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1. Introduction
Color confinement problem:

Almost half a century history !!!

1. 1963: Quark model (Gell-Mann and Zweig): fractionally
charged quarks confined?

2. 1971: Quark confinement as a superconductor (Nambu)

3. 1972: Quantum Chromogynamics (QCD) as non-Abelian
gauge theory SU.(3) (Fritzsch and Gell-Mann): quark
confinement as color confinement?

4. 1974-75: ldea of dual superconductor (electric <
magnetic) as the color-confinement mechanism ('tHooft-
Mandelstam):  Something color magnetic must be
condensed.

5. So far two ideas proposed. Color magnetic monopole and
color magnetic vortex

Not yet solved !!l One of the biggest problems unsolved in
QCD!!!

To clarify color confinement mechanism = To find a theory
in QCD such as BCS in usual superconductor



Difficulties of gluodynamics in comparison with the BCS
theory: (Let me neglect dynamical quarks in the following.)

e Non-Abelian SU(3) gauge symmetry in gluodynamics vs
Abelian U (1) of the BCS theory

e Scale invariance with no dimensional constants ( in BCS,
electrons with mass)

Important targets in gluodynamics:

1. To find a theoretical framework like the Higgs mechanism
in superconductor without breaking non-Abelian SU(3)
symmetry

2. To find a key magnetic quantity which condenses like the
Cooper pair from massless gluons alone

3. To show analytically the existence of mass gaps, namely,
string tension, glueball mass, .. from the scale-invariant
theory «— One of 'The millennium problems : the seven
greatest unsolved mathematical puzzles of our time’

4. To analytically explain the value of T,

5. To analytically explain the properties of finite-temperature
transition, i.e., the 2nd-order phase transition in SU2
gluodynamics and the 1st-order phase transition in SU3
gluodynamics



2. 'tHooft idea of monopole in QCD:
Abelian projection
G. 'tHooft, N.P. B190 (1981) 455.

SU2 gluodynamics coupled to adjoint Higgs fields has a
classical monopole solution. But there is no Higgs field in
QCD. 'tHooft's proposed an idea of Abelian projection:

1. Consider a composite operator X (A,,) transforming as an
adjoint operator.

2. X can be diagonalized by a gauge transformation: X' =
V() XVT(x) = \z)o3

3. There is a U(1) ambiguity w.r.t V(z) corresponding to
the maximal torus group of SU(2). Hence fix the form
of V(z), say, as V(z) = exp(iai01 + iaz02) and consider
the transformation property of V' under an arbitrary SU2)
matrix W (x). Then V(x) transforms as

VWi(z) = d@)V(e)W'(x)
VW) XWYVWi () = Ma)os

where d(x) € U(1) keeps the form of VW as fixed.



4. Then the gauge transformed gauge field
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Only the diagonal component of A/ (x) transforms as a
photon with respect to the remaining U(1) and other
components transform as a charged matter.

5. Define Y = Vfo3V and a, = TrY A,:
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There is a line singularity on Y3(z) = —1. Note Y2 = 1.



6. Monopole appears at the point where the gauge fixing
matrix V' (x) is not defined, i.e., X (x) = 0.
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where A is the Jacobian of Y2 = 1 & S2? and d3¢
is the surface element describing the space-time surface

S(€4,€%).
ggm = 4AnN +— II,(SU(2)/U(1) = S*) = Z

'tHooft conjectured that the monopoles appeared here
condense in the vacuum, so that color confinement occurs.



Many interesting numerical results were obtained from
1987 until now, suggesting the relevance of 'tHooft's
monopoles especially by adopting a special smooth gauge
called maximally Abelian gauge (MAG).

1. Maximally Abelian gauge (MA):

A.S. Kronfeld et al., P.L. 198B (1987) 516: N.P. B293 (1987) 461
The 'tHooft scenario depends on the choice of partial gauge
fixing. The maximally Abelian gauge to maximize R =

D s LT (agU(s, w)osUT (s, ,u)) .

