Sunyaev-Zel'dovich効果の 高精度観測と宇宙論的意義

Hubble and ESO Picture of the week (2017/2/20) Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope 東邦大学理学部物理学科 北山 哲

- SZ効果とは?
- 高精度SZ効果観測の重要性
- ALMAによるSZ効果の初検出
- 宇宙論的展望

主な参考文献

レビュー: Kitayama (2014) PTEP, 06B111 (arXiv:1404.0870) ALMA観測: Kitayama et al. (2016) PASJ, 68, 88 (arXiv: 1607.08833)

共同研究者 (アルファベット順)

赤堀卓也(鹿児島大) 伊王野大介(国立天文台) 泉拓磨(東京大) 川邊良平(国立天文台) 河野孝太郎(東京大) 小松英一郎(MPA) 松尾宏(国立天文台) 大栗真宗(東京大) 太田直美 (奈良女子大) 須藤靖 (東京大) 高桑繁久 (鹿児島大) 滝沢元和 (山形大) 堤貴弘 (NRAO) 上田周太朗 (宇宙研) 吉川耕司 (筑波大)

Sunyaev-Zel'dovich Effect (SZE) プラズマ電子によるCMB光子の散乱 (SZ 1970)

CMB異方性

CMB sky map by South Pole Telescope (SPT) 150GHz, 95 deg² FOV, 1.1' FWHM (Schaffer+11) Primary CMB & 20 galaxy clusters (SZ効果) CMB 温度異方性スペクトル (Komatsu & TK 1999) *l ~π/θ* > 3000 (θ<arcmin) で卓越 する2次異方性

 $\mathbf{E}_{\mathbf{e}} > \mathbf{E}_{\gamma}$ i.e.,

逆コンプトン散乱

入射光子(1)は等方的 散乱光子(2)は前方に偏り、 (相対論的ビーミング) 平均エネルギーが増加する。

$$\epsilon_1 : \epsilon_1' : \epsilon_2' : \epsilon_2 \sim 1 : \gamma : \gamma : \gamma^2$$

では弾性的、広角度に散乱(2')

Sunyaev-Zel'dovich Effect (SZE)

CMBの逆コンプトン散乱のうち、弱相対論的電子(宇宙の電子の大半)起因のもの

•v_e/c の1次 : 固有運動 運動学的 (kinetic) SZ効果

$$\frac{\Delta T}{T_{\text{CMB}}} = \int \sigma_{\text{T}} n_{\text{e}} \frac{v_{\parallel}}{c} dl$$

$$\sim 7 \times 10^{-6} \left(\frac{n_{\text{e}}}{10^{-3} \text{ cm}^{-3}} \right) \left(\frac{v_{\parallel}}{10^{3} \text{ km s}^{-1}} \right) \left(\frac{l}{\text{Mpc}} \right)$$

•v_e/cの高次: 相対論的補正

※銀河団の固有速度(~1000 km/s) よりも、電子の熱運動速度は数10倍 大きいため、熱的SZ効果が卓越する。

熱的SZ効果

1) ユニークなスペクトル: ΔT < 0 at v<220 GHz 負のソース ΔT > 0 at v>220 GHz

2) ΔT/T_{CMB} or ΔI/I_{CMB} は z によらない 遠方でも観測輝度が落ちない

3) 銀河団(高温、大サイズ)が主要源

Abell 2319 at z=0.056 by Planck (ESA/ LFI & HFI Consortia)

宇宙最大の天体

総質量 ~10¹⁵ M_© 半径 ~Mpc=8'(0.1/z) ※宇宙論的に決まる

構造形成の現場

ボトムアップ構造形成の終着点 → 初期密度ゆらぎ、 宇宙論パラメータ プラズマ物理、粒子加速、etc.

宇宙に多数存在

& 多波長で観測可能

Galaxy Cluster Abell 2218 Hubble Space Telescope • WFPC2

NASA, A. Fruchter and the ERO Team (STScI, ST-ECF) • STScI-PRC00-08

※単位 1pc (パーセク) = 3.09E18 cm ~銀河内の恒星間隔 1 M_☉ (太陽質量)=1.99E33 g 1 yr (年) = 3.16E7 sec 1 eV = 1.16E4 K 1 Jy = 1E-23 erg/s/cm2/Hz

宇宙の構造形成と銀河団

多波長で見た銀河団

1E0657-56 at z=0.3 (Markevitch & Vikhlinin 2007)

SZ効果 vs. X線

Coma cluster (Planck Collaboration 2013) color: y-parameter (SZ) by Planck contour: X-ray by ROSAT

同一の熱的プラズマに対し、

- I_{sz} ∝ ∫n_e T_e dl, z によらない 逆コンプトン散乱
 I_x ∝ ∫n_e² T_e^α dl /(1+z)⁴, α<1/2 主に制動放射
 - → 遠方観測に有利
 圧力の直接測定
 → 衝撃波、熱エネルギー、
 重力質量、距離など

SZ効果観測の変遷

1980年代以前 1<u>点の on-off</u>

FIG. 7.—Observations of Abell 576. The straight line is the computed mean diminution, ΔT_{A} .

