleftarrow \right|^{2} \ge 0$$

- analyticity & locality of scattering amplitudes

[Adams-Arkani Hamed-Dubovsky-Nicolis-Rattazzi '06]

Such a positivity is better understood than WGC

 \rightarrow Is there any relation between the two?

photon + graviton + massive charged particles

integrate out matters

IR effective theory of photon & graviton

Q. What the positivity of this EFT implies?

1-loop effective action for photon & graviton

$$\mathcal{L}_{\text{eff}} = \frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu}^2 + \alpha_1 (F_{\mu\nu} F^{\mu\nu})^2 + \alpha_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \alpha_3 F_{\mu\nu} F_{\rho\sigma} W^{\mu\nu\rho\sigma} -$$

1-loop effective action for photon & graviton

$$\mathcal{L}_{\text{eff}} = \frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu}^2 + \alpha_1 (F_{\mu\nu} F^{\mu\nu})^2 + \alpha_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \alpha_3 F_{\mu\nu} F_{\rho\sigma} W^{\mu\nu\rho\sigma}$$

 $\pm \mathcal{O}(g^2) + \mathcal{O}(g^0)$ gravitational effects

 $R^{1/2}$

1-loop effective action for photon & graviton

$$\mathcal{L}_{\text{eff}} = \frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu}^2 + \alpha_1 (F_{\mu\nu} F^{\mu\nu})^2 + \alpha_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \alpha_3 F_{\mu\nu} F_{\rho\sigma} W^{\mu\nu\rho\sigma} + \alpha_3 F_{\mu\nu} F_{\mu\nu}$$

- positivity implies α_1 , $\alpha_2 \ge 0$ α_i depends on mass and charge of particles integrated c

 $R^{1/2}$

- Cheung-Remmen found positivity implies $z^4 - z^2 + \gamma \ge 0$ $\label{eq:constraint} \aleph z = \frac{qg}{m/M_{\rm Pl}} \, , \, \gamma \mbox{ is a UV sensitive } \mathcal{O}(z^0) \mbox{ coefficient} \mbox{ (free parameter in the EFT framework)}$ positivity of photon-graviton EFT implies z⁴ - z² + γ ≥ 0
→ at lest one of the following two should be satisfied
1) WGC type lower bound on charge-to-mass ratio
in particular when γ = 0 , WGC z² ≥ 1 is reproduced!
2) not so small value of UV sensitive parameter γ

in [Andriolo-Junghans-TN-Shiu '18], we discussed

- multiple U(1) extension
- implications from KK reduction

multiple U(1) extension

for example, let us consider $U(1)_1 imes U(1)_2$

a new ingredient is positivity of $\gamma_1 + \gamma_2
ightarrow \gamma_1 + \gamma_2$

$$\lim \longrightarrow 0 \quad \text{implies} \quad z_1^2 z_2^2 - z_1^2 - z_2^2 \ge 0$$

- $z_i = q_i/m$ is the charge-to-mass ratio for each U(1)

- we set $\mathcal{O}(z^0)=0$ for illustration (same as γ = 0 before)

multiple U(1) extension

for example, let us consider $U(1)_1 imes U(1)_2$

a new ingredient is positivity of $\gamma_1 + \gamma_2
ightarrow \gamma_1 + \gamma_2$

$$\operatorname{Im} \rightleftharpoons \sum = 0 \quad \text{implies} \quad z_1^2 z_2^2 - z_1^2 - z_2^2 \ge 0$$

- $z_i = q_i/m$ is the charge-to-mass ratio for each U(1)

- we set $\mathcal{O}(z^0)=0$ for illustration (same as r = 0 before)

the punchline here:

positivity bound cannot be satisfied unless $z_1^2 z_2^2 \neq 0$ \rightarrow requires existence of a bifundamental particle!

implications from KK reduction

S^1 compactify d+1 dim Einstein-Maxwell with single U(1) into d dim Einstein-Maxwell with $U(1) \times U(1)_{\rm KK}$

d+1 dim charged particle (q,m)

 \rightarrow KK tower with the charged-to-mass ratios

$$(z, z_{\rm KK}) = \left(\frac{q}{\sqrt{m^2 + n^2 m_{\rm KK}^2}}, \frac{n}{\sqrt{(m/m_{\rm KK})^2 + n^2}}\right)$$

implications from KK reduction

S^1 compactify d+1 dim Einstein-Maxwell with single U(1) into d dim Einstein-Maxwell with $U(1) \times U(1)_{\rm KK}$

d+1 dim charged particle (q,m)

 \rightarrow KK tower with the charged-to-mass ratios

$$(z, z_{\rm KK}) = \left(\frac{q}{\sqrt{m^2 + n^2 m_{\rm KK}^2}}, \frac{n}{\sqrt{(m/m_{\rm KK})^2 + n^2}}\right)$$

in the small radius limit $m_{\rm KK} \to \infty$, the lowest mode (n = 0): $(z, z_{\rm KK}) = (q/m, 0)$ KK modes (n \neq 0): $(z, z_{\rm KK}) \simeq (0, 1)$

% no bifundamentals \rightarrow positivity bound generically

a solution to make the theory healthy is

to introduce a tower of d+1 dim U(1) charged particles

<u>d+1 dim</u>

charged particles

labeled by
$$\ell = 1, 2, ...$$

 $(q, m) = (\ell q_*, \ell m_*)$

U(1)

s.t.
$$z_* = \frac{q_*}{m_*} = \mathcal{O}(1)$$

<u>d+1 dim</u>

charged particles

labeled by
$$\ell = 1, 2, \ldots$$

$$(q,m) = (\ell q_*, \ell m_*)$$

s.t.
$$z_* = \frac{q_*}{m_*} = \mathcal{O}(1)$$

d dim charged particles

$$(z, z_{\rm KK}) = \left(\frac{\ell z_*}{\sqrt{\ell^2 + n^2 (m_{\rm KK}/m_*)^2}}, \frac{n}{\sqrt{\ell^2 (m_*/m_{\rm KK})^2 + n^2}}\right)$$

in this way, consistency with KK reduction

seems to imply a tower of d+1 dim U(1) charged particles

- → Tower Weak Gravity Conjecture!
- ※ a similar conjecture "lattice WGC" was proposed

based on BH argument [Heidenreich-Reece-Rudelius '15]

summary and prospects

summary

- # Weak Gravity Conjecture
 - requires existence of a superextremal particle
 - upper bound on axion decay constant
 - \rightarrow relevant to axion inflation, axion DM, \cdots
- # positivity bound
 - signs of effective interactions are generically constrained by unitarity, analyticity and causality
- # argued possible connection between the two
 - bifundamental particles when we have multiple U(1)'s
 - KK reduction implies a tower of charged particles

prospects

phenomenological implications of Tower WGC

ex. axion potential generated by infinite instanton species

$$V(\phi) = \sum_{i} e^{-S_i} \cos\left(\frac{\phi}{f_i} + \alpha_i\right)$$

i: label of instanton species

relation to other consistency requirements

ex. entropy bounds on higher derivatives corrections

Thank you!