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Introduction

The standard model of particle physics

Gauge group：SU(3)×SU(2) ×U(1)
Matter content：

3



Introduction

Problem:

String theory
A good candidate for the unified theory of the gauge and 
gravitational interactions

No gravitational interaction in the standard model

4
Dp-brane

Graviton

Ramond-Ramond field: 𝐶𝑝+1

Closed string



Introduction

Problem:

String theory
A good candidate for the unified theory of the gauge and 
gravitational interactions

No gravitational interaction in the standard model

5
Dp-brane

Graviton

Ramond-Ramond field: 𝐶𝑝+1

Gauge fields

Closed string

Open string



(Perturbative) superstring theory requires the extra 6 
dimension.

１０＝４＋６

○The geometric parameters of extra 6D dimensions
4D scalar fields (called moduli)

○Unless they are stabilized, it will lead to unobserved fifth forces.

○Stabilization of the extra dimensional space
Moduli stabilization (creating a moduli potential)

6D Calabi-Yau (CY)Manifold

𝑅𝑖𝑗 = 0



Moduli are ubiquitous in string compactifications

○ Good candidate of inflaton

○ Supersymmetry breaking

○Moduli cosmology
Moduli interact with matter fields gravitationally.

Such long-lived particles affects the cosmology 
of the early Universe

(e.g., dark matter abundance, baryon asymmetry,…)



○ Yukawa couplings

In string theory as well as the higher-dimensional theory,
Yukawa couplings ≃ Overlap integral of matter wave 
functions

𝜆Yukawa = න
𝐶𝑌

𝜓𝜙𝜓

Yukawa couplings depend on the moduli fields.

From such phenomenological points of view,
it is quite important to discuss the moduli dynamics.



Two types of moduli fields (4D massless scalar fields)：

①Closed string moduli

i)    Dilaton (   )

ii)  Kähler moduli ( 𝛿𝑔𝑖𝑗 ̅) 

Size of the internal cycles 

iii) Complex structure moduli (𝛿𝑔𝑖 ̅𝑗 ̅) 

Shape 

〈Im𝜏〉 = 𝑔𝑠
−1

𝑔𝑠: string coupling
𝜏



Two types of moduli fields (4D massless scalar fields)：

(𝜇 = 0,1, … 𝑝)

Dp-brane

Scalar field  : Φ𝑎

Gauge fields: 𝐴𝜇

𝑥𝑎

(𝑎 = 𝑝 + 1, … , 9)



Two types of moduli fields (4D massless scalar fields)：

(𝜇 = 0,1, … 𝑝)

Dp-brane

Scalar field  : Φ𝑎

Gauge fields: 𝐴𝜇

𝑥𝑎

(𝑎 = 𝑝 + 1, … , 9)

②Open string moduli
𝐴𝑖 (𝑖 = 4,5, . . , 𝑝)
Φ𝑎 (𝑎 = 𝑝 + 1, … , 9)



Two types of moduli fields (4D massless scalar fields)：

①Closed string moduli
②Open string moduli

Moduli dynamics will give significant effects to our Universe.

In this talk, we consider the stabilization of both the 
open and closed string moduli based on F-theory
(“non-perturbative” description of IIB string).
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Flux compactification is useful to stabilize the moduli fields. 

Let us consider higher-dimensional Maxwell’s theory on 𝑅1,3 × 𝑀,

න
𝑅1,3×𝑀

𝐹𝑝 ∧∗ 𝐹𝑝

When then exists a magnetic flux 𝐹𝑝 in a cycle Σ𝑝 of 𝑀

It generates a potential depending on the metric of extra dimension.