2. Abelian dominance:

T. Suzuki and |. Yotsuyanagi, P.R. D42 (1990) 4257

3. Monopole dominance:

H. Shiba and T. Suzuki, P.L.333B (1994) 461, J. Stack et al., P.R. D50
(1994) 3399

4. Abelian dual Meissner effect:

Y. Koma et al., P.R. D68 (2003) 114504

Figure 1: Color electric field squeezing Figure 2: Monopole currents
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5. Blockspin transformation and infrared effective monopole
action:

H. Shiba and T. Suzuki

6. Monopole action in the continuum space-time:

M. Chernodub et al., P.R. D62 (2000) 094506

7. Monopoles and dynamical mass generation:

S. Kitahara et al., N.P. B533 (1998) 576.

8. Finte-temperature transition and monopole:

S. Ejiri et al., Phys. Lett. B400 (1997) 163

9. Monopoles and the anomaly > T.:

M. Chernodub et al.,PoS (LATTICE 2007) 174

10. Monopole importance at high temperature:

K. Ishiguro et al., JHEP 0201 (2002) 038 and references therein.

11. Monopoles and chiral symmetry breaking:

A. Ramamuruti and E. Schuryak, arXiv:1801.06922.

12. Monopoles in other gauges:

T. Sekido et al., Phys. Rev. D76 (2007) 031501. M. Chernodub,
P.R.D69 (2004) 094504



Although numerically interesting in MA gauge, the

'tHooft idea of Abelian projection is theoretically very very
unsatisfactory.

1.

In non-perturabative QCD, any gauge-fixing is not
necessary at all. 'tHooft scheme needs to introduce an
additional partial gauge-fixing. There are infinite ways of
such a partial gauge-fixing. the 't Hooft scheme looks
gauge dependent !!!

. After an Abelian projection, only one (in SU(2)) or two (in

SU(3)) gluons are photon-like with respect to the residual
U(1) or U(1)? symmetry and the other gluons are massive
charged matter fields. Such an asymmetry among gluons
is unnatural.

Charge confinement but whether non-Abelian color is
confined or not is unknown.



3. Breakthrough in monopole in QCD

Note the Jacobi identities:
ewpg[D,,, [Dp, D,|] =0,
where D, = 0,, —igA,,. Calculate explicitly:

[Dp; Do| = [0, —igAp, 05 — 1gA,]
— _ig(apAa — aJAp - ig[Am AG]) + [8107 80]
= —’ingg + [apy aa]

10,, 05| can not be neglected in general!!

D,G7,, = 0 — Non-Abelian Bianchi identity (NABI):
Ovf, = 0 — Abelian-like Bianchi identity:

o = O A, — 0,4, = (8,A% — 8,A%)0" /2



Jacobi identity + |D,, G | = D, G0

1
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k7, # 0 — color magnetic Abelian-like monopole
Ji # 0 — Violation of NABI

Color magnetic monopoles= Violation of
non-Abelian Bianchi identity (VNABI)

00, 95| Au # 0
\

Line singularities existing in gauge fields A, (z)
themselves!!! are the origin of the QCD monopoles and
N? — 1 monopoles exist in SU(N).



This is completely different from the 'tHooft definition of
monopoles, where original gauge fields are assumed regular
and the additional singular gauge transformation leads to a
line singularity and monopole.

Note:
0uJ0 = Okt = 0,0, =0
>k 1 >k
DuJy = DuD,GY, = 2[D,, DG,
1g
= ZerupolGuu Gpo) =0
DyJy — 0., = —iglA,,J,)
= €upo|Ap, 0,0,A,]
1
— _§€uupoal/au [Am Ao]

/I: b S b S
0u0,G 0, = 0uDu;) = 0

VNABI satify also Abelian conservation rule!
N? — 1 conserved charges exist in SU(N)



Each N? — 1 current satisfies the Dirac
quantization condition:

Consider a space-time point O where VNABI# 0 and 3d
sphere V' with a radius r from O.

