Complete gauge invariant action for open superstring field theory

Hiroshi Kunitomo (YITP)

@Kyoto Sangyo U. 2016/7/4

Based on the paper with Yuji Okawa, arXiv:1508.00366

1. Introduction

To consider the superstring theory as a fundamental theory of the nature, the nonperturbative formulation is needed.

One of the promising candidates is

- ♠ WZW-like (Open) superstring field theory
 - \Diamond A formulation with *no explicit picture changing operator* and working well for the NS (boson) sector: [Berkovits (1995)]

```
(cf. Hetetrotic [Berkovits, Okawa and Zwiebach (2004)], Type II [Matsunaga (2014)])
```

However, no one has succeeded to construct complete gauge invariant action including both the NS (boson) and Ramond (fermion) sectors so far.

The purpose of this talk is to construct a complete gauge invariant action for open superstring!

- Key points
 - Utilizing large Hilbert space
 - Restrict the Ramond string field

Plan of the Talk

- 1. Introduction
- 2. WZW-like formulation
 - 2.1 NS sector
 - 2.2 Ramond sector
- 3. Complete gauge invariant action
- 4. Supersymmetry
- 5. Summary and discussion

2. WZW-like formulation (open superstring)

Superstring SCFT:

$$(X^{\mu}(z), \psi^{\mu}(z))$$
 Matter $c = 15$
 $(b(z), c(z))$ Ghost $c = -26$ (1)
 $(\beta(z), \gamma(z))$ Superghost $c = 11$

Small Hilbertspace:

$$\mathcal{H}_{small} = \{ | \text{matter} \rangle \otimes | \text{Fock}(c_{-n}, b_{-m}) \rangle \otimes | | \text{Fock}(\gamma_{-r}, \beta_{-s}) \rangle \}$$

Bosonization:

$$\beta(z) = \partial \xi(z) e^{-\phi(z)}, \qquad \gamma(z) = e^{\phi(z)} \eta(z).$$

Large Hilbertspace :

$$\mathcal{H}_{large} = \{ | \text{matter} \rangle \otimes | \text{Fock}(b_{-m}, c_{-n}) \rangle \otimes | \text{Fock}(\eta_{-m}, \xi_{-n}) \rangle \} \otimes | \text{Fock}(\phi_n) \rangle \}$$

Relation:

$$\mathcal{H}_{large} \ni \Phi = \varphi + \xi_0 a, \tag{2}$$

with $\varphi, a \in \mathcal{H}_{small}$, (or equivalently, $\eta \varphi = \eta a = 0$, $(\eta \equiv \eta_0)$.)

2.1 NS sector [Berkovits]

String field:

$$\mathcal{H}_{large}^{(NS)} \quad \ni \quad |\Phi\rangle = \sum_{i} |i\rangle \varphi^{i}(x),$$

where the sum i runs through all the states with (g,p)=(0,0) in $\mathcal{H}_{large}^{(NS)}$, and The string field $|\Phi\rangle$ is Grassmann even $(|\Phi|=0)$. Since the space-time fields $\varphi^i(x)$ are bosons, $|i\rangle$ has to be Grassmann even. We impose the GSO projection:

$$\Phi = \frac{1}{2}(1 + (-1)^{F_{NS}}) \Phi ,$$

with

$$F_{NS} = \sum_{r>0} \psi^{\mu}_{-r} \psi_{\mu r} + \oint \frac{dz}{2\pi i} \partial \phi(z) .$$

Free theory:

Equation of motion (EOM) and gauge tf.

$$Q\eta\Phi = 0, \qquad \delta\Phi = Q\Lambda + \eta\Omega. \tag{3}$$

If we expand as (2) and similarly $\Lambda = \rho - \xi_0 \alpha$ with $\eta \rho = \eta \alpha = 0$,

$$\eta \Phi = a, \quad \eta \Lambda = -\alpha, \tag{4}$$

and (3) is equivalent to the conventional formulation:

$$Qa = 0, \qquad \delta a = Q\alpha.$$

The EOM in (3) is derived from the action

$$S_{NS}^{(0)} = \frac{1}{2} \langle Q\Phi, \eta\Phi \rangle, \tag{5}$$

where $\langle A,B\rangle$ is the BPZ inner product in the large Hilbert space, which satisfies

$$\langle B, A \rangle = (-1)^{AB} \langle A, B \rangle,$$

 $\langle QA, B \rangle = -(-1)^{A} \langle A, QB \rangle, \qquad \langle \eta A, B \rangle = -(-1)^{A} \langle A, \eta B \rangle.$

Counting the ghost number anomaly, $\langle A,B\rangle \neq 0$ iff

$$g(A) + g(B) = 2,$$
 $p(A) + p(B) = -1.$

Ghost and picture numbers:

operator	Φ	Q	b	c	η	ξ	$e^{q\phi}$
(g,p)	(0,0)	(1,0)	(-1,0)	(1,0)	(1, -1)	(-1, 1)	(0,q)

$$S_{NS}^{(0)} = \frac{1}{2} \langle Q\Phi, \eta\Phi \rangle$$

WZW-like action: [Berkovits]