NRAO 11m, 31.4GHz 観測16個中、検出1個 (Lake, Partridge 1980) OVRO 40m, 20.3 GHz, Single-dish 1.7' FWHM (Birkinshaw 1999)

declination offset, $\Delta\delta$ /arcmin

OVRO/BIMA, 28GHz 45"~3' FWHM (Carlstrom et al. 2002)

1990年代

1次元スキャン

2000年代以降 2次元マップ

初期のSZ効果観測データ

Abell 2218 external consistency

$\Delta T_{\rm RJ0}({ m mK})$		Reference
$\begin{array}{c} -2.6 \pm 1.2 \\ +2.2 \pm 1.1 \\ -3.04 \pm 0.61 \\ -4.49 \pm 0.80 \\ +0.8 \pm 2.4 \\ -0.77 \pm 0.38 \\ -0.48 \pm 0.39 \\ +7.8 \pm 5.3 \\ +0.21 \pm 0.57 \\ +0.46 \pm 0.36 \\ +0.40 \pm 0.70 \\ -3.2 \pm 1.1 \\ -0.90 \pm 0.10 \\ -0.88 \pm 0.26 \\ -0.67 \pm 0.08 \\ -0.68 \pm 0.19 \end{array}$	「同一の」銀河団中心方向 の測定報告の比較 系統誤差(大気、検出器、 時間変動する電波銀河等) の除去が最大の課題	Perrenod and Lada (1979) Lake and Partridge (1980) Birkinshaw et al. (1981b) Schallwich (1982) Lasenby and Davies (1983) Birkinshaw and Gull (1984) Uson (1985) Radford et al. (1986) Radford et al. (1986) Radford et al. (1986) Partridge et al. (1987) Klein et al. (1991) Jones (1995) Uyaniker et al. (1997) Birkinshaw et al. (1998) Tsuboi et al. (1998)

SZ効果観測の現状

空間分解能の重要性

Green Bank Telescope (直径100m) によるイメージ 単一鏡による最高分解能 (10"@90GHz) データだが、 電波銀河等を除去するのは困難 → 干渉計

ALMAによる干渉計SZ効果観測

Band	v [GHz]	resolution["]	FOV["]
(1)	31-45	13-0.1	145-135
(2)	67-90	6.0-0.05	91-68
3	84-116	4.9-0.038	72-52
4	125-163	3.3-0.027	49-37
5	163-211		37-29
6	211-275	2.0-0.016	29-22
7	275-373	1.5-0.012	22-16
8	385-500	1.1-0.009	16-12
9	602-720	0.68-0.006	10-8.5
10	787-950	0.52-0.005	7.7-6.4

長所: 高感度, 系統誤差に強い 様々なスケールの情報を含む 汎用望遠鏡(SZでは珍しい)

短所:視野小さい 広がった信号は落ちる ※Bands 1 & 2 は将来。

⇒現状は、Band 3 (90GH帯) が最適

Interferometers measure "Visibility"

2D Fourier transformation of intensity on the sky

$$V(u,v) = \int \int I(x,y)e^{i2\pi(ux+vy)}dxdy$$

空間周波数
∝ b/λ

マロク

干渉計データには、様々な空間スケールの情報が含まれる → 電波銀河と広がったSZ効果を"同時観測"で分離可能

大きな *b*/λ ⇔ 小さな空間スケール

Finite sampling

現実の観測では、全(u,v)はカバーできない

u-v coverage of ALMA

Lack of

ALMAによるSZ効果の初検出

(Kitayama et al. 2016, arXiv: 1607.08833)

Target: RX J1347.5-1145 @z=0.45 (strongest SZE & compact)

Band 3 (84-100 GHz) 7 mosaics for both 12m and 7m Baselines: 8.9-348.5m (compact) =2.1 k λ ~116 k λ $\rightarrow \lambda/b = 2''~70''(目安)$

Total on-source time: 2.6hr (12m) + 5.6hr (7m) 2014/8/16 ~ 2015/1/4

ALMA images of RX J1347-1145 at z=0.45

@92GHz (limited by calibration)

ALMA SZ vs. Chandra X線

100m単一鏡データとの比較

MUSTANG 90GHz image (Mason et al. 2010) 10" FWHM

Missing flux ?