Note k4 = J4 is given by the total derivative. When r — o0,
the non-Abelian field strength should vanish since otherwise
the action diverges. Then the magnetic charge could be

evaluated by a gauge field described by a pure gauge
A, =9Q0,01/ig.

SU(2)

1
gt = /d?’wkff:/d?’wie@pgay(@pAg—agAz)
1%

1
— /V d3x%eijk&;Trad(8jQ5’kQT—8k98jQT
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A% g
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¢ is a Higgs-like field defined as ¢ = ¢iot = Qo



$? = 1 is shown easily.

Since the field & is a single-valued function, the integral is
given by the wrapping number n characterizing the
homotopy class of the mapping between the spheres
described by 2 = (¢1)2 + (¢%)2 + (#*)2 = 1 and OV = S
m2(S?%) = Z. Namely

glg=dmn. d=1,2,3

This is just the Dirac quantization condition. Note that the
minimal color electric charge in any color direction is g/2.



SU(3)
() is a 3 x 3 gauge transformation matrix of SU(3).:
Consider a magnetic charge in the A\! direction: Then

dh = | dand
%

1 ~ ~ ~
_ /((9 dQS%Gijkeabcgba jgbbakac,
v

where ¢ = ¢\t = QALQT.

-

N

|
o O
o = O
o O O

This gives us

The subspace composed of (¢!, 2, $?) is a sphere S? and
the mapping is just like that in the case of color SU(2).

Hence

g}ng = 471n.



Proposal of a new color confinement scheme

Now new monopoles are found to exist in QCD as VNABI
coming from the line singularities of original gauge fields.

However the monopoles transform as an adjoint operator
having a color charge. Hence if all color components of the
monopole make condensation in the vacuum independently,
the electric color symmetry is broken spontaneously as well
as the color magnetic symmetry. This is contradictory to the
usual picture of color confinement where electric color
symmetry is not broken.

Note J,(x) can be diagonalized by a unitary matrix Vy(z):

Va(@) Ju(@) Vi (2) = Au(@),

where )\, () is the eigenvalue. Note in the continuum
space-time, the unitary matrix V;(z) does not depend on
the direction 1 of the current as shown by
Coleman-Mandula theorem.

S. Coleman and J. Mandula, P.R. 159 (1967) 1251.



Then one gets

O(x) = V](x)osVy(z)
Tu) = SA(@)2(),
d (@) = ) (k@) = (Aul2)>.

The color electrically charged part ®(x) and the
magnetically charged part A\, () are separated out. Also

0uTul) = 3(OA(@)2(x) + \ulr)0,2 ()
= 0.

Since ®(z)? =1,

DpAu(z) = —Au(2)®(2)0,P(z)
= 0.

The gauge-invariant eigenvalue A\, (z) also satisfies the
Abelian conservation rule.



It is possible to prove that

1 03
iequaan;u(I) = )‘u(x)ga
where
fin(x) = 0,4, (z) — 0,4, ()
)
Al = VyAV] —ga“vdvj,
B Allfaa
-2
Namely,
1 ) /1,2 _
o Curpo vfos (@) () = 0
1 /
§€MVPO'8pr?:7(x)(x) = Au(z).

The singularity appears only in the diagonal component of
the gauge field A/,



If one considers for large r

Al = Q9,01/ig,
o = oot = Q530"

one can easily see that the magnetic charge from the
eigenvalue )\, also satisfies the Dirac quantization condition
ggm = 4mn.

The condensation of the gauge-invariant magnetic currents

A, does not give rise to a spontaneous breaking of the color
electric symmetry.

Condensation of the color invariant magnetic
currents A, may be a key mechanism of the
physical confining vacuum.