A non-linear extension of (5):

$$S_{NS} = \frac{1}{2} \langle (g^{-1}Qg)(g^{-1}\eta g) \rangle - \frac{1}{2} \int_0^1 dt \langle (\hat{g}^{-1}\partial_t \hat{g}) \{ (\hat{g}^{-1}Q\hat{g}), (\hat{g}^{-1}\eta \hat{g}) \} \rangle, \quad (6)$$

where $\hat{g} = g(t) = e^{\Phi(t)}$ with $\Phi(1) = \Phi$ and $\Phi(0) = 0$, and $g = \hat{g}(1) = e^{\Phi}$. The product of string fields is defined by using the Witten's *-product, which is non-commutative but associative:

$$e^{\Phi} = \mathbb{I} + \Phi + \frac{1}{2}(\Phi * \Phi) + \frac{1}{3!}(\Phi * \Phi * \Phi) + \cdots$$

$$(A*B)$$

$$A \qquad B$$

For later use, it is convenient to rewrite the action (6) as

$$S_{NS} = -\int_0^1 dt \langle A_t(t), QA_{\eta}(t) \rangle, \tag{7}$$

where

$$A_{\eta}(t) = (\eta \hat{g}) \hat{g}^{-1}, \qquad A_{t}(t) = (\partial_{t} \hat{g}) \hat{g}^{-1}.$$

The t-dependence is "topological", and general variation of S_{NS} is given by

$$\delta S_{NS} = -\langle A_{\delta}, QA_{\eta} \rangle$$
 with $A_{\delta} = (\delta g)g^{-1}$. (8)

From (8) the EOM becomes

$$QA_{\eta} = 0$$
.

Gauge symmetry:

We can show that the action (7) is invariant under the gauge transformation

$$A_{\delta} = Q\Lambda + \eta\Omega - \{A_{\eta}, \Omega\}$$
$$= Q\Lambda + D_{\eta}\Omega,$$

by using $Q^2 = D_{\eta}^2 = 0$ and $QA_{\eta} = D_{\eta}A_Q$, where $A_Q = (Qg)g^{-1}$.

2.2 Ramond sector

Naive argument

String Field:

$$\mathcal{H}^{(R)}_{large} \quad \ni \quad |\psi\rangle = \sum_{i} |i\rangle \psi^{i}(x),$$

where the sum i runs through all the states with (g,p)=(0,1/2) in \mathcal{H}_{large} . The string field $|\psi\rangle$ is Grassmann even $(|\psi|=0)$.

Free theory:

$$Q\eta\psi = 0, \qquad \delta\psi = Q\lambda + \eta\omega. \tag{10}$$

Difficulties:

A candidate of the free action vanishes:

$$\langle Q\psi, \eta\psi\rangle \equiv 0$$
,

from picture number counting:

$$\frac{1}{2} + (-1) + \frac{1}{2} \neq -1.$$

Similar difficulty? :

Closed bosonic string field: $\Phi \in \mathcal{H}_{small}, \qquad g = 2$

Naive action vanishes,

$$\langle\!\langle \Phi, Q\Phi \rangle\!\rangle \equiv 0$$
,

from the ghost number counting:

$$2+1+2 \neq 6$$
.

Propagator from the path integral is given by

$$b_0^+ b_0^- \int_0^\infty d\tau \int_0^{2\pi} \frac{d\theta}{2\pi} e^{-\tau L_0^+ + i\theta L_0^-} = \frac{b_0^+ b_0^-}{L_0^+} \delta(L_0^-) .$$

suggests that we should restrict the string field as

$$L_0^- \Phi = b_0^- \Phi = 0 ,$$

or equivalently

$$\int_0^{2\pi} \frac{d\theta}{2\pi} e^{i\theta L_0^-} \Phi = \Phi , \qquad b_0^- c_0^- \Phi = \Phi .$$

The BPZ inner product in the restricted space is given by $\langle\!\langle A, c_0^- B \rangle\!\rangle$, by using which the action can be given as

$$S_0 = -\frac{1}{2} \langle \langle \Phi, c_0^- Q \Phi \rangle \rangle .$$

Ghost number counting:

$$2+1+1+2 = 6$$
.

Open superstring in the Ramond sector :

Propagator from the path integral in \mathcal{H}_{small}

$$b_0 X \int_0^\infty d\tau \ e^{-\tau L_0} = \frac{b_0 X}{L_0} ,$$

where

$$X = -\delta(\beta_0)G_0 + \delta'(\beta_0)b_0,$$

is the PCO on the p=-3/2 states in the small Hilbertspace.

This suggests that we should use

Restricted string field:

$$\eta \Psi = 0, \qquad XY\Psi = \Psi. \tag{11}$$

with (g,p)=(1,-1/2) and $Y=-c_0\delta'(\gamma_0)$. X and Y satisfy

$$XYX = X$$
, $YXY = Y$,

and thus XY is a projector. Ψ is related with ψ as $\psi = \chi + \xi_0 \Psi$, so it has to be Grassmann odd. We also impose the GSO projection:

$$\Psi = \frac{1}{2} (1 + \hat{\Gamma}_{11} (-1)^{F_R}) \Psi ,$$

with

$$\hat{\Gamma}_{11} = 2^5 \psi_0^0 \psi_0^1 \cdots \psi_0^9,
F_R = \sum_{n>0} (\psi_{-n}^{\mu} \psi_{n\mu} + \gamma_{-n} \beta_n + \beta_{-n} \gamma_n) + \gamma_0 \beta_0.$$

Using the BPZ inner product in the restricted space $\langle\!\langle A, YB \rangle\!\rangle$, the action becomes

$$S_0 = -\frac{1}{2} \langle \langle \Psi, YQ\Psi \rangle \rangle,$$

where $\langle \langle \Psi_1, \Psi_2 \rangle \rangle$ is non-vanishing iff $p(\Psi_1) + p(\Psi_2) = -2$.

