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Introduction

String theory : strong candidate for unified theory including QG

M theory : one of the aspects of the string theory

) supermembrane theory in 11D spacetime

) the random walk of a membrane (random volumes)

Random volume theory : 3D QG theory coupled to scalar fields

Z= 3 [ DgaslDX)e

topologies

S = /dga\/g(/\ + kR + go‘ﬁaaX“QgXM>

In this talk, we discuss the discretized approach to random volume theory.



Introduction

Discretized approach (random surfaces)

Random surface theory : 2D QG theory coupled to scalar fields

Z= )Y /[Dgag][DX]e_S

topologies

S = / d20\/§<A + KR+ go‘ﬁﬁaX“(?BXu>

We approximate 2D surfaces as triangular decompositions:

=

2D closed surface triangular decomposition
_ —S
Then log Z is defined as the sum of log Z = Z €
all distinct connected triangular decompositions. triangular

decompositions

We now consider the model such that
the free energy can be realized as the sum of triangular decompositions.



Introduction

Discretized approach (random surfaces)

This form of free energy can be obtained by the matrix models.

1 A

S(M) = 5trM? — gtrM?’
log Z = Z e ”
1 A
= — iiji — _MiijkMki triangu'la.r
2 3 decompositions

M = (M;;) : Hermitian matrix

Feynman rules Feynman diagram

(M;; My1)o = 610k ‘;ili

I:> This model dynamically generates
triangular decompositions.



Introduction

Discretized approach (random surfaces)

1 5 A 3 Lo A o3
_ 2 _ 2 S = ZtrX? — ZtrX
S(M) 2trM 3tlr]\/[ 5t 5 U
1 A 1 A
= §Mz’iji - gMz'ijkMki [> = 55’3@2 3 3
M = (M;;) : Hermitian matrix X = diag(x1,...,xN)
This model can be solved analytically:
diagonalization : effective action :
1 {X = diag(z1, ..., TN)
M=UXU U € U(N) 7 — / (H d$i> o~ Sett (X)
(dM) = (H dxi> (dU) 1_[(:15Z — x;)? Set(X) = 5(X) — 221n|x¢ — T,
i i<j i<j

=

Large IV analysis can be performed by the saddle point method.



Introduction

Discretized approach of 3D random volumes

The discretized approach to 3D random volume theory
can be obtained in the similar way as that of 2D random surface theory.

We approximate 3D volumes as tetrahedral decompositions:

closed 3D volume tetrahedral decomposition
Then log Z is defined as the sum of log Z = Z e~ S
all distinct connected tetrahedral decompositions tetrahedral

of 3D manifolds. decompositions



One approach (tensor models)

Matrix models

1 A
S(M) = EtI'MQ — gtrM?)
1 A

=3 ijMji — §MiijkMkz‘

M = (M;;): Hermitian matrix

triangular decompositions

[Ambjorn et al.-Sasakura 1991]

Tensor models

1

A
- Z ijkamleanTlni

T = (T;;%) : tensor

(TijeTimn)o = 0410 jmOkn + cyclic

tetrahedral decompositions



One approach (tensor models)

Matrix models Tensor models

Analytic property Analytic property
diagonalization

M=Ux0 2ot

(dM) = (H da:z) dU) ] [z — 25)?

effective action no such ana|0gues

:> large NV analysis can be performed
by the saddle point method

We propose a new class of “matrix models”
which generate 3D random volumes.
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The models (triangle-hinge models)

Main idea

Using triangles (instead of tetrahedra) as building blocks.

That is, we decompose a tetrahedral decomposition to
a collection of triangles glued together along multiple hinges.

[cf: Chung-Fukuma-Shapere 1993]

—>

tetrahedral decomposition



The models (triangle-hinge models)

Strategy

We construct tetrahedral decompositions in the following steps:

(1) Decompose a tetrahedral decomposition
to a collection of triangles and hinges

(2) Assign real numbers C*/% and Y7, .1, :

triangles k - hinges \<
RN
I Ieo1in N
OLEELINN < Yoo~ 0|
T\, AT
7 : :
N



Here, C'7/% and Y7, .. .1, have two symmetries:

The properties of C17 % and Y 1.