4. Monopole dominance and the dual
Meissner effect
T. Suzuki et al., P.R. D77 (2008) 034502, T. Suzuki et al., P.R. D80

(2009) 054504

Define each color-component of lattice VNABI as a lattice
monopole following DeGrand and Toussaint without any
additional gauge-fixing

0,(s) = arctan(UZ(s)/US(s)) (10,(s)] <7, a=1,2,3)
0,(5) = 0,0(s) = 0,00(s) = 0% (s) + 2mnl () (1Tl < )
Ki(s) = —(1/2)cposn@alit (s + 1) = (1/2)pass B’ (5 + i)

4 ﬂux:fm,a2 = gm

2
6“\/ = gi fp‘v = ZJm

2 integer n,,,,:
/[ 7 . Dirac quantization

a condition

i Dirac string

Monopole

Abelian conservation rule: > (ka(s) — k(s —p)) =0

Gauge invariant eigenvalue: (), (s))? = DN (k2 (s))?

a=1



Lattice monopole is not gauge-covariant and various
techniques smoothing the vacuum are necessary to extract
physical moopole in general. But evaluating correlations
between a gauge-invariant quantities and monopoles can be
done without any gauge-fixing. Note Elitzer's theorem
saying that only the gauge-invariant part is extracted by
Monte-Carlo average of gauge-variant quantities.

S. Elitzur, P.R. D12 (1975) 3978.

Monopole dominance of the string tension

Vinon(R) = = 1(Pan(0) P ()
Ni—1
Pp = exp[i Z 94(5 + ]4;21)] — Pph + Pron
k=0
Ny—1
Pon=exp{—i Y > D(s+ki—5)9,0,(s")},
k=0 s’
Ny—1
Ppon = exp{—2mi Z Z D(s+ ki — )0 n,u(s)}

k=0 s/



Take average over 4000 ~ 7000 thermalized vacua and their
random gauge-transformed vacua 1000 ~ 4000 for each one
(totally around 10 million vacua).

Table 1: Best fitted values of the string tension oa?, the Coulombic

coefficient ¢, and the constant pa for the potentials Vya, Va, Vinon and
Voh.

243 x 4 oa’ c pa FR(R/a) XQ/Ndf
WNA 0.181(8) 0.25(15) 0.54(7) 3.9-85 1.00
Vi 0.183(8) 0.20(15) 0.98(7) 3.9-8.2 1.00
Vinon 0.183(6) 0.25(11) 1.31(5) 3.9-6.7 0.98
Voh —21) x 10~% | 0.010(1) 0.48(1) 49-9.4 1.02
243 x 6 oa’ c pa FR(R/a) X2/Ndf
VNA 0.072(3) 0.49(6) 0.53(3) 4.0-9.0 0.99
Vi 0.073(4) 0.41(7) 1.09(3) 3.7 - 10.9 1.00
Vinon 0.073(4) 0.44(10) 1.41(4) 3.9-93 1.00
Vou —1.73) x 10~% | 0.0131(1) | 04717(3) | 5.1-94 0.99
36% x 6 oa’ c pa FR(R/a) XZ/Ndf
VNA 0.072(3 0.48(9) 053(3) | 46-121 1.03
Vi 0.073(2) 0.47(6) 1.10(2) 43-11.2 1.03
Vmon 0.073(3) 0.46(7) 1.43(3) 40-11.8 1.01
Voh —1.0(1) x 1074 | 0.0132(1) | 04770(2) | 6.4-115 1.03
243 x 8 oa’ c pa FR(R/a) X2/Ndf
VA 0.0415(9) 0.47(2) 0.46(8) 41-7.8 0.99
Vi 0.041(2) 0.47(6) 1.10(3) 45-85 1.00
Vinon 0.043(3) 0.37(4) 1.39(2) 21-75 0.99
Von —6.0(3) x 107° | 0.0059(3) | 0.46649(6) | 7.7-115 1.02




Abelian dual Meisnner effect
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Figure 3: A schematic figure for the connected correlation
function.
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Figure 4: Definition of the cylindrical coordinate (r, ¢, z)
along the ¢-q axis.

(Tr [LW (R, T)L1c*O(r)])

DW= e w1

lwasaki gauge action at 8 = 1.10 and 1.28 on the 32%
lattice, and 8 = 1.40 on the 40* lattice.