Picture number counting:

$$-\frac{1}{2} - 1 - \frac{1}{2} = -2.$$

Restricted space:

Expand Ψ based on the ghost zero-modes

$$\Psi = \sum_{n=0}^{\infty} (\gamma_0)^n (\phi_n + c_0 \psi_n) .$$

The second condition in (11) restricts Ψ in the form,

$$\Psi = \phi + (\gamma_0 + c_0 G) \psi, \qquad (G = G_0 + 2b_0 \gamma_0).$$

Note that X is BRST exact in the large Hilbert space; it is given on the picture number -3/2 states as

$$X = \{Q, \Theta(\beta_0)\}, \qquad \Theta(\beta_0) = \xi_0 + \cdots$$

Or more generally we can introduce

$$\Xi = \xi_0 + (\Theta(\beta_0)\eta\xi_0 - \xi_0)P_{-3/2} + (\xi_0\eta\Theta(\beta_0) - \xi_0)P_{-1/2},$$

which is more suitable to use in the large Hilbert space, and $\{Q,\Xi\}$ becomes identical with X on the pictrue number -3/2 sates in the small Hilbert space.

Ramond kinetic term:

$$S_R^{(0)} = -\frac{1}{2} \langle \langle \Psi, YQ\Psi \rangle \rangle, \qquad \delta^{(0)} \Psi = Q\lambda,$$

where

$$\eta \Psi = 0, \qquad XY\Psi = \Psi,$$

$$\eta \lambda = 0, \qquad XY\lambda = \lambda.$$

The relation between BPZ inner products:

$$\langle \langle A, B \rangle \rangle = \langle \xi_0 A, B \rangle = \langle \Xi A, B \rangle.$$

X is BPZ even wrt $\langle\langle\cdot,\cdot\rangle\rangle$:

$$\langle\langle XA, B\rangle\rangle = \langle\langle A, XB\rangle\rangle.$$

Can we include interactions consistently?

Order by order construction:

Expand the action $S = S_{NS} + S_R$ and gauge transformation as

$$S_{NS} = S_{NS}^{(0)} + g S_{NS}^{(1)} + g^2 S_{NS}^{(2)} + O(g^3),$$

 $S_R = S_R^{(0)} + g S_R^{(1)} + g^2 S_R^{(2)} + O(g^3),$

and

$$\delta\Phi = \delta^{(0)}\Phi + g\,\delta^{(1)}\Phi + g^2\,\delta^{(2)}\Phi + O(g^3),$$

$$\delta\Psi = \delta^{(0)}\Psi + g\,\delta^{(1)}\Psi + g^2\,\delta^{(2)}\Psi + O(g^3).$$

We attempt to construct them order by order in g, starting from the kinetic terms

$$S_{NS}^{(0)} = -\frac{1}{2} \langle \Phi, Q \eta \Phi \rangle, \qquad S_R^{(0)} = -\frac{1}{2} \langle \langle \Psi, Y Q \Psi \rangle \rangle.$$

which is invariant under tree gauge transformations

$$\delta_{\Lambda}^{(0)}\Phi = Q\Lambda \,, \qquad \delta_{\Lambda}^{(0)}\Psi = 0 \,,$$

with parameter Λ in the NS sector,

$$\delta_{\Omega}^{(0)}\Phi = \eta\Omega \,, \qquad \delta_{\Omega}^{(0)}\Psi = 0 \,,$$

with parameter Ω also in the NS sector and

$$\delta_{\lambda}^{(0)} \Phi = 0 \,, \qquad \delta_{\lambda}^{(0)} \Psi = Q \lambda \,,$$

with parameter λ in the Ramond sector.

NS sector:

Expanding the NS action, we obtain

$$\begin{split} S_{NS}^{(1)} &= \frac{1}{6} \left\langle \, Q \Phi, \left[\, \Phi, \eta \Phi \, \right] \, \right\rangle, \\ S_{NS}^{(2)} &= \frac{1}{24} \left\langle \, Q \Phi, \left[\, \Phi, \left[\, \Phi, \eta \Phi \, \right] \, \right] \, \right\rangle. \end{split}$$

This is invariant at ${\cal O}(g)$ and ${\cal O}(g^2)$:

$$\delta^{(0)}S_{NS}^{(1)} + \delta^{(1)}S_{NS}^{(0)} = 0, \qquad \delta^{(0)}S_{NS}^{(2)} + \delta^{(1)}S_{NS}^{(1)} + \delta^{(2NS)}S_{NS}^{(0)} = 0,$$

under

$$\delta_{\Lambda}^{(1)} \Phi = -\frac{1}{2} [\Phi, Q\Lambda], \qquad \delta_{\Lambda}^{(2NS)} \Phi = \frac{1}{12} [\Phi, [\Phi, Q\Lambda]],$$

and

$$\delta_{\Omega}^{(1)}\Phi=rac{1}{2}\left[\,\Phi,\eta\Omega\,
ight],\qquad \delta_{\Omega}^{(2NS)}\Phi=rac{1}{12}\left[\,\Phi,\left[\,\Phi,\eta\Omega\,
ight]\,
ight].$$

Including Ramond sector:

Cubic order

Counting ghost # and picture #, an allowed candidate of $S_R^{(1)}$ has the form

$$S_R^{(1)} = \alpha_1 \langle \Phi, \Psi^2 \rangle$$
,

with a constant α_1 to be determined.