(1) rotation: these are cyclically symmetric. A A A

OLIK _ (JKI _ (KIJ
Y, n.=Yn 1., =

(2) flip: these are invariant under flipping.

{ CHUNT, Ty Ty = O
TIl i 'TIk kYJl---Jk — Ylk...Il

J : . . . . : .
Here, 17" ~ IA YJ isthe “direction revering tensor”, which satisfies T2 =1,

—



The models (triangle-hinge models)

Strategy

(3) Reconstruct the original tetrahedral decomposition
by gluing triangles and hinges along edges ‘
with the tensors ;7 and T,/

T T 1
|

J s ; | ' reconstruct
677 ~ Ip A4 T,7 ~ Ip VIV

—l [ —

same direction opposite direction

(4) Assign Boltzmann weight w(7) to diagram 7

w(v)zﬁ > I 7= 11 Yn.n®

7) {indices} | f: triangle h: hinge

The indices are contracted when two edges are identified
(1, " to be inserted when necessary )



The models (triangle-hinge models)
Model definition (strategy)

dynamical variables
A= (4;), B= (B with A;=T,7A;, B' =B/T!

action

1 A\ Mk
S(A.B) = ~A;BT — ZCHE A, A, A — Dhph  Bhvy
( ) ) 2 I 6 11 JAK l; Qk I,...1;

Feynman rules A T A T

N A A+ IA WY

! K = ) \CO!/K aE |
~N L ~N L
7
glued: (A;B7)g =6, +1,”
N Loy |
hoia | h 56" +T;7) : projection matrix

wa | g = Y, N

Mh
/< A, B : invariantunder T




The models (triangle-hinge models) \ .
N

I KA o
. . . . I A Al
Triangles and hinges have orientations. > | j
ol
[> In order to represent the orientations, 1.7
we set the index I to be double index; I = (i, 7). I = . -1
(A7, B! :singleindex (Al B" . double index
O1TK O (23) (kL) (mn)
\ \
YIlj"I"’ Y('ukﬁ) (%kljk)
11 TN =000
1 I ALK 1 A
S(A,B) =5 AiB' — O AL A Ak S(A, B) = Ay B* — —C(”)(kl)(m”)AijAklAmn

-5 Bfl By, =2 GBI BYM Y )
>2 k>2



The models (triangle-hinge models)

Algebraic construction

The building blocks ¢ and Y(;, ;.)...¢i.j.) Can be obtained
from a semisimple associative algebra A.

linear space with product 7 x”
satisfying associativity : (a x b) x c=a x (b x ¢)

In the following, we take a basis {€:} (A = @Rez) :

k k
The product is expressed as €; X €5 = ¥, €x (Y;; : structure constants)
k
Yi; have two important properties.

(1) associativity
(61' X ej) X € = ¢€; X (6j X ek)

k I __ l m — Jk J1 Jk—1
Yij Ymk = Yim Y5 | ™ Yiriw = Yig Yings - Yinia

cyclically symmetric i el

1 [ ) [
m _ ) .
J kK J k E ] :

19 X
13



The models (triangle-hinge models)

(2) metric I
9ij = yik:lyjlk = i—J= 73407]'
k
A is semisimple ¢ 9= (9i;) has 9 = (¢9") [Fukuma-Hosono-Kawai 1994]

Y(i1j1)...(injr) €an be defined as

Y1) Grgr) = Yir..inYju...j1

And we can choose CWFIm™) o

C(zg)(kl)(mn) _ gjkglmgni

O (kD (mn) — (k) (mn)(i5) — (1(mn)(i) (ki)

rotation :
{ Y(irj1)Cingn) = Y(inga).-(injn) (Grj1) = - -

These have the symmetries B )
fi { O (3) (k1) (mn) — (nm)(lk)(ji)
ip:

}/(iljl)"'(ikjk) — }/(jkik:)---(jlil)



The models (triangle-hinge models)
Model definition (summary)

This model is characterized by an associative algebra A .

dvnamical variables

A = (Ai;), B=(BY) : real symmetric matrices

action
1 i A ik imomi HE i151 kK
S(A,B) = iAijB 99"y Aij At Amn — or Yirir¥in.n B B
k>2
Here, Yir..in =Y, Yisss” - ¥ "" and g~ = (g"7) is the inverse of 9 = (i) .

