Ghost condensation as the simplest Higgs phase of gravity

Shinji Mukohyama (YITP, Kyoto)

Based on collaborations with N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, T. Furukawa, K. Ichiki, K. Izumi, S. Jazayeri, M. Luty, R. Saitou, N. Sugiyama, J. Thaler, Y. Watanabe, T. Wiseman, M. Zaldarriaga

Why alternative gravity theories?

Three conditions for good alternative theories of gravity (my personal viewpoint)

- 1. Theoretically consistent e.g. no ghost instability
- 2. Experimentally viable solar system / table top experiments
- 3. Predictable e.g. protected by symmetry

Some examples

- I. Ghost condensation
 IR modification of gravity
 motivation: dark energy/matter
- II. Nonlinear massive gravityIR modification of gravitymotivation: "Can graviton have mass?"
- III. Horava-Lifshitz gravityUV modification of gravitymotivation: quantum gravity
- IV. Superstring theoryUV modification of gravitymotivation: quantum gravity, unified theory

A motivation for IR modification

- Gravity at long distances
 Flattening galaxy rotation curves
 extra gravity

 Dimming supernovae
 accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...

which people tried to explain with a "dark planet", Vulcan,

But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR. Can we change gravity in IR?

Change Theory? Massive gravity Fierz-Pauli 1939 DGP model Dvali-Gabadadze-Porrati 2000

Change State? Higgs phase of gravity The simplest: Ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004.

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left\langle \partial_{\mu} \phi \right\rangle \uparrow^{P((\partial\phi)^2)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V">0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

Ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Any coupling \implies instability Vacuum \Rightarrow In analogy with Higgs potential, can this be stabilized?

$$L_{\phi} = M^{4} \left[-(\partial \phi)^{2} + (\partial \phi)^{4} \cdots \right] ?$$

$$(+---)$$
Clearly $(\partial \phi)^{4} \cdots$ are higher dim ops. Really we should consider

$$L_{\phi} = P((\partial \phi)^2) + \widetilde{P}((\partial \phi)^2) Q(\Box \phi) + \cdots$$

(Shift symmetry is assumed.)

Naively no sensible EFT. <u>NOT THE CASE.</u> There is a sensible EFT + derivative expansion.

Eq of motion

$$\partial_{\mu} \left[P' \cdot \partial^{\mu} \phi \right] = 0$$

Clearly any $\partial_{\mu}\phi = \text{constant}$ is a solution! Suppose $\partial_{\mu}\phi = \text{constant} + \text{timelike}$. Go to frame where $\dot{\phi} = c, \partial_{i}\phi = 0 \Rightarrow \phi = ct$

Solution for any c!

In this language, we can have a good EFT because the background sits at some value c.

 $\implies \text{ doesn't sample entire function } P((\partial \phi)^2).$ Taylor expansion of $P((\partial \phi)^2)$ around $(\partial \phi)^2 = c^2$ makes perfect sense.

Small fluctuations controlled by small # of parameters at low energies.

Look at small fluctuations

$$\phi = ct + \pi$$

$$S = \int d^4 x \Big[\Big(P'(c^2) + 2c^2 P''(c^2) \Big) \dot{\pi}^2 - P'(c^2) \cdot (\nabla \pi)^2 \Big]$$

So for $P'(c^2) + 2c^2 P''(c^2) > 0$ $P'(c^2) > 0$

NORMAL sign kinetic terms.

STABLE

So far, possible backgrounds are labeled by continuous parameter c. Situation changes in presence of gravity, in expanding universe.

$$ds^{2} = dt^{2} - a^{2}(t)d\bar{x}^{2}$$

$$S = \int d^{4}x\sqrt{-g}P(g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi)$$

$$T_{\mu\nu} \sim Pg_{\mu\nu} + P'\partial_{\mu}\phi\partial_{\nu}\phi$$
E.O.M.
$$\partial_{t}[a^{3}P'\cdot\dot{\phi}] = 0 \implies P'\dot{\phi} \rightarrow 0 \text{ as } a \rightarrow \infty$$

$$\Rightarrow \dot{\phi} = 0 \quad \text{or} \qquad P'\dot{\phi} \rightarrow 0 \text{ as } a \rightarrow \infty$$

$$\Rightarrow \dot{\phi} = 0 \quad \text{or} \qquad P'(\dot{\phi}^{2}) = 0$$

In this language, we can have a good EFT because the background sits at the special value.