The gauge tf. $\delta^{(1)}$ is determined by requiring

$$\delta^{(0)}S_R^{(1)} + \delta^{(1)}S_{NS}^{(0)} + \delta^{(1)}S_R^{(0)} = 0.$$

The variation under $\delta_{\Lambda}^{(0)}\Phi$ is given by

$$\delta_{\Lambda}^{(0)} S_R^{(1)} = \alpha_1 \langle Q\Lambda, \Psi^2 \rangle = -\alpha_1 \langle \{\Psi, \Lambda\}, Q\Psi \rangle. \tag{12}$$

Here, due to the restriction (11), a term of the form

$$\delta S = \langle B, Q\Psi \rangle$$

can be rewritten as

$$\delta S = \langle \Xi \eta B, XYQ\Psi \rangle$$
$$= \langle \langle \eta B, XYQ\Psi \rangle \rangle = \langle \langle X\eta B, YQ\Psi \rangle \rangle,$$

which can be cancelled by the variation of the kinetic term:

$$\delta S_R^{(0)} = - \langle \langle \delta \Psi, Y Q \Psi \rangle \rangle.$$

if we take $\delta \Psi = X \eta B$. From (12), we obtain

$$\delta_{\Lambda}^{(1)}\Psi = -\alpha_1 X \eta \{ \Psi, \Lambda \}.$$

This $\delta\Psi$ is consistent with the restriction:

$$\eta \, \delta \Psi = 0 \,, \qquad XY \delta \Psi = \delta \Psi \,.$$

On the hand, the variation under $\delta_{\Omega}^{(0)}\Phi$ is given by

$$\delta_{\Omega}^{(0)} S_R^{(1)} = \alpha_1 \langle \eta \Omega, \Psi^2 \rangle = \alpha_1 \langle \Omega, (\eta \Psi) \Psi - \Psi (\eta \Psi) \rangle = 0.$$

Hence $\delta_{\Omega}^{(1)}\Psi=0$.

Similarly, the variation under $\delta_{\lambda}^{(0)}\Psi$ is given by

$$\delta_{\lambda}^{(0)} S_{R}^{(1)} = \alpha_{1} \langle \Phi, (Q\lambda) \Psi \rangle + \alpha_{1} \langle \Phi, \Psi (Q\lambda) \rangle$$

$$= -\alpha_{1} \langle [\Psi, \lambda], Q\Phi \rangle - \alpha_{1} \langle [\Phi, \lambda], Q\Psi \rangle$$

$$= -\alpha_{1} \langle [\Psi, \eta\Xi\lambda], Q\Phi \rangle - \alpha_{1} \langle [\Phi, \eta\Xi\lambda], Q\Psi \rangle$$

$$= \alpha_{1} \langle \{\Psi, \Xi\lambda\}, Q\eta\Phi \rangle + \alpha_{1} \langle \{\eta\Phi, \Xi\lambda\}, Q\Psi \rangle,$$

which can be canceled by

$$\delta_{\lambda}^{(1)}\Phi = \alpha_1 \{\Psi, \Xi \lambda\}, \qquad \delta_{\lambda}^{(1)}\Psi = \alpha_1 X \eta \{\eta \Phi, \Xi \lambda\}.$$

Quartic order:

Let us construct $S_R^{(2)}$ such that

$$\delta^{(0)}S_R^{(2)} + \delta^{(1)}S_{NS}^{(1)} + \delta^{(1)}S_R^{(1)} + \delta^{(2)}S_{NS}^{(0)} + \delta^{(2)}S_R^{(0)} = 0.$$

The variation of $S_R^{(1)}$ under $\delta_\Lambda^{(1)}$ is given by

$$\begin{split} \delta_{\Lambda}^{(1)} S_{R}^{(1)} &= -\alpha_{1}^{2} \langle \Phi, (X\eta \{\Psi, \Lambda\}) \Psi \rangle - \alpha_{1}^{2} \langle \Phi, \Psi (X\eta \{\Psi, \Lambda\}) \rangle \, . \\ &- \frac{\alpha_{1}}{2} \langle [\Phi, Q\Lambda], \Psi^{2} \rangle \end{split}$$

