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Introduction

The standard model of particle physics

Gauge group :SU(3) X SU(2) X U(1)
Matter content:

spinl /2 SU@3)e, SU2)L, U(1)y
quarks Q'=(ur, dp)" (3,2,1/6)
(x3 families) u'’y (3, 2,-2/3) spinl SU(3)¢,SU(2),U(1)y
di, (3,1, 1/3) gluon g (8,1, 0)
leptons L' =(v, ep)" (1,2, -1/2) W bosons | W+ W° (1, 3, 0)
(x3 families) e’ (1,1, 1) B boson B’ (1,1, 0)
spin0
Higgs H=(H™*, H) (1,2,-1/2)
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Introduction

Problem:

No gravitational interaction in the standard model

String theory

A good candidate for the unified theory of the gauge and
gravitational interactions

Closed string Q
- Graviton
Open string
A Ramond-Ramond field: C; 4

Dp-brane - Gauge fields °



(Perturbative) superstring theory requires the extra 6
dimension.

10=4+6

p
- - ‘
";‘6
g 7

6D Calabi-Yau (CY)Manifold

OThe geometric parameters of extra 6D dimensions
—4D scalar fields (called moduli)

OuUnless they are stabilized, it will lead to unobserved fifth forces.

(OStabilization of the extra dimensional space
- Moduli stabilization (creating a moduli potential)




Moduli are ubiquitous in string compactifications

O Good candidate of inflaton

O Supersymmetry breaking

O Moduli cosmology
Moduli interact with matter fields gravitationally.
—Such long-lived particles affects the cosmology

of the early Universe
(e.g., dark matter abundance, baryon asymmetry,...)



O Yukawa couplings

In string theory as well as the higher-dimensional theory,
Yukawa couplings =~ Overlap integral of matter wave
functions

Ayukawa = Yoy
CY

Yukawa couplings depend on the moduli fields.

From such phenomenological points of view,
it is quite important to discuss the moduli dynamics.



Two types of moduli fields (4D massless scalar fields):

(PDClosed string moduli

] . (Imt) = g; 1!
I) D|Iaton (T ) gs: string coupling

ii) Kdhler moduli ( 0g;;)
Size of the internal cycles

iii) Complex structure moduli (6 g
Shape




Two types of moduli fields (4D massless scalar fields):

Dp-bry

Gauge fields: 4, u=0,1,..p)

-

/ >xa

Scalar field : ®, (a=p+1,..,9)




Two types of moduli fields (4D massless scalar fields):

Dp-brane 20pen string moduli
Ai (i = 4,5,..,p)

> Cba (a=p+1,..,9)

Gauge fields: 4, u=0,1,..p)

-

/ >xa

Scalar field : ®, (a=p+1,..,9)




Two types of moduli fields (4D massless scalar fields):
(PDClosed string moduli

(20pen string moduli

Moduli dynamics will give significant effects to our Universe.
In this talk, we consider the stabilization of both the

open and closed string moduli based on F-theory
(“non-perturbative” description of 1B string).
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Flux compactification

Flux compactification is useful to stabilize the moduli fields.

Let us consider higher-dimensional Maxwell’s theory on RY3 x M,

J Fp A\ % Fp
RL3xM

When then exists a magnetic flux F, in a cycle Z,, of M

pr=nEZ
p>

p

It generates a potential depending on the metric of extra dimension.



Flux compactification in type IIB string on CY

Type IIB string on RY3 x CY,

f G3 A* G4
R13xCY

The fluxes on the three-cycle of CY (X3) generate the moduli potential,

Lo L
) )

G3 = F3 —tH; :three-form

!/
3 3
In the 4D low-energy effective action, |
Flux-induced superpotential: [ Gukov-vafa-witten '99]
W(t, z) = f G3 A Q(2)
CY

Q(z) :hol. (3,0) form of CY
Z: Complex structure moduli



Low-energy effective action described by 4D N=1 SUGRA

K=—-In(if QAQ) —In(=i(zr — 7)) — 2In(V(T))

W(z,z) = fCY G3(t) A QU(2) Q(z) :hol.(3,0) form of CY
V(T) : CYVolume

z KUD,WD;W + (K" KzK7 — 3)|W|?