高分解能観測の意義

(a) X-ray surface brightness

Compton y-parameter of RX J1347

次の例 : Phoenix cluster

SPT-CL J2344-4243 at z=0.60

- SZ サーベイ(SPT)で発見 分解能 1' では対称性良い
- 全銀河団中でX線光度最大 & 唯一の cooling flow 候補
- 中心銀河で激しい星形成 SFR ~ 700 Msun/yr dusty starburst type 2 QSO

McDonald et al. (2012)

宇宙論的展望

- (1) CMB温度の時間変化
- (2) 距離測定
- (3) 銀河団質量関数

(2) 距離測定:原理 (Cavaliere+ 1977; Silk & White 1978)

銀河団プラズマ ↓ R

同一の熱的プラズマからの放射

•
$$I_{SZ} \propto n T R_{//}$$

•
$$I_X \propto n^2 \Lambda(T) R_{//}$$

•
$$\mathbf{R}_{//} = \mathbf{R}_{\perp} = \mathbf{d}_{\mathbf{A}} \mathbf{\theta}_{\perp}$$
 (仮定)

$$H_0 \propto \frac{1}{d_A} \propto \frac{I_X \theta_\perp T}{I_{SZ}^2 \Lambda(T)}$$

「球対称」は、多数の銀河団で 統計的に実現。 原理が完全にわかっている 希少な距離指標

0 0

(2) 距離測定:宇宙論パラメータ

cf. Planck CMB:

 $H_0 = 67.8 \pm 0.9 \text{ km/s/Mpc}$

(Planck collaboration 2016)

cf. Local SN Ia & Cepheid (距離はしご) H₀=73.24±1.74 km/s/Mpc (Riess et al. 2016)

Tension?

→ 独立な測定を提供可能。 ただし、系統誤差(温度・ 密度ゆらぎ、電波銀河等) の除去が本質的

(2) 距離測定: distance duality relation

1) SZ+X $\rightarrow d_A$ (absolute) 38 clusters at 0.14<z<0.89 (Bonamente et al. 2006)

2) SNIa $\rightarrow d_L$ (relative) Union2.1 580 total (Suzuki et al. 2012) ~10 SNIa per cluster within $\Delta z/z < 0.03$

> 標準宇宙論の予言 d_L=d_A(1+z)² の直接検証にもなる

(3) 銀河団質量関数:X線データ

宇宙の構造形成と銀河団

(3) 質量関数:ニュートリノ質量への制限

非相対論的になる時期:

$$z_
u \sim 200 \left(rac{m_
u}{
m 0.1eV}
ight)$$

Free-streaming scale (comoving):

$$l_
u \sim 600~{
m Mpc} \left(rac{m_
u}{
m 0.1eV}
ight)^{-1}$$

宇宙の平均密度への寄与:

$$\Omega_{\nu}h^2 \sim 10^{-3} \left(\frac{m_{\nu}}{0.1 \mathrm{eV}} \right)$$

現状のCMB+銀河団(&重力レンズ)データは、振動実験による最小質量(~0.05 eV)よりも大きな m_v (強い free streaming =遅いゆらぎ成長=大質量の銀河団数 が少ない)を許容。銀河団質量の過小評価など系統誤差の排除が課題。

(3) 質量関数:重力理論への制限

既存データ(X-ray sample at z<0.5 & WMAP)による制限(Mantz+15)

幾何学的情報(距離、膨張率)とは独立な制限 加速膨張開始期(z~1)をまたぐデータが重要

まとめ

- Sunyaev-Zel'dovich (SZ)効果:代表的なCMB2次異方性、 遠方宇宙における構造形成の有力な観測手段。
 系統誤差の除去が最大の課題。
- ALMA (90GHz 帯)を用いて、空間分解能 5秒角 (20 kpc/h @ z=0.5) のSZ 効果測定に初めて成功
 - → 電波銀河等の混入を排除した初の高精度SZ効果マップ ただし、信頼できる空間スケールは40秒角まで
 - → ALMA 40GHz帯(開発中) and/or 単一鏡との組み合わせ
- 宇宙論的展望

CMB温度の時間変化、距離測定、銀河団質量関数などによる標準宇宙論・ニュートリノ質量・重力理論の検証