Using $X = \{Q, \Xi\}$, we can rewrite it as

$$\begin{split} \delta_{\Lambda}^{(1)} S_{R}^{(1)} &= \alpha_{1}^{2} \langle Q \Lambda, \{ \Psi, \Xi \{ \eta \Phi, \Psi \} \} \rangle + \frac{\alpha_{1}}{2} \langle Q \Lambda, [\Phi, \Psi^{2}] \rangle \\ &+ \alpha_{1}^{2} \langle \{ \Psi, \Xi \{ \Psi, \Lambda \} \}, Q \eta \Phi \rangle + \alpha_{1}^{2} \langle \{ \eta \Phi, \Xi \{ \Psi, \Lambda \} \}, Q \Psi \rangle \\ &+ \alpha_{1}^{2} \langle \{ \Xi \{ \eta \Phi, \Psi \}, \Lambda \}, Q \Psi \rangle. \end{split}$$

From the first term on the right-hand side we can guess

$$S_R^{(2)} = \alpha_2 \langle \Phi, \{\Psi, \Xi \{\eta \Phi, \Psi\}\} \rangle,$$

with a constant α_2 to be determined. From the variation of $S_R^{(2)}$ under $\delta_\Lambda^{(0)}\Phi$,

$$\delta_{\Lambda}^{(0)} S_R^{(2)} = 2 \alpha_2 \langle Q\Lambda, \{\Psi, \Xi \{\eta\Phi, \Psi\}\} \rangle - \alpha_2 \langle Q\Lambda, [\Phi, \Psi^2] \rangle,$$

we find

$$\delta_{\Lambda}^{(0)} S_{R}^{(2)} + \delta_{\Lambda}^{(1)} S_{R}^{(1)} = \langle \{\Psi, \Xi \{\Psi, \Lambda\}\}, Q \eta \Phi \rangle + \langle \{\eta \Phi, \Xi \{\Psi, \Lambda\}\}, Q \Psi \rangle + \langle \{\Xi \{\eta \Phi, \Psi\}, \Lambda\}, Q \Psi \rangle.$$

$$(13)$$

if we take

$$\alpha_1 = -1, \qquad \alpha_2 = -\frac{1}{2}.$$

(13) can be cancelled by

$$\begin{split} \delta_{\Lambda}^{(2R)} \Phi &= \left\{ \Psi, \Xi \left\{ \Psi, \Lambda \right\} \right\}, \\ \delta_{\Lambda}^{(2)} \Psi &= X \eta \left\{ \Xi \left\{ \eta \Phi, \Psi \right\}, \Lambda \right\} + X \eta \left\{ \eta \Phi, \Xi \left\{ \Psi, \Lambda \right\} \right\}. \end{split}$$

Similarly, the variation of $S_R^{(1)}$ and $S_R^{(2)}$ under $\delta_\Omega^{(1)}\Phi$ are given by

$$\delta_{\Omega}^{(1)} S_R^{(1)} = \; - \; rac{1}{2} \, \langle \, [\, \Phi, \eta \Omega \,], \Psi^2 \,
angle = rac{1}{2} \, \langle \, \eta \Omega, [\, \Phi, \Psi^2 \,] \,
angle \, ,$$

and

$$\begin{split} \delta_{\Omega}^{(0)} S_{R}^{(2)} &= -\frac{1}{2} \langle \eta \Omega, \{ \Psi, \Xi \{ \eta \Phi, \Psi \} \} \rangle \\ &= -\frac{1}{2} \langle \eta \Omega, \{ \Psi, [\Phi, \Psi] \} \rangle = -\frac{1}{2} \langle \eta \Omega, [\Phi, \Psi^{2}] \rangle, \end{split}$$

respectively. From

$$\delta_{\Omega}^{(0)} S_R^{(2)} + \delta_{\Omega}^{(1)} S_R^{(1)} = 0,$$

we have

$$\delta_\Omega^{(2R)}\Phi=0\,,\qquad \delta_\Omega^{(2)}\Psi=0\,.$$

Finally, the variation $\delta_{\lambda}^{(1)}S_{NS}^{(1)}$ is given by

$$\begin{split} \delta_{\lambda}^{(1)} S_{NS}^{(1)} &= \; -\frac{1}{2} \, \langle \, \delta_{\lambda}^{(1)} \Phi, \{ Q \Phi, \eta \Phi \} \, \rangle = \frac{1}{2} \, \langle \, \{ \Psi, \Xi \lambda \, \}, \{ Q \Phi, \eta \Phi \} \, \rangle \\ &= \; -\frac{1}{2} \, \langle \, \Xi \lambda, [\, \{ Q \Phi, \eta \Phi \}, \Psi \,] \, \rangle \, . \end{split}$$

While the variation $\delta_{\lambda}^{(1)}S_{R}^{(1)}$ is given by

$$\begin{split} \delta_{\lambda}^{(1)} S_{R}^{(1)} &= \langle \{\Psi, \Xi \lambda \}, \Psi^{2} \rangle \\ &+ \langle \Phi, (X \eta \{ \eta \Phi, \Xi \lambda \}) \Psi \rangle + \langle \Phi, \Psi (X \eta \{ \eta \Phi, \Xi \lambda \}) \rangle \,. \end{split}$$

The first term on the right-hand side vanishes:

$$\langle \{\Psi, \Xi \lambda \}, \Psi^2 \rangle = -\langle \Xi \lambda, \Psi^3 \rangle + \langle \Xi \lambda, \Psi^3 \rangle = 0.$$