V =ekK
1,J=1,z = OI DI — al + KI
No-scale structure KI — 6,1(

in the reduced Planck unit M,; = 1

Dilaton and complex structure moduli are stabilized at

D,W =D,W =0



Low-energy effective action described by 4D N=1 SUGRA

K=—-In(if QAQ) —In(=i(zr — 7)) — 2In(V(T))

W(z,z) = fCY G3(t) A QU(2) Q(z) :hol.(3,0) form of CY
V(T) : CYVolume

V= €K< z KU_DIWD]_W + (KTTKT F 3)|W|2 >
= -0 D, =0, +K
b=z No—scalem ! ! !

KI — aIK
in the reduced Planck unit M,; = 1

Dilaton and complex structure moduli are stabilized at

D,W =D,W =0



Dilaton and complex structure moduli are stabilized at

D.W =D,W =0

W(t,z) = j G3(1t) AQ(2)

CY

(r3-fluxes are constrained as the imaginary self-dual fluxes:
Gz =1 *¢ G3

. Gz = F3 —TtH; :three-form
Tadpole condition for Cy:

f H3/\F3+QD3=O
CY



Dilaton and complex structure moduli are stabilized at

D.W =D,W =0

W(t,z) = j G3(1t) AQ(2)

CY

(r3-fluxes are constrained as the imaginary self-dual fluxes:

G3 =1 *¢ G3

. Gz = F3 —TtH; :three-form
Tadpole condition for Cy:

e ()

H3/\F3+QD3 =O
CY



How do we compute the flux-induced superpotential?

W: Gg/\Q
CY

G3 = F3 —TtH; :three-form

Let us expand G5 and Q on the integral symplectic basis (a,, £¢) of
H3(CY,2), [agABP =68k
a,b=01,.., h%1
F Hj
G3 = (Maaa — ]\lgﬁa) — T(Maaa — ~a18a)

Quantized fluxes
O=X%, — F,[¢ OF
Fo =5xa

Period vector :

[t = UA Q,Laﬂ) = (X% F)

(A,, B%: basis of 3-cycles in CY)




How do we compute the flux-induced superpotential?

W=| GAra=(nf —1nfl) II
CY

Gz = F3 — TtH; :three-form

Let us expand G5 and Q on the integral symplectic basis (a,, £¢) of
H3(CY,2), [agABP =68k
a,b=01,.., h%1
F Hj
G3 = (Maaa — ]\lgﬁa) — T(Maaa — ~a18a)

Quantized fluxes
O=X%, — F,[¢ OF
Fo =5xa

Period vector :

[t = UA Q,Laﬂ) = (X% F)

(A,, B%: basis of 3-cycles in CY)




Period integral

[t = (Lan,fBaﬂ) = (X% F)

can be exactly calculated by solving the Picard-Fuchs (PF) equation.

For mirror quintic CY (h** = 1)
5

P(y) = z x? — 1x1X;X3X4%s = 0 in an orbifold of CP*

i=1 (x1, X2, X3, X4, X5) ~ (Ax1, Axp, Ax3, Axy, AxX5)
PF equation: Complex structure moduli
z = (5¢)7°
4
d 5z15 d+1 5 d+2 5 d+3 5 d+4 [I=0
Zdz ‘ Zdz ZdZ ZdZ Zdz B
a f -
= P A: 4-form in CP*
P=0 P(lp) !

[Candelas et al, "91]



Period integral
[t = (f Q,f Q) = (X% E)
A, “/Ba

can be exactly calculated by solving the Picard-Fuchs (PF) equation.

For mirror quintic CY (h** = 1)
5

P(y) = z x? — 1x1X;X3%4%s = 0 in an orbifold of CP*

i=1 (X1, X9, X3, X4, X5) ~ (AX1, AXo, AX3, AXy, AX5)

PF equation: Complex structure moduli

z=(5¢)7°
4
d 5 5d+1 5d+2 5d+3 5d+4 =0
Zdz ‘ Zdz ZdZ ZdZ Zdz B

E.g., in the large complex structure limity > 1 (z < 1),

51n%(2)
HOzl_I_... HZ 25(27-[1:)2_'_...
_In(2) M = 2°@
1 = + 37 6 (2mi)3 [Candelas et al, ’91]
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4D effective potential:

W=| GAra=(nf—1nfl) I
CY
K = —In(I;ZYI;) — In(—i(r — ©)) — 2In(V(T))
¥4 Symplectic matrix