 $\implies \text{ doesn't sample entire function } P((\partial \phi)^2).$ Taylor expansion of $P((\partial \phi)^2)$ around $(\partial \phi)^2 = M^4$ makes perfect sense. Small fluctuations controlled by small # of parameters at low energies.

Look at small perturbations $\phi = M^2 t + \pi$ $\int d^4x \left[\left(P'(M^4) + M^4 P''(M^4) \right) \dot{\pi}^2 - P'(M^4) (\nabla \pi)^2 \right]$ No spatial kinetic term for π ! $\widetilde{P}((\partial \phi)^2)Q(\Box \phi) + \cdots$ Other terms do contain spatial kinetic terms but at least $(\nabla^2 \pi)^2 + \cdots$ $\underset{\text{Low}}{\Longrightarrow} S = \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha}{M^2} (\nabla^2 \pi)^2 + \cdots \right] \quad \left| \omega^2 \approx \frac{k^4}{M^2} \right|$ energy Positive definite Hamiltonian $\int d^3x \left| \frac{1}{2} \dot{\pi}^2 + \frac{\alpha}{M^2} (\nabla^2 \pi)^2 + \cdots \right|$

Systematic construction of Low-energy effective theory Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004 Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is maximally symmetric, either Minkowski or dS.

$$\sum L_{eff} = L_{EH} + M^{4} \left\{ \left(h_{00} - 2\dot{\pi} \right)^{2} - \frac{\alpha_{1}}{M^{2}} \left(K + \vec{\nabla}^{2} \pi \right)^{2} - \frac{\alpha_{2}}{M^{2}} \left(K^{ij} + \vec{\nabla}^{i} \vec{\nabla}^{j} \pi \right) \left(K_{ij} + \vec{\nabla}_{i} \vec{\nabla}_{j} \pi \right) + \cdots \right\}$$

Gauge choice: $\phi(t, \vec{x}) = t$. $\pi \equiv \delta \phi = 0$ (Unitary gauge) Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Write down most general action invariant under this residual symmetry.

(\implies Action for π : undo unitary gauge!)

Start with flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\partial h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$$

Under residual ξ^i

$$\partial h_{00} = 0, \partial h_{0i} = \partial_0 \xi_i, \partial h_{ij} = \partial_i \xi_j + \partial_j \xi_i$$

Action invariant under ξⁱ Beginning at quadratic order, $\begin{pmatrix} (h_{00})^2 & \mathbf{OK} \\ (b_{0i})^2 \end{pmatrix}^2$ since we are assuming flat space is good background. $\begin{bmatrix} K^{0} \\ K^{2}, K^{ij} \\ K^{ij} \\ K^{ij} \end{bmatrix} = \frac{1}{2} \left(\partial_{0} h_{ij} - \partial_{j} h_{0i} - \partial_{i} h_{0j} \right)$ $\square \qquad \qquad L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} \right)^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$ Action for π $\boldsymbol{\xi^{0}} = \boldsymbol{\pi} \quad \begin{cases} h_{00} \to h_{00} - 2\partial_{0} \boldsymbol{\pi} \\ K_{ii} \to K_{ii} + \partial_{i} \partial_{j} \boldsymbol{\pi} \end{cases}$ $\square \sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$

⇒ Good low-E effective theory Robust prediction

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left\langle \partial_{\mu} \phi \right\rangle \uparrow^{P((\partial\phi)^2)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V">0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

Bounds on symmetry breaking scale M

So far, there is no conflict with experiments and observations if M < 100GeV.