The remaining terms are summarized as

$$\begin{split} \delta_{\lambda}^{(1)} S_{R}^{(1)} &= \; - \; \langle \, \eta \Phi, (\{Q, \Xi\} \; \{ \; \eta \Phi, \Xi \lambda \; \} \;) \, \Psi \, \rangle + \langle \, \eta \Phi, \Psi \, (\{Q, \Xi\} \; \{ \; \eta \Phi, \Xi \lambda \; \} \;) \, \rangle \\ &= \; \langle \, \Xi \lambda, [\; \eta \Phi, \{Q, \Xi\} \; \{ \; \eta \Phi, \Psi \} \;] \, \rangle \; . \end{split}$$

Similarly, we find

$$\begin{split} \delta_{\lambda}^{(0)} S_{R}^{(2)} &= -\frac{1}{2} \langle \Phi, \{Q \eta \Xi \lambda, \Xi \{\eta \Phi, \Psi\}\} \rangle - \frac{1}{2} \langle \Phi, \{\Psi, \Xi \{\eta \Phi, Q \eta \Xi \lambda\}\} \rangle \\ &= \langle \Xi \lambda, Q \{\eta \Phi, \Xi \{\eta \Phi, \Psi\}\} \rangle + \frac{1}{2} \langle \Xi \lambda, Q \{ [\Phi, \eta \Phi], \Psi \} \rangle, \end{split}$$

by rewriting $Q\lambda$ as $Q\eta\Xi\lambda$. Then

$$\begin{split} &\delta_{\lambda}^{(1)}S_{NS}^{(1)} + \delta_{\lambda}^{(1)}S_{R}^{(1)} + \delta_{\lambda}^{(0)}S_{R}^{(2)} \\ &= -\frac{1}{2} \left\langle \Xi \lambda, \left[\left\{ Q \Phi, \eta \Phi \right\}, \Psi \right] \right\rangle + \left\langle \Xi \lambda, \left[\eta \Phi, \left\{ Q, \Xi \right\} \left\{ \eta \Phi, \Psi \right\} \right] \right\rangle \\ &+ \left\langle \Xi \lambda, Q \left\{ \eta \Phi, \Xi \left\{ \eta \Phi, \Psi \right\} \right\} \right\rangle + \frac{1}{2} \left\langle \Xi \lambda, Q \left\{ \left[\Phi, \eta \Phi \right], \Psi \right\} \right\rangle \\ &= - \left\langle \left\{ \Psi, \Xi \left\{ \eta \Phi, \Xi \lambda \right\} \right\} + \left\{ \Xi \left\{ \eta \Phi, \Psi \right\}, \Xi \lambda \right\}, Q \eta \Phi \right\rangle + \frac{1}{2} \left\langle \left[\Phi, \left\{ \Psi, \Xi \lambda \right\} \right], Q \eta \Phi \right\rangle \\ &- \left\langle \left\{ \eta \Phi, \Xi \left\{ \eta \Phi, \Xi \lambda \right\} \right\}, Q \Psi \right\rangle - \frac{1}{2} \left\langle \left\{ \left[\Phi, \eta \Phi \right], \Xi \lambda \right\}, Q \Psi \right\rangle. \end{split}$$

These terms can be canceled by

$$\begin{split} \delta_{\lambda}^{(2)} \Phi &= \, - \, \{ \Psi, \Xi \, \{ \eta \Phi, \Xi \lambda \} \} \, - \, \{ \, \Xi \, \{ \eta \Phi, \Psi \}, \Xi \lambda \} \, + \, \frac{1}{2} \, [\, \Phi, \, \{ \Psi, \Xi \lambda \} \,] \, , \\ \delta_{\lambda}^{(2)} \Psi &= \, - \, X \eta \, \{ \, \eta \Phi, \Xi \, \{ \eta \Phi, \Xi \lambda \} \} \, - \, \frac{1}{2} \, X \eta \, \{ [\, \Phi, \, \eta \Phi \,], \Xi \lambda \} \, . \end{split}$$

A summary so far:

NS action:

$$S_{NS} = \frac{1}{2} \langle Q\Phi, \eta\Phi \rangle + \frac{1}{6} \langle Q\Phi, [\Phi, \eta\Phi] \rangle + \frac{1}{24} \langle Q\Phi, [\Phi, [\Phi, \eta\Phi]] \rangle + \cdots$$

Ramond action:

$$S_R = -\frac{1}{2} \langle\!\langle \Psi, YQ\Psi \rangle\!\rangle - \langle \Phi, \Psi^2 \rangle - \frac{1}{2} \langle \Phi, \{\Psi, \Xi \{\eta\Phi, \Psi\}\} \rangle + \cdots$$

The gauge tf. with Λ :

$$\delta_{\Lambda} \Phi = Q \Lambda - \frac{1}{2} [\Phi, Q \Lambda] + \frac{1}{12} [\Phi, [\Phi, Q \Lambda]] + \{\Psi, \Xi \{\Psi, \Lambda\}\} + \cdots,$$

$$\delta_{\Lambda} \Psi = X \eta \{\Psi, \Lambda\} + X \eta \{\Xi \{\eta \Phi, \Psi\}, \Lambda\} + X \eta \{\eta \Phi, \Xi \{\Psi, \Lambda\}\} + \cdots.$$