—> Stabilization of complex structure moduli and dilaton

OPrevious mirror quintic CY can be engineered by 2D N=(2,2) [Witten 93]
U(1) Gauged Linear Sigma Model with 6 chiral superfields ®q; 5

U(1) charges (Toric charges)
l — (lo, ll’ lz, l3, l4, l5) — (—5,1,1,1,1,1 )

O Picard-Fuchs operator:

l; —1;
1 0 0
D=ao™| Myso| 7| —Miy<o| 35— z = (1) a)
l l
[

Hosono-Klemm-Theisen-Yau, ‘93]



Comment on the Kahler Moduli stabilization

The remaining Kahler moduli (T') can be stabilized by the non-
perturbative effects.

W =< Wflux > +A€_aT

A, a : Constants

OKKLT scenario (< Wayx > < 1 ) [Kachru-Kallosh-Linde-Trivedi ‘03]
OLARGE volume scenario (< wyy >~ 0(1))

[Balasubramanian-Berqund-ConIon-Quevedo ‘05

De Sitter vacua can be realized by introducing the anti D3-branes.

ORadiative moduli stabilization scenario
[Kobayashi—Omoto—Otsu ka-Tatsuishi "18]
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Type 1IB action in Einstein frame(with other fields set to 0):

P v |07 |?
IIB — \/g Z(Im T)Z
where T = (C, + i€_¢, ((Imt) = g51, gs: string coupling)
This action is invariant under SL(2, Z):

T-o71+1, 1o -1/t



Type 1IB action in Einstein frame(with other fields set to 0):

P v |0T|?
IIB — \/g Z(Im T)Z
where T = (C, + i€_¢, ((Imt) = g51, gs: string coupling)
This action is invariant under SL(2, Z):

T-o71+1, 1o -1/t

Interpret T as complex structure of auxiliary torus T2 vafa-sg)




F-theory is defined in “12”D spacetime

12=4+8

7(u): dilaton
gs =(Imt >_1
gs: string coupling

8D CY manifold

String coupling can be takenas g, = (Im7)~1 > 1.
F-theory = “non-perturbative” description of type IIB



D7-brane looks like “cosmic string” in ambient space

(Greene, Shapere, Vafa, Yau, ‘89)

Metric:
7 u0®
ds?, = —dt? + Z dx? + H(u, @) dudi —)—
i=1 ;
D7
D7-brane has magnetic charge under C, D7-brane

1= f dCO — Co(uezni) — Co(U,)
u



D7-brane looks like “cosmic string” in ambient space

(Greene, Shapere, Vafa, Yau, ‘89)

Metric:

7 u0®
ds?, = —dt? + Z dx? + H(u, @) dudi

=1
D7

D7-brane has magnetic charge under C,

1= f dCO — Co(uezni) — Co(U,)
u

CO —_ ReT

1
Near D7-brane : 7 =~ 2—mln(u — Ugp)

D7-brane

D7-brane location : 7(uy) — ico
(T? degenerate at u = u,.)



D7-brane looks like “cosmic string” in ambient space

(Greene, Shapere, Vafa, Yau, ‘89)

Metric:

UO®
ds?, = —dt? + Z dx? + H(u, @) dudi
i=1
D7

D7-brane has magnetic charge under C,

1= f dCO — Co(uezni) — Co(U)
u

CO —_ ReT

Near D7-brane : 7 =~ 2—mln(u Up)

D7-brane location : T(uy) — i
(T? degenerate at u = u,.)

8D CY manifold



F-theory is defined in “12”D spacetime

<5><::%)

12=4+38

7(u): dilaton

gs =({Im7t >_1
gs: string coupling

?BD Kahler
. manifold

Elliptically fibered
CY fourfold (CY4)

(1D7-branes exist at the singular limit of torus

(@String coupling > 1
(“Non-perturbative” description of type IIB superstring)

(3 Both open and closed string moduli are involved.
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Brane Superpotential:

Whrane = f ()
[,0I'=C

For branes wrapping on the whole CY, open string partition function is
given by holomorphic Chern-Simons theory [Witten ‘92]:

_ 2
W=| QATIANIA+ZANANA]
CY

Lower dimensional branes wrapping on holomorphic submanifold C

can be obtained by dimensional reduction A — ¢ [Aganagic-Vafa ‘00]
r

Worane(W, ¢) = fF,6F=C ()

CY




@ Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in CP*) r

P(Y) = i5=1xi5 — dYx1 X3 X3 X4 X5 = 0

Let us consider holomorphic 2-cycles
where the brane wrapsimorrison-walcher '07] Mirror Quintic CY3

Ciixy +x, =0,X3+%x4 =0,
W:fg
I

x& +/5Pxx3 =0
No moduli dependence at fixed C..!
Brane deformation: oI into (generically non-holomorphic) curve
surrounded by a holomorphic divisor




@ Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in CP*) r

P(Y) = i5=1xi5 — dYx1 X3 X3 X4 X5 = 0

Continuous deformation of C.:
(Hol. divisor defined by a degree 4 polynomial) Mirror Quintic CY3

Q(¢) — xé — 5¢X1XZX3X4 =0

Brane deformation

Brane superpotential:

Whorane (W, = | QY, —
o rane (U ) fr W, b) fr s

which is related to D7-brane with magnetic flux F

[Grimm-Ha-Klemm-Klevers '09]

FAQ



Toric charges of the previous system,

l =(-511,1,1,1;0,0) l: Quintic CY3
I=(-1,0,0,00,1;1,—1) [": brane deformation

The period integral

Hi — f .Q.(l/), (p) [Jockers-Soroush '08]
I

can be computed by solving the coriresponding Picard-Fuchs equation.

OBrane and geometry cannot be distinguished.

OThe above system is a noncompact CY4.
(CY3 fibered over C )

OCompactification C —— CP! leads to a compact CYA4.



CY3+brane =2 CY4 without brane

Oln the toric language, the previous system corresponds to
A-model : Quintic CY3 over CP1

[Berglund-Mayr ‘98,
Grimm-Ha-Klemm-Klevers '09,
Jockers-Mayr-Walcher '09]

ll — (_4‘,0,1,1,1,1, _11 _1'0) ll + 12: Quintic CY3

l, =(-1,1,0,0,0,0,1,—1,0) l,: brane deformation
l; = (0,-2,0,0,0,0,0,1,1) [3: base CP*

B-model : Elliptically fibered CY4

[Berglund-Mayr "98]



@ Fr-theory compactification on elliptically fibered CY4

I, = (-4,0,1,1,1,1,—1,—1,0)
l, = (-1,1,0,0,0,0,1,—1,0)
I, = (0,—2,0,0,0,0,0,1,1)

[, + L,: Quintic CY3
[,: brane deformation
l5: base CP?

OPeriod vector of CY4 in the large complex structure limit

I1; = fyiQ : Fourfold periods

Z: Quintic modulus
S: Dilaton

Z41: Open string modulus

¥* : Homology basis of HY (CY4, Z)

lel, HQIZ, ng—zl, H4:S,

5

II; =55z, 1l = §z2, I, = 2,2%, IIg = —5522 — =z
2 5 5 5!
Hg — —52:13, H10 = —623, H11 — 6523 —+ EZA — =




F-theory compactification on CY4

7(u):|dilaton ‘

3D Kahler

i manifold

CY3+branes Elliptically fibered CY4

Complex structure moduli of CY3

Dilaton Complex structure moduli of CY4
Open string (position) moduli
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F-theory on elliptically fibered CY4 4D N=1 supergravity

In 4D N=1 SUGRA

Kahler potential:

K = —lnj OANQ—2InV
CY4
= —In(I;n"1l;) — 2In V
Superpotential:

W = G4/\Q=nl-77ijl'[j

CY4 [Gukov-Vafa-Witten, ’99]

I; = fyiQ : Fourfold periods

Scalar potential:
> n; = fyi G4: Quantized four-form fluxes

— ,K 1] _ .
Vi=e <2K DIWDW ) y' : Homology basis of H!(CY4, Z)
n*: Topological intersection matrix

IV : Volume of 3D Kahler base

Lj




Flux compactification in F-theory on CY4

O G5-flux superpotential + brane superpotential in type IIB

=G4 -flux superpotential in F-theory (Grimm-Ha-Klemm-Klevers ‘09, ..]