Ghost condensation

- Ghost condensation is the simplest Higgs phase of gravity.
- The low-E EFT is determined by the symmetry breaking pattern. No ghost in the EFT.
- Gravity is modified in IR.
- Consistent with experiments and observations if M < 100GeV.

Prediction of Large non-Gauss.

Leading non-linear interaction $\beta \frac{\dot{\pi} (\nabla \pi)^2}{M^2}$

non-G of ~
$$\beta \left(\frac{H}{M}\right)^{1/4}$$

~ $\beta \left(\frac{\delta \rho}{\rho}\right)^{1/5}$

scaling dim of op.

$$\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$$

[Really "0.1" × $(\delta \rho / \rho)^{1/5}$ ~ 10⁻². VISIBLE. In usual inflation, non-G ~ $(\delta \rho / \rho)$ ~ 10⁻⁵ too small.]

$$f_{NL} \sim 82 \beta \alpha^{-4/5}$$
, equilateral type

Planck 2015 constraint (equilateral type)

 $f_{NL} = -4 \pm 43$ (68% CL statistical) $\rightarrow -0.6 \le \beta \alpha^{-4/5} \le 0.5$

3-point function for ghost inflation

3-point function for "local" non-G

$$\varsigma = \varsigma_G - \frac{3}{5} f_{NL} \cdot \left(\varsigma_G^2 - \left\langle\varsigma_G^2\right\rangle\right)$$

 k_{3} / k_{1}

 $\left(\frac{k_2}{k_1}, \frac{k_3}{k_1}\right)$

 k_{2} / k_{1}

Prediction of Large non-Gauss.

Leading non-linear interaction $\beta \frac{\dot{\pi} (\nabla \pi)^2}{M^2}$

non-G of ~
$$\beta \left(\frac{H}{M}\right)^{1/4}$$

~ $\beta \left(\frac{\delta \rho}{\rho}\right)^{1/5}$

scaling dim of op.

$$\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$$

[Really "0.1" × $(\delta \rho / \rho)^{1/5}$ ~ 10⁻². VISIBLE. In usual inflation, non-G ~ $(\delta \rho / \rho)$ ~ 10⁻⁵ too small.]

$$f_{NL} \sim 82 \beta \alpha^{-4/5}$$
, equilateral type

Planck 2015 constraint (equilateral type)

 $f_{NL} = -4 \pm 43$ (68% CL statistical) $\rightarrow -0.6 \le \beta \alpha^{-4/5} \le 0.5$

Summary so far

- Ghost condensation is the simplest Higgs phase of gravity.
- The low-E EFT is determined by the symmetry breaking pattern. No ghost in the EFT.
- Gravity is modified in IR.
- Consistent with experiments and observations if M < 100GeV.
- Behaves like DE/DM for FLRW background and large-scale linear perturbation.
- Ghost inflation predicts large non-Gaussianity and is still consistent with Planck data.

Ghost inflation and de Sitter entropy bound

S.Jazayeri, S.Mukohyama, R.Saitou, Y.Watanabe 2016

- Black holes & cosmology in gravity theories are as important as Hydrogen atoms & blackbody radiation in quantum mechanics
- Provide non-trivial tests for theories of gravity e.g. black-hole entropy in string theory
- Does the theory of ghost condensation pass those tests?
- Ghost condensation can be consistent with BH
 thermodynamics (Mukohyama 2009, 2010)
- How about de Sitter thermodynamics?

de Sitter thermodynamics

- de Sitter (dS) spacetime is one of the three spacetimes with maximal symmetry
- dS horizon has temperature $T_H = H/(2\pi)$
- In quantum gravity, a dS space is probably unstable (e.g. KKLT, Susskind, ...). So, let's consider a dS space as a part of inflation
- Friedmann equation \rightarrow 1st law with entropy S = A/(4G_N) = $\pi/(G_NH^2)$ (This is in contrast with analogue gravity systems.)