1) Penetration length:
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Figure 5: The profile of the color-electric field E at 6 =1.40

2) The dual Ampere law
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Figure 6: Tests of the dual Ampere law at § = 1.28 for
W(R=5,T =05)



3) Coherence length and the Ginzburg-Landau parameter
Coherence length can be fixed from the correlation function
between the squared monopole density O(s) = k- (s) and

the Wilson loop

;Hu’f\\H'THH'THH"""HH‘H\\"’T\H\‘H"i

('05 Chernodub).
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1 w
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Figure 7: The profile of the squared monopole currents at
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Figure 8: The GL parameters v/2x = A/ as a function of
the lattice spacing a([53).



5. Existence of the continuum limit
Does the continuum limit of A, (s) exist?

The lattice vacuum is contaminated with large amount of
lattice artifact monopoles. To reduce lattice artifacts,
various techniques smoothing the vacuum are introduced.
1. Tadpole improved action:

1
S = 5251><1 — %ibgzsuz, Uug = (<§tTUpl>)1/4
pl rt

48%* at f =3.0~3.9 and 24* at B3 =3.0 ~ 3.7

2. Introduction of smooth gauge-fixings

1) Maximal center gauge: Maximization of
R=3,,(TU(s,m)* SUE) > Z(2

2) Direct Laplacian center gauge (DLCG)

3) Maximal Abelian Wilson loop gauge (AWL):
Maximization of R= > _ > . (cos(0},(s))

4) Maximal Abelian and U(1) Landau gauge (MAUL):
Maximization of R = 3",  Tr (agU(S, W)U (s, u)) o

Maximization of }__  cosf;(s) global color violating



Table 2: A typical example of monopole loop distributions (Loop
length (L) vs Loop number (No.)) on 24% lattice at 5 = 3.6.
a(B = 3.6) = 0.13(c,,/?), 24a(8 = 3.6) = 1.4fm

NGF MCG DLCG
L No L No L No
4 154 4 166 4 164
6 20 6 64 6 66
8 7 8 30 3 28
10 2 10 13 10 15
14 1 12 11 12 10
16 1 14 4 14 3
407824 1 16 5 16 6
18 1 18 2
22 2 20 1
24 2 22 1
28 1 24 2
30 1 26 3
32 1 30 1
34 2 36 1
36 1 44 1
44 1 48 1
46 1 54 1
48 1 58 1
58 1 124 1
124 1 1106 1
2254 1 1448 1
AWL MAUL [=1 MAUL [=3
L No L No L No
4 142 4 73 4 190
6 66 6 32 6 80
8 36 8 13 3 22
10 8 10 11 10 15
12 7 12 6 12 2
14 3 14 3 14 3
16 3 16 2 16 1
18 1 18 3 18 3
20 1 20 2 20 3
22 3 22 1 24 1
26 3 30 2 36 1
28 1 34 2 42 1
30 2 58 1 60 1
32 1 148 1 66 1
34 1 5188 1 146 1
40 1 318 1
46 1 722 1
58 1
120 1
308 1
1866 1




Study of the continuum limit based on the
blockspin transformation.

ex. n=3

3s 3s+2u S ETe
Figure 9: Blockspin definition of monopoles

Monopole is defined on a a® cube and the n-blocked monopole is
defined on a cube with a lattice spacing b = na

n—1
P (sn) = > ku(nsn+ (n— D+ i+ jp + 16)

i,j,1=0
ns, +(n—1)ia+i0+jp+16

s(n,i,j,1)



Consider a gauge-invariant density of the
n-blocked monopole:

S VL ()2
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Figure 10: Comparison of the VNABI (Abelian-like monopoles) densities
versus b = na(B) in MCG, AWL, DLCG and MAUL cases.
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Summary

1. Clear scaling behaviors are observed up to the
12-step blockspin transformations for
B =3.0~3.9. The density p(a(8),n) is a
function of b = na(pB) alone, i.e. p(b). n — oo
means a(8) — 0 for fixed b = na. Existence of
the continuum limit!