W= G4/\.Q.
CY4

Olmaginary self-dual three-form fluxes in type 1B
=correspond to self-dual G,-fluxes [Gukov-Vafa-Witten '99]

Gy =% Gy

[Becker-Becker 96]

O Tadpole conditions | |
[Sethi-Vafa-Witten ‘96]

X 1

—=nD3+—f Gy N\ Gy
24 2 CY 4 X: Euler number of CY4
an:#Of D3



@ r-theory compactification on elliptically fibered CY4

z: Quintic modulus M =1, [y =2, I = —2,, I, = S,
§: Dilaton II; =55z, 1l = gzz, II;, = sz, IIg = —;S% — gzg,
z41: Open string modulus 9 5 5 5 1

. Hg = ——Z%, HlO = ——23, Hll = —SZS + —Z4 — —Zil,
n;: Quantized fluxes 3 6 6 12 6
Kahler potential:

_ 51 . ' 1 5

K=—-In[-i(S—8)] —In [é(z —-2z)° + S i 5 (—g(zl — ) + E(z — E)‘lj] —2InV

NLO in g correction

Superpotential:

2\ 5 5 6 2 3 2

2ns . D 5 1
- Tz‘f + ny (6523 + 524 — 62?)

5 2ng 5 5 , 5 O
W = ni1 +n10S +ngz +neSz + 5 (E + ﬁ) R e no <—Sz‘2 .h —z3> — N9z — Ez%




@ Fr-theory compactification on elliptically fibered CY4

z: Quintic modulus M =1, [y =2, I = —2,, I, = S,
S: Dilaton II; = 55z, 1l = gzz, II; = 227, Ty = —;S% — gzg,
Z1: Open string modulus 9 5 5 5 1
. Hg = ——Z%, HlO = ——23, Hll = —SZS + —Z4 — —Zil,
n;: Quantized fluxes 3 6 6 12 6
Kahler potential:
— 5Y) . i 1 D
K=—-In[—i(8—=8)] —In|—(z—2)° —(—=(zn—2)'+—==-2)"]| -2V
~i(s - 5)] ~In | 5= 9 H o (~5 (1 =)' + 13- j] 0
NLO in g, correction
Superpotential:
5 2ng
W =nn +n652+§<%+%>22 —%
5t 1
+ 1 (6523 + 524 - 62?)
The self-dual G, fluxes




@ Vacuum structure of F-theory

As a consequence of the self-dual condition to G, fluxes,
all the moduli fields are stabilized at

z: Quintic modulus

S: Dilaton

z41: Open string modulus
n;: Quantized fluxes

DsW = D,W =D, W = 0

VEVS: Rez — RGZl — ReS = O
T — (67?,11 ) e 2\/n_6 ’
By (8ng(ns + ng) — bn2)1/4

[ 307111 L A/ 7
e (877,6(

n ns + ng) — dnz)l/4’

1/4
S — 67211 ns
5?11 1/?7,6(8726(715 -+ n6) — 5%%)1/4




@ Vacuum structure of F-theory

Although the fluxes are constrained by the tadpole condition,

gyt [ Gono
24_nD3 ch44 4

x=1860: Euler number of CY4
Np3: # of D3

we find the consistent F-theory vacuum, e.g.,
ny = 1,715 — 15:77/6 — 10,7’L7 — 2,7111 = 28

nps — 0
All the moduli fields can be stabilized around the LCS point of CY
fourfold

Rez = Rez; = ReS =0,
Imz ~ 2.28, Imz; ~1.14, ImS ~ 1.71

The masses of all the moduli fields are positive definite.



Comment on other models in F-theory on CY4

OThe orientifold limit of F-theory
[Dasgupta-Rajesh-Sethi ‘99, Denef-Douglas-Florea-Grassi-Kachru ‘05]

(OK3 X K3 background [Berglund-Mayr ‘13]

OkElliptically fibered CY4 in the large complex structure limit
[Honma-Otsuka ‘17]




Conclusion

OMirror symmetry techniques can be applied to the F-theory
compactifications.

OWe explicitly demonstrate the moduli stabilization
around the large complex structure point of the F-theory fourfold.

OAIll the complex structure moduli can be stabilized at the Minkowski
minimum.

Discussion

OAQuantum corrections to the moduli potential
OOther CY4

OParticle spectra in global F-theory models
OMHeterotic/F-theory duality