The gauge tf. with Ω :

$$\delta_{\Omega}\Phi = \eta\Omega + \frac{1}{2} [\Phi, \eta\Omega] + \frac{1}{12} [\Phi, [\Phi, \eta\Omega]] + \cdots,$$

$$\delta_{\Omega}\Psi = 0 + \cdots,$$

The gauge tf. with λ :

$$\begin{split} \delta_{\lambda}\Phi &= -\left\{\Psi,\Xi\lambda\right\} - \left\{\Psi,\Xi\left\{\eta\Phi,\Xi\lambda\right\}\right\} \\ &- \left\{\Xi\left\{\eta\Phi,\Psi\right\},\Xi\lambda\right\} + \frac{1}{2}\left[\Phi,\left\{\Psi,\Xi\lambda\right\}\right] + \cdots, \\ \delta_{\lambda}\Psi &= Q\lambda - X\eta\left\{\eta\Phi,\Xi\lambda\right\} \\ &- X\eta\left\{\eta\Phi,\Xi\left\{\eta\Phi,\Xi\lambda\right\}\right\} - \frac{1}{2}X\eta\left\{\left[\Phi,\eta\Phi\right],\Xi\lambda\right\} + \cdots. \end{split}$$

3. Complete gauge invariant action

We finally obtain a complete action S as

$$S = -\frac{1}{2} \langle\!\langle \Psi, YQ\Psi \rangle\!\rangle - \int_0^1 dt \,\langle A_t(t), QA_\eta(t) + (F(t)\Psi)^2 \rangle,$$

where linear map F is given by

$$F(t)\Psi = \Psi + \Xi \{A_{\eta}(t), \Psi\} + \Xi \{A_{\eta}(t), \Xi \{A_{\eta}(t), \Psi\}\} + \dots$$

$$= \sum_{n=0}^{\infty} \Xi \{A_{\eta}(t), \Xi \{A_{\eta}(t), \dots, \Xi \{A_{\eta}(t), \Psi\} \dots\}\},$$

which satisfies $D_{\eta}F = F\eta$.

We can show that the action S is invariant under the gauge tf.

$$(\delta e^{\Phi})e^{-\Phi} = Q\Lambda + D_{\eta}\Omega + \{F\Psi, F\Xi (\{F\Psi, \Lambda\} - \lambda)\},$$

$$\delta\Psi = Q\lambda + X\eta F\Xi D_{\eta} (\{F\Psi, \Lambda\} - \lambda).$$

4. Supersymmetry [Kunitomo, in priparation]

Perturbative construction

At the linearized level

$$\delta^{(0)}_{\mathcal{Q}}\Phi \ = \ \mathcal{Q}\Xi\Psi, \qquad \delta^{(0)}_{\mathcal{Q}}\Psi \ = \ X\mathcal{Q}\eta\Phi \, ,$$

where

$${\cal Q} \; = \; \epsilon_{lpha} q^{lpha} \,, \qquad q^{lpha} \; = \; \oint rac{dz}{2\pi i} \, \sigma^{lpha}(z) e^{-rac{\phi}{2}}(z) \,.$$

Requiring the invariance, we find

$$\begin{split} \delta_{\mathcal{Q}}^{(1)} \Phi &= \frac{1}{2} [\Phi, \mathcal{Q} \Xi \Psi] - \mathcal{Q} \Xi [\Phi, \Psi] + \{\Psi, \Xi \mathcal{Q} \Phi\} \,, \\ \delta_{\mathcal{Q}}^{(1)} \Psi &= -\frac{1}{2} X \eta [\Phi, \mathcal{Q} \Phi] + X \eta [\Phi, \Xi \mathcal{Q} \eta \Phi] \,. \end{split}$$

$$\begin{split} \delta_{\mathcal{Q}}^{(2)} \Phi \; &= \frac{1}{12} [\Phi, [\Phi, \mathcal{Q}\Xi\Psi]] - [\Xi[\Phi, \Psi], \Xi\mathcal{Q}\eta\Phi] + \frac{1}{2} [\Xi[\Phi, \Psi], \mathcal{Q}\Phi] \\ &\quad + \frac{1}{2} \{ [\Phi, \Psi], \Xi\mathcal{Q}\Phi\} + \frac{1}{2} \{ \Psi, \Xi\{\eta\Phi, \Xi\mathcal{Q}\Phi\}\} + \frac{1}{2} \{ \Psi, \Xi[\Phi, \Xi\mathcal{Q}\eta\Phi]\} \\ &\quad - \frac{1}{2} \mathcal{Q}\Xi[\Phi, \Xi\{\eta\Phi, \Psi\}] - \frac{1}{2} \mathcal{Q}\Xi[\eta\Phi, \Xi[\Phi, \Psi]] \;, \\ \delta_{\mathcal{Q}}^{(2)} \Psi \; &= \frac{1}{6} X \eta [\Phi, [\Phi, \mathcal{Q}\Phi]] + \frac{1}{2} X \eta [\Phi, \Xi[\mathcal{Q}\Phi, \eta\Phi]] + \frac{1}{2} X \eta \{ \eta\Phi, \Xi[\Phi, \Xi\mathcal{Q}\eta\Phi]\} \\ &\quad + \frac{1}{2} X \eta [\Phi, \Xi[\eta\Phi, \Xi\mathcal{Q}\eta\Phi]] \;, \end{split}$$

and so on. We can finally find the action is invariant under

$$A_{\delta_{\mathcal{Q}}} = g(\mathcal{Q}\Xi(g^{-1}F\Psi g))g^{-1} + \{F\Psi, F\Xi A_{\mathcal{Q}}\},$$

$$\delta_{\mathcal{Q}}\Psi = X\eta F\Xi D_{\eta}A_{\mathcal{Q}},$$

where

$$A_{\delta_{\mathcal{Q}}} = (\delta_{\mathcal{Q}}g)g^{-1}, \qquad A_{\mathcal{Q}} = (\mathcal{Q}g)g^{-1}.$$