Flux compactification

14

න
Σ𝑝

𝐹𝑝 = 𝑛 ∈ 𝑍



Type IIB string on 𝑅1,3 × CY , 

The fluxes on the three-cycle of CY (Σ3) generate the moduli potential,

In the 4D low-energy effective action,
Flux-induced superpotential:

Flux compactification in type IIB string on CY

15

න
𝑅1,3×CY

𝐺3 ∧∗ 𝐺3

𝐺3 = 𝐹3 − 𝜏𝐻3 : three-form

Ω(𝑧) : hol. (3,0) form of CY
𝑧: Complex structure moduli

න
Σ3

𝐹3

𝑊 𝜏, 𝑧 = න
CY

𝐺3 ∧ Ω 𝑧

[Gukov-Vafa-Witten ’99]

න
Σ3

′
H3



Low-energy effective action described by 4D N=1 SUGRA

𝐾 = − ln 𝑖∫ Ω ∧ ഥΩ − ln −𝑖 𝜏 − ̅𝜏 − 2 ln(𝑉(𝑇))

𝑊 𝜏, 𝑧 = ∫CY
𝐺3 𝜏 ∧ Ω 𝑧

𝑉 = 𝑒𝐾
ቍቌ ෍

𝐼,𝐽=𝜏,𝑧

𝐾𝐼 ̅𝐽𝐷𝐼𝑊𝐷 ̅𝐽𝑊 + (𝐾𝑇 ത𝑇𝐾𝑇𝐾 ത𝑇 − 3) 𝑊 2

Dilaton and complex structure moduli are stabilized at

𝐷𝜏𝑊 = 𝐷𝑧𝑊 = 0
16

𝐷𝐼 = 𝜕𝐼 + 𝐾𝐼

𝐾𝐼 = 𝜕𝐼𝐾
= 𝟎

No-scale structure

Ω(𝑧) : hol. (3,0) form of CY
𝑉(𝑇) :  CY Volume

in the reduced Planck unit 𝑀pl = 1
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Dilaton and complex structure moduli are stabilized at

𝐷𝜏𝑊 = 𝐷𝑧𝑊 = 0

𝐺3-fluxes are constrained as the imaginary self-dual fluxes:

𝐺3 = 𝑖 ∗6 𝐺3

Tadpole condition for 𝐶4:

න
𝐶𝑌

𝐻3 ∧ 𝐹3 + 𝑄𝐷3 = 0

18

𝑊 𝜏, 𝑧 = න
CY

𝐺3 𝜏 ∧ Ω 𝑧

𝐺3 = 𝐹3 − 𝜏𝐻3 : three-form
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𝑊 𝜏, 𝑧 = න
CY

𝐺3 𝜏 ∧ Ω 𝑧

𝐺3 = 𝐹3 − 𝜏𝐻3 : three-form

න
10D

𝐶4 ∧ 𝐺3 ∧ 𝐺3 න 𝐶4



How do we compute the flux-induced superpotential?

Let us expand 𝐺3 and Ω on the integral symplectic basis (𝛼𝑎, 𝛽𝑎) of  
𝐻3(𝐶𝑌, 𝑍),

Period vector :

𝑊 = න
CY

𝐺3 ∧ Ω

𝐺3 = 𝐹3 − 𝜏𝐻3 : three-form

Π𝑡 = න
A𝑎

Ω , න
𝐵𝑎

Ω = (𝑋𝑎, 𝐹𝑎)

Ω = 𝑋𝑎𝛼𝑎 − 𝐹𝑎𝛽𝑎

𝐺3 = 𝑀𝑎𝛼𝑎 − 𝑁𝑎𝛽𝑎 − 𝜏( ෩𝑀𝑎𝛼𝑎 − ෩𝑁𝑎𝛽𝑎)

𝐹3
𝐻3

Quantized fluxes

(A𝑎, 𝐵𝑎: basis of 3-cycles in CY)

𝑎, 𝑏 = 0,1, … , ℎ2,1

∫ 𝛼𝑎 ∧ 𝛽𝑏 = 𝛿𝑎
𝑏

𝐹𝑎 =
𝜕𝐹

𝜕𝑋𝑎
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Period integral 

can be exactly calculated by solving the Picard-Fuchs (PF) equation.