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

 Slow roll inflation (non-eternal) $\dot{H} = -4\pi G_{\rm N} \dot{\phi}^2$ $S = \pi/(G_{\rm N}H^2)$ dN = Hdt $= \frac{\delta\rho}{\rho} \sim \frac{\delta a}{a} \sim H\delta t \sim H\frac{\delta\phi}{\dot{\phi}} \sim \frac{H^2}{\dot{\phi}}$ $\frac{dS}{dN} = \frac{8\pi^2 \dot{\phi}^2}{H^4} \sim \left(\frac{\delta\rho}{\rho}\right)^{-2}$ $|\delta
ho/
ho|\lesssim 1~$ for non-eternal inflation $N_{\rm tot} \lesssim S_{\rm end} - S_{\rm beginning} < S_{\rm end}$

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

• Eternal inflation $\delta \rho / \rho \gtrsim 1 \implies \Delta N \gtrsim \Delta S$.

 $N_{\rm obs} \lesssim S_{\rm end}$

- Fluctuation generated during eternal epoch would collapse to form BH → unobservable!
- This bound holds for a large class of models
 of inflation
- Does ghost inflation satisfy the bound?

Ghost inflation

Arkani-Hamed, Creminelli, Mukohyama and Zaldarriaga, JHEP 0404:001,2004

Prediction of Large non-Gauss.

Leading non-linear interaction $\beta \frac{\dot{\pi} (\nabla \pi)^2}{M^2}$

non-G of ~
$$\beta \left(\frac{H}{M}\right)^{1/4}$$

~ $\beta \left(\frac{\delta \rho}{\rho}\right)^{1/5}$

scaling dim of op.

$$\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$$

[Really "0.1" × $(\delta \rho / \rho)^{1/5}$ ~ 10⁻². VISIBLE. In usual inflation, non-G ~ $(\delta \rho / \rho)$ ~ 10⁻⁵ too small.]

$$f_{NL} \sim 82 \beta \alpha^{-4/5}$$
, equilateral type

Planck 2015 constraint (equilateral type)

 $f_{NL} = -4 \pm 43$ (68% CL statistical) $\rightarrow -0.6 \le \beta \alpha^{-4/5} \le 0.5$

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

• Eternal inflation $\delta \rho / \rho \gtrsim 1 \implies \Delta N \gtrsim \Delta S$.

 $> N_{\rm obs} \lesssim S_{\rm end}$

- Fluctuation generated during eternal epoch would collapse to form BH → unobservable!
- This bound holds for a large class of models
 of inflation
- Does ghost inflation satisfy the bound? The answer appears to be "no" since N_{tot} can be arbitrarily large. Swampland?

Lower bound on Λ ?

S.Jazayeri, S.Mukohyama, R.Saitou, Y.Watanabe 2016 • Tiny Λ prevents earlier inflationary modes

Cosmological Page time

S.Jazayeri, S.Mukohyama, R.Saitou, Y.Watanabe 2016

- Hawking rad from BH \rightarrow S_{rad} = S_{ent} increases but S_{BH} (\geq S_{ent}) decreases \rightarrow semi-classical description should break down @ Page time, when S_{BH} ~ half of S_{BH,init}
- After inflation, we expect to see O(1) deviation from semi-classical description @ Page time, when N_{obs} ~ S_{end}
- For example, if Λ decays at $a=a_{decay}$ then

$$\frac{a_{\text{Page}}}{a_{\text{decay}}} \sim \left(\frac{M}{100 \,\text{GeV}}\right)^{-1} \left(\frac{a_{\text{decay}}}{a_{\text{eq}}}\right)^2 \exp\left[10^{42} \left(\frac{M}{100 \,\text{GeV}}\right)^{-2}\right]$$