We can show that it satisfies the algebra

$$\begin{split} A_{[\delta_{\mathcal{Q}_{1}},\delta_{\mathcal{Q}_{2}}]} &= f\xi \left(QA_{p_{12}} + [F\Psi,F\Xi \left(p_{12}F\Psi + [F\Psi,A_{p_{12}}] \right)] \right) \\ &\quad + Q\Lambda_{12} + \{F\Psi,F\Xi \{F\Psi,\Lambda_{12}\}\} + D_{\eta}\Omega_{12} \,, \\ [\delta_{\mathcal{Q}_{1}},\delta_{\mathcal{Q}_{2}}]\Psi &= X\eta F\Xi \left(p_{12}F\Psi + [F\Psi,A_{p_{12}}] \right) \\ &\quad + X\eta F\Xi D_{\eta} \{F\Psi,\Lambda_{12}\} \,, \end{split}$$

up to EOM, where

$$p_{12} = -[Q_1, Q_2] = (\epsilon_1 C \bar{\gamma}_{\mu} \epsilon_2) \oint \frac{dz}{2\pi i} \psi^{\mu}(z) e^{-\phi(z)},$$

and $A_{p_{12}} = (p_{12}g)g^{-1}$. The linear map f acts on the NS string field A as

$$fA = \frac{1}{1 - \xi(\eta - D_{\eta})}A.$$

The gauge parameters Λ_{12} and Ω_{12} are given by

$$\begin{split} \Lambda_{12} &= f \xi (\mathcal{Q}_{1} F \Xi \mathcal{Q}_{2} A_{\eta} - \mathcal{Q}_{2} F \Xi \mathcal{Q}_{1} A_{\eta} - [F \Xi \mathcal{Q}_{1} A_{\eta}, F \Xi \mathcal{Q}_{2} A_{\eta}]) + f \xi A_{p_{12}}, \\ \Omega_{12} &= \delta_{\mathcal{Q}_{1}} \Omega_{\mathcal{Q}_{2}} - [A_{\delta_{\mathcal{Q}_{1}}}, \Omega_{\mathcal{Q}_{2}}] - \delta_{\mathcal{Q}_{2}} \Omega_{\mathcal{Q}_{1}} + [A_{\delta_{\mathcal{Q}_{2}}}, \Omega_{\mathcal{Q}_{1}}] + [\Omega_{\mathcal{Q}_{1}}, D_{\eta} \Omega_{\mathcal{Q}_{2}}] \\ &- f \xi \left(Q \Lambda_{12} + \{ F \Psi, F \Xi \{ F \Psi, \Lambda_{12} \} \} \right), \end{split}$$

with

$$\Omega_{\mathcal{Q}} = f\xi \left(g(\mathcal{Q}\Xi(g^{-1}F\Psi g))g^{-1} + \{F\Psi, F\Xi A_{\mathcal{Q}}\} \right) ,$$

5. Summary and discussion

Summary:

- ♠ We have constructed complete gauge invariant action, including both the NS and Ramond sectors, for open superstring field theory.
- ↑ The key points are to utilize the large Hilbert space and to restrict the Ramond string field. The gauge symmetry is compatible with the restriction.

Remaining tasks:

- ★ Confirm the perturbative amplitudes are correctly reproduced. For tree level 4- and 5-point amplitudes, Kunitomo, Okawa, Sukeno, and Takezaki, in preparation.
- \bigstar Quantize à la Batalin-Vilkovisky. Compute loop amplitudes. A_{∞} structure is usefuel. [Erler-Okawa-Takezaki, arXiv:1602.02582]
- ★ Extend the formulation to heterotic string field theory.

 Partially given by [Goto, and Kunitomo, arXiv:1606.07194]
- ★ Clarify the relation to the Sen's formulation.
- ★ Extend the formulation to type II string field theory.

 Study Ramond-Ramond sector, (and also AdS/CFT?).

The susy tf. can be rewritten as

$$A_{\delta_{\mathcal{Q}}} = f\xi(\mathcal{Q}F\Psi + [F\Psi, F\Xi\mathcal{Q}A_{\eta}]) + D_{\eta}\Omega_{\mathcal{Q}},$$

$$\delta_{\mathcal{Q}}\Psi = X\eta F\Xi\mathcal{Q}A_{\eta},$$

with

$$\Omega_{\mathcal{Q}} = f\xi \left(g(\mathcal{Q}\Xi(g^{-1}F\Psi g))g^{-1} + \{F\Psi, F\Xi A_{\mathcal{Q}}\} \right),$$

up to EOM. [Erler, private communication]