For mirror quintic CY

PF equation:

൱൭𝑧
𝑑

𝑑𝑧

4

− 5𝑧 ൱൭5𝑧
𝑑

𝑑𝑧
+ 1 ൱൭5𝑧

𝑑

𝑑𝑧
+ 2 ൱൭5𝑧

𝑑

𝑑𝑧
+ 3 ൱൭5𝑧

𝑑

𝑑𝑧
+ 4 Π = 0

𝑧 ≡ 5𝜓 −5

Π𝑡 = න
A𝑎

Ω , න
𝐵𝑎

Ω = (𝑋𝑎, 𝐹𝑎)

𝑃 𝜓 = ෍

𝑖=1

5

𝑥𝑖
5 − 𝜓𝑥1𝑥2𝑥3𝑥4𝑥5 = 0 in an orbifold of 𝐶𝑃4

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∼ 𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, 𝜆𝑥4, 𝜆𝑥5

(ℎ2,1 = 1)

Complex structure moduli

Ω = න
P=0

Δ

𝑃(𝜓)

[Candelas et al, ’91]

Δ: 4-form in 𝐶𝑃4



Period integral 

can be exactly calculated by solving the Picard-Fuchs (PF) equation.

For mirror quintic CY

PF equation:

E.g., in the large complex structure limit 𝜓 ≫ 1 (𝑧 ≪ 1),

൱൭𝑧
𝑑
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4

− 5𝑧 ൱൭5𝑧
𝑑

𝑑𝑧
+ 1 ൱൭5𝑧

𝑑

𝑑𝑧
+ 2 ൱൭5𝑧

𝑑

𝑑𝑧
+ 3 ൱൭5𝑧

𝑑

𝑑𝑧
+ 4 Π = 0

𝑧 ≡ 5𝜓 −5

Π𝑡 = න
A𝑎

Ω , න
𝐵𝑎

Ω = (𝑋𝑎, 𝐹𝑎)

𝑃 𝜓 = ෍

𝑖=1

5

𝑥𝑖
5 − 𝜓𝑥1𝑥2𝑥3𝑥4𝑥5 = 0 in an orbifold of 𝐶𝑃4

Π0 ≃ 1 + ⋯ Π2 ≃
5

2

ln2 𝑧

2𝜋𝑖 2 + ⋯

Π3 ≃
5

6

ln3 𝑧

2𝜋𝑖 3
+ ⋯Π1 ≃

ln 𝑧

2𝜋𝑖
+ ⋯

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∼ 𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, 𝜆𝑥4, 𝜆𝑥5

[Candelas et al, ’91]

(ℎ2,1 = 1)

Complex structure moduli



○Previous mirror quintic CY can be engineered by 2D N=(2,2)
U(1) Gauged Linear Sigma Model with 6 chiral superfields Φ0,1,…,5

U(1) charges (Toric charges)

○ Picard-Fuchs operator:

𝑙 = (𝑙0, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5) = −5,1,1,1,1,1

[Witten ’93]

𝐾 = − ln Π𝑖Σ𝑖𝑗Π𝑗 − ln −𝑖 𝜏 − ̅𝜏 − 2 ln(𝑉(𝑇))

4D effective potential:

𝑊 = න
CY

𝐺3 ∧ Ω = 𝑛𝐹 − 𝜏𝑛𝐻 ⋅ Π

𝐷 = 𝑎0
−1 Π𝑙𝑖>0 ൱൭

𝜕

𝜕𝑎𝑖

𝑙𝑖

− Π𝑙𝑖<0 ൱൭
𝜕

𝜕𝑎𝑖

−𝑙𝑖

𝑧 ≡ −1 𝑙0Π𝑖=0
𝑛 𝑎𝑖

𝑙𝑖

[Hosono-Klemm-Theisen-Yau, ’93]

Σ𝑖𝑗: Symplectic matrix

 Stabilization of complex structure moduli and dilaton



The remaining Kähler moduli (𝑇) can be stabilized by the non-
perturbative effects.

𝑊 =< 𝑊flux > +𝐴𝑒−𝑎𝑇

○KKLT scenario (< 𝑊flux > ≪ 1 )
○LARGE volume scenario (< 𝑊flux >∼ 𝑂(1) )

De Sitter vacua can be realized by introducing the anti D3-branes.