2. If the vacuum becomes smooth enough shown
here in MCG, DLCG, AWL, MAU1, the same
p(b) is obtained. Gauge independence!

This is as expected in the continuum limit.



6. Derivation of infrared effective monopole
action:

e S — /DU(S,,u)e_S(U)
X Ha(k (5) — e,u,p(,a ns (s + i)

Slk] = ZF(";)Si[k]

Inverse Monte-Carlo method:
("84 Swendsen, '94 Shiba-Suzuki)

Start from the vacuum ensemble {ki")(sn)} — Determine S[k"]
Assume S[k] = 320, F(i)Si(Q)(k):
8 = 5, ku(s)ku(s),
S = 35 (5) s+ 1)
S§3> = 3 us B ($)u(s +v),

10 T
13 IMAI+MA3 monopole s
2 2MA1+MA3 monopole

| 2MA1+MA3 and 3MCG 33 2MAI*MA3 monopole

814 23 OMA1+MA3 monopole
i& 63 2MA1+MA3 monopole

8 2MA1+MA3 monopole

123 2MA1+MA3 monopole
MCG all monopoles

F(1)

Self coupling F(1)




F(2)

T
13 IMAT+MA3 monopole -
23 2MA1+MA3 monopole 7
3 2MA1+MA3 monopole
{: ZMAL+MA3 and 3MCG 4 IMAT+MA3 monopole
6 2MA1+MA3 monopole
8 2MA1+MA3 monopole ——

123 2MA1+MA3 monopole
MCG all monopoles

Nearest-neighbor coupling F(2)

St R
=4 an @
0 1 1 1 1 I LY 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
b=a(B)
0.8 T \
13 MCG monopole U
0.7 - 2 MCG monopole
3 MCG monopole
0.6 - 4 MCG monopole
: 6 MCG monopole
8 MCG monopole —~
0.5 % 123 MCG monopole
E 0.4 i Next nearest-neighbor coupling F(5)
0.3 f
02 H
0.1+ Dt
0 ! ! r ﬁ& NN @ @ ! !
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Summary:

b=na(B)

1. F'(¢) (=1~ 10) are fixed very beautifully for
3.0<<39and 1 <n <12.

2. Scaling F(n,a(B))

= F'(b = na) Existence of

the continuum limit

3. Gauge independence of Zu,

{(A\u()?) in MCG,

DLCG, AWL, MAUL.



Comments:

1. S(k) :the continuum action, but still a lattice
action with a finite lattice spacing b. Hence the
Lorentz invariance is not apparently seen.

To derive the action in the continuum space-time
reproducing the same physics at the scale b is
desirable.

2. Using the 'Blocking from the continuum
method’ ('96 Bietenholz-Wiese, '99 Fujimoto et al.) 1t IS
possible when the monopole action is composed of
two-point interactions alone.

3. S(k) on b can be transformed into the action
of the string model.

4. Using the strong-coupling expansion of the
string model, we can evaluate non-perturbative
quantities like the string tension, the lowest scalar
glueball mass and the monopole density within
about 30% error coming from the simple 10
two-point monopole interactions assumption.



7. Outlook

What is 'BCS theory’ in QCD?

My answer:

It must be the dual Abelian Higgs model ( the
dual Ginburg-Landau model)!! in a general case
with ¢* interactions corresponding to the Abelian
eigenvalue magnetic currents A, (s) in SU2 and
A»%(s) in SU3. There are one (SU2) and three
complex scalar fields with a constraint. (SU3)

1 .
L(SU2) = —ZHfW + (8, + igmC.)x]° — A(|x|* — v?),

ext

H, = 0,C,—3,C,+ €wr / d* yni(n - 8)_ (x —vy)j,

Mass gap problem of YM thoery

To solve this problem, one has to take into account the
existence of line singularities [0,,, d,]A,(x) # 0 and
monopoles.