Summary

- Ghost condensation is the simplest Higgs phase of gravity.
- The low-E EFT is determined by the symmetry breaking pattern. No ghost in the EFT.
- Gravity is modified in IR.
- Consistent with experiments and observations if M < 100GeV.
- Behaves like DE/DM for FLRW background and large-scale linear perturbation.
- Ghost inflation predicts large non-Gaussianity and is still consistent with Planck data.
- It appears easy but is actually difficult to violate the generalized 2nd law by ghost condensate. (Mukohyama 2009, 2010)
- de Sitter entropy bound appears to be violated but is actually satisfied by ghost inflation in our universe with tiny DE/cc.
- If the DE/cc decays to zero in the future then O(1) deviation from EFT is expected only after the universe becomes at least exp(10⁴²) times bigger than now.

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left< \partial_{\mu} \phi \right> \uparrow^{P((\partial \phi)^2)}$
	Φ	$\rightarrow \phi$
Instabilit		$\dot{\phi}^2$
Condensate	V'=0, V">0	P'=0, P''>0
Broken symmet	Sarse symmetry	Timetreslational
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

BACKUP SLIDES

GDM as all DM?

Furukawa, Yokoyama, Ichiki, Sugiyama and Mukohyama 2010

- Standard CDM has P=0 and $c_s^2=0$.
- $P_{GDM} \sim \rho_{GDM}^2/M^4$ and $c_s^2 \sim 2\rho_{GDM}/M^4$ are small but non-zero.
- Let's suppose that ghost dark matter is responsible for all DM in the universe.
- $P_{GDM}/\rho_{GDM} \sim \rho_{GDM}/M^4 << 1$ all the way to matter-radiation equility $\rightarrow M > 1eV$
- L_J ~ c_s/(aH) < 1Mpc all the way to matterradiation equality → M > 10eV

Matter power spectrum

Extension to FLRW background

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

- Action invariant under $x^i \rightarrow x^i(t,x)$
- Ingredients
 - $g_{\mu\nu} \ g^{\mu\nu} \ R_{\mu\nu\rho\sigma} \ \nabla_{\mu}$
- 1st derivative of t

$$\begin{array}{ll} \partial_{\mu}t = \delta^{0}_{\mu} & n_{\mu} = \frac{\partial_{\mu}t}{\sqrt{-g^{\mu\nu}\partial_{\mu}t\partial_{\nu}t}} = \frac{\delta^{0}_{\mu}}{\sqrt{-g^{00}}} \\ g^{00} & h_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} \end{array}$$

• 2nd derivative of t

$$K_{\mu\nu} \equiv h^{\rho}_{\mu} \nabla_{\rho} n_{\nu}$$

Unitary gauge action

NG boson

- Undo unitary gauge $t \to \tilde{t} = t \pi(\tilde{t}, \vec{x})$ $H(t) \to H(t + \pi), \quad \dot{H}(t) \to \dot{H}(t + \pi),$ $\lambda_i(t) \to \lambda_i(t + \pi), \quad a(t) \to a(t + \pi),$ $\delta^0_\mu \to (1 + \dot{\pi})\delta^0_\mu + \delta^i_\mu \partial_i \pi,$
- NG boson in decoupling (subhorizon) limit

$$\begin{split} I_{\pi} &= M_{Pl}^{2} \int dt d^{3} \vec{x} \, a^{3} \left\{ -\frac{\dot{H}}{c_{s}^{2}} \left(\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) \right. \\ &\left. -\dot{H} \left(\frac{1}{c_{s}^{2}} - 1 \right) \left(\frac{c_{3}}{c_{s}^{2}} \dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) + O(\pi^{4}, \tilde{\epsilon}^{2}) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\} \\ &\left. \frac{1}{c_{s}^{2}} = 1 - \frac{4\lambda_{1}}{\dot{H}}, \quad c_{3} = c_{s}^{2} - \frac{8c_{s}^{2}\lambda_{2}}{-\dot{H}} \left(\frac{1}{c_{s}^{2}} - 1 \right)^{-1} \end{split}$$