○Radiative moduli stabilization scenario

Comment on the Kähler Moduli stabilization

25

[Kachru-Kallosh-Linde-Trivedi ’03]

[Balasubramanian-Berglund-Conlon-Quevedo ’05]

[Kobayashi-Omoto-Otsuka-Tatsuishi ’18]

𝐴, 𝑎 : Constants
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Type IIB action in Einstein frame(with other fields set to 0):

𝐿𝐼𝐼𝐵 = 𝑔 ൱൭𝑅 −
|𝜕𝜏|2

2(Im 𝜏)2

where  𝜏 = 𝐶0 + 𝑖𝑒−𝜙, (〈Im𝜏〉 = 𝑔𝑠
−1, 𝑔𝑠: string coupling)

This action is invariant under 𝑆𝐿 2, 𝑍 :

𝜏 → 𝜏 + 1 ,     𝜏 → −1/𝜏



Type IIB action in Einstein frame(with other fields set to 0):

𝐿𝐼𝐼𝐵 = 𝑔 ൱൭𝑅 −
|𝜕𝜏|2

2(Im 𝜏)2

where  𝜏 = 𝐶0 + 𝑖𝑒−𝜙, (〈Im𝜏〉 = 𝑔𝑠
−1, 𝑔𝑠: string coupling)

This action is invariant under 𝑆𝐿 2, 𝑍 :

𝜏 → 𝜏 + 1 ,     𝜏 → −1/𝜏

Interpret 𝜏 as complex structure of auxiliary torus 𝑇2
(Vafa ’96)

=

𝑻𝟐 𝝉

𝟏

𝝉 + 𝟏

𝟎



F-theory is defined in “12”D spacetime

１２＝４＋８

𝒖
𝝉(𝒖)

8D CY manifold

𝜏 𝑢 : dilaton
𝑔𝑠 = Im 𝜏 −1

𝑔𝑠: string coupling

6D manifold

String coupling can be taken as 𝑔𝑠 = Im 𝜏 −1 > 1.
F-theory = “non-perturbative” description of type IIB

𝒖𝟎



D7-brane looks like “cosmic string” in ambient space 
(Greene, Shapere, Vafa, Yau, ‘89)

D7-brane has magnetic charge under 𝐶0

1 = ර
𝑢=𝑢0

𝑑𝐶0 = 𝐶0 𝑢𝑒2𝜋𝑖 − 𝐶0 𝑢

D7-brane

𝝉

𝑢0

Metric:

𝑑𝑠10
2 = −𝑑𝑡2 + ෍

𝑖=1

7

𝑑𝑥𝑖
2 + 𝐻 𝑢, ത𝑢 𝑑𝑢𝑑 ത𝑢

D7
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F-theory is defined in “12”D spacetime

１２＝４＋８

①7-branes exist at the singular limit of torus

②String coupling > 1
(“Non-perturbative” description of type IIB superstring)

③ Both open and closed string moduli are involved.

𝒖
𝝉(𝒖)

Elliptically fibered 
CY fourfold (CY4)

𝜏 𝑢 : dilaton
𝑔𝑠 = Im 𝜏 −1

𝑔𝑠: string coupling

3D Kähler
manifold
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Brane Superpotential:

𝑊brane = න
Γ,𝜕Γ=C

Ω

For branes wrapping on the whole CY, open string partition function is 
given by holomorphic Chern-Simons theory [Witten ‘92]:

𝑊 = න
𝐶𝑌

Ω ∧ Tr[A ∧ 𝜕̅𝐴 +
2

3
𝐴 ∧ 𝐴 ∧ 𝐴]

Lower dimensional branes wrapping on holomorphic submanifold 𝐶
can be obtained by dimensional reduction 𝐴 → 𝜙 [Aganagic-Vafa ‘00]

𝑊brane(𝜓, 𝜙) = ∫Γ,𝜕Γ=C
Ω

𝐶

Γ

CY



● Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in 𝐶𝑃4)

𝑃 𝜓 = σ𝑖=1
5 𝑥𝑖

5 − 5𝜓𝑥1𝑥2 𝑥3 𝑥4 𝑥5 = 0

Let us consider holomorphic 2-cycles 
where the brane wraps[Morrison-Walcher ’07]

𝐶±: 𝑥1 + 𝑥2 = 0, x3 + x4 = 0,

𝑥5
2 ± 5𝜓𝑥1𝑥3 = 0

𝑊 = න
Γ

Ω

No moduli dependence at fixed 𝐶±!
Brane deformation： 𝜕Γ into (generically non-holomorphic) curve 
surrounded by a holomorphic divisor

𝐶+

𝐶−

Mirror Quintic CY3

Γ



● Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in 𝐶𝑃4)

𝑃 𝜓 = σ𝑖=1
5 𝑥𝑖

5 − 5𝜓𝑥1𝑥2 𝑥3 𝑥4 𝑥5 = 0

Continuous deformation of 𝐶±:
(Hol. divisor defined by a degree 4 polynomial)

Q 𝜙 = 𝑥5
4 − 5𝜙𝑥1𝑥2𝑥3𝑥4 = 0

Brane superpotential: 

𝑊brane 𝜓, 𝜙 = න
Γ

Ω(𝜓, 𝜙) = න
෡Γ,𝜕෡Γ=𝑄 𝜙

𝐹 ∧ Ω

which is related to D7-brane with magnetic flux 𝐹

𝐶+

𝐶−

Mirror Quintic CY3

Γ

Brane deformation

𝝓 = − 𝟓𝝍
𝝓 = + 𝟓𝝍

[Grimm-Ha-Klemm-Klevers ’09]



Toric charges of the previous system,

The period integral

can be computed by solving the corresponding Picard-Fuchs equation.

○Brane and geometry cannot be distinguished.

○The above system is a noncompact CY4.
(CY3 fibered over       )

○Compactification −→ 𝐶𝑃1 leads to a compact CY4.

[Jockers-Soroush ’08]Π𝑖 = න
Γ𝑖

Ω 𝜓, 𝜙

𝑙 = −5,1,1,1,1,1; 0,0

𝑙 ̃ = −1,0,0,0,0,1; 1, −1
𝑙: Quintic CY3 
𝑙 ̃: brane deformation 



○In the toric language, the previous system corresponds to
A-model : Quintic CY3 over 𝐶𝑃1

B-model : Elliptically fibered CY4

[Berglund-Mayr ‘98, 
Grimm-Ha-Klemm-Klevers ’09,
Jockers-Mayr-Walcher ’09]

𝑙1 = −4,0,1,1,1,1, −1, −1,0

𝑙2 = −1,1,0,0,0,0,1, −1,0

𝑙3 = 0, −2,0,0,0,0,0,1,1

𝑙1 + 𝑙2: Quintic CY3 
𝑙2: brane deformation 
𝑙3: base 𝐶𝑃1

CY3+brane CY4 without brane

[Berglund-Mayr ’98]



○Period vector of CY4 in the large complex structure limit

𝑙1 = −4,0,1,1,1,1, −1, −1,0

𝑙2 = −1,1,0,0,0,0,1, −1,0

𝑙3 = 0, −2,0,0,0,0,0,1,1

𝑙1 + 𝑙2: Quintic CY3 
𝑙2: brane deformation 
𝑙3: base 𝐶𝑃1

𝑧: Quintic modulus  
𝑆: Dilaton
𝑧1: Open string modulus

● F-theory compactification on elliptically fibered CY4

Π𝑖 = ∫𝛾𝑖 Ω : Fourfold periods

𝛾𝑖 : Homology basis of 𝐻4
𝐻 𝐶𝑌4, 𝒁



Elliptically fibered CY4

𝜏 𝑢 : dilaton

𝒖
𝝉(𝒖)

3D Kähler
manifold

𝒖𝟎

CY3+branes

F-theory compactification on CY4

Complex structure moduli of CY3 
Dilaton
Open string (position) moduli

Complex structure moduli of CY4



Outline

○Introduction

○ Flux compactification in type IIB string

○ Flux compactification in F-theory

i) F-theory
ii) Setup
iii) Flux compactification

○ Conclusion



F-theory on elliptically fibered CY4 4D N=1 supergravity

Kähler potential:

𝐾 = −ln න
CY4

Ω ∧ ഥΩ − 2ln 𝑉

= −ln(Π𝑖𝜂𝑖𝑗 ഥΠ𝑗) − 2ln 𝑉

Superpotential:

𝑊 = න
CY4

𝐺4 ∧ Ω = 𝑛𝑖𝜂𝑖𝑗Π𝑗

Π𝑖 = ∫𝛾𝑖 Ω : Fourfold periods

𝑛𝑖 = ∫𝛾𝑖 𝐺4: Quantized four-form fluxes

𝛾𝑖 : Homology basis of 𝐻4
𝐻 𝐶𝑌4, 𝒁

𝜂𝑖𝑗: Topological intersection matrix
𝑉 :  Volume of 3D Kähler base

c

In 4D N=1 SUGRA

[Gukov-Vafa-Witten, ’99]

𝑉 = 𝑒𝐾
ቍቌ෍

𝐼,𝐽

𝐾𝐼 ̅𝐽𝐷𝐼𝑊𝐷 ̅𝐽𝑊

Scalar potential:

c



○ 𝐺3-flux superpotential + brane superpotential in type IIB 
=𝐺4-flux superpotential in F-theory

𝑊 = න
CY4

𝐺4 ∧ Ω

○Imaginary self-dual three-form fluxes in type IIB
=correspond to self-dual 𝐺4-fluxes 

𝐺4 =∗ 𝐺4

○ Tadpole conditions
𝜒

24
= 𝑛𝐷3 +

1

2
න

𝐶𝑌4

𝐺4 ∧ 𝐺4

[Grimm-Ha-Klemm-Klevers ’09,…]

Flux compactification in F-theory on CY4

[Gukov-Vafa-Witten ’99]

𝜒: Euler number of CY4
𝑛𝐷3: # of D3

[Sethi-Vafa-Witten ‘96]

[Becker-Becker ‘96]



● F-theory compactification on elliptically fibered CY4

𝑧: Quintic modulus  

𝑆: Dilaton

𝑧1: Open string modulus

𝑛𝑖: Quantized fluxes

Kähler potential:

Superpotential:

NLO in 𝑔𝑠 correction



● F-theory compactification on elliptically fibered CY4

𝑧: Quintic modulus  

𝑆: Dilaton

𝑧1: Open string modulus

𝑛𝑖: Quantized fluxes

Kähler potential:

Superpotential:

The self-dual 𝐺4 fluxes

NLO in 𝑔𝑠 correction



● Vacuum structure of F-theory

As a consequence of the self-dual condition to 𝐺4 fluxes, 
all the moduli fields are stabilized at

VEVs:

𝐷𝑆𝑊 = 𝐷𝑧𝑊 = 𝐷𝑧1
𝑊 = 0

𝑧: Quintic modulus  
𝑆: Dilaton
𝑧1: Open string modulus
𝑛𝑖: Quantized fluxes



Although the fluxes are constrained by the tadpole condition,

𝜒

24
= 𝑛𝐷3 +

1

2
න

𝐶𝑌4

𝐺4 ∧ 𝐺4

we find the consistent F-theory vacuum, e.g., 

All the moduli fields can be stabilized around the LCS point of CY 
fourfold

The masses of all the moduli fields are positive definite.

● Vacuum structure of F-theory

𝜒=1860: Euler number of CY4
𝑛𝐷3: # of D3



○The orientifold limit of F-theory 
[Dasgupta-Rajesh-Sethi ‘99, Denef-Douglas-Florea-Grassi-Kachru ‘05]

○K3×K3 background [Berglund-Mayr ‘13]

○Elliptically fibered CY4 in the large complex structure limit
[Honma-Otsuka ‘17]

Comment on other models in F-theory on CY4



Conclusion

○Mirror symmetry techniques can be applied to the F-theory 
compactifications.

○We explicitly demonstrate the moduli stabilization 
around the large complex structure point of the F-theory fourfold. 

○All the complex structure moduli can be stabilized at the Minkowski
minimum.

Discussion
○Quantum corrections to the moduli potential
○Other CY4
○Particle spectra in global F-theory models
○Heterotic/F-theory duality