algebraic properties

(1) associativity

1 [ 1 [
k
J koJ k
[

(2) metric

_ k . . . .
9ij = Yir Uj. - i—j=i 4@7]

k
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General forms of the free energy
Index function and index networks

A ik Im ni

Mk
2k

k>2

1 y .
S(4,B) = ;A BY — iy inYjp...jn B BRI

The free energy of this model has the following form:

(v : connected diagram

log Z/ = )\52(7 T (7) S(v) : symmetry factor
5 Z S ]guk F) ) 5 s2(7) : # of triangles
sT(Y) : #of k -hinges

F(v) : afunction of 9 and ¥Yir".ix (thus a function of ¥;; )

\

“index function of diagram 7 ”

We claim :

F(7) is given as the product of 2D topological invariants,
which are defined around the vertices of the diagram 7 .



General forms of the free energy
This fact can be shown in two steps:

(1) F (=) is given as the product of the contributions from vertices :

Fy= ]I <

v: vertex of ~

The index lines on two different hinges
are connected (through an intermediate triangle)
if and only if the hinges share the same vertex of 7 .

-

The connected components of the index lines (index network) index lines
have a one-to-one correspondence to the vertices of 7 .

» Foy= ] <)

v: vertex of =

Each connected component of the index networks
can be regarded as a closed 2D surface enclosing a vertex.

>(v) (not necessarily a sphere)

index network




General forms of the free energy

This fact can be shown in two steps:

(2) Each contribution ¢(v) is a 2D topological invariant
of the 2D closed surface enclosing the vertex v :

C(v) =Zge) (9(v): genus of the 2D surface)

The contribution ¢(v) for the index network around v
is invariant under the following deformations:

N [ l
>ﬂ< = )E (associativity)
J ko J k
[
i—J =1 4@7 J  (definition of metric)
\.

k

<

These deformations generate 2D topology-preserving local moves. [Fukuma-Hosono-Kawai 1994]

|:> ¢(v) is the 2D topological invariant of X(v) associated with A .

C(v) =Ly A] (9(v): genusof X(v) )
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Matrix ring

Matrix ring

In this section, we discuss a simple (and important) example of associative algebra A .

Set A to be a matrix ring: A = M, (R) = @Reab (€ab X €cd = Opc€ad)
a,b

the set of n X n real matrices the usual matrix product

Then the variables in the model can be illustrated as the thickened diagrams.

¥ bed _ bed __ dab
Aij? B Aabcd7 Bavc (Aabcd — Acdab; Bt = peaa )
yzlzk yalbl...akbk — n5b1a2 5[)2a3 e 5bka1
gzg gabcd — %5ad5bc
interaction terms interaction terms
T i ol b e
Je—=10 1 g, T
]k:\ uj d1'/ Clll
|l/ 1 J1 \/




Matrix ring

Model definition (matrix ring)

dynamical variables
A= (Aabcd)a B = (Bade) (Aabcd, — Acdaba Bade — BCdab)

action
1 abed >\ n2/’l’k a1a2b2b1 a2a3b3b2 akalblbk
S(Aa B) — §Aabch - 6FA’élbacdléldcefAAfeab — Z WB B ...B
k>2
Feynman rules
a de, h a dg, f
— %5d1a25d2a3 §dsar gbscz ghaci ghics bcj}% bCh‘@e

glued: (Agpeq B 9o =6,%6,76.96," +6,96,"5.%5 7

az

5 2
ck N S d2 =N Mk5b1a2 .« . 6bka1 6dkck—1 .« . 5dlck

dl' ¢l




Matrix ring

In this case, we can calculate ¢((v) = Z,) exactly.

action
1 A

2

n

S(A,B) _ §Aabchade . @AbachdcefAfeab . Z %Bcnazbzln Ba2a3b3b2 o Bakalblbk
k>2

The n dependence appears in three ways (from index loops, triangles and hinges).

* Each mde-x network bfecomes a collection of index loops, » #{polygon}
and each index loop gives the factor n polygon

é segment (1/3 of a triangle)

junction (1/2 of a hinge)

. . -3
e Each triangle gives the factor 7 ~ and each triangle gives three segments » n,~ 7 {segment}

«  Each hinge has the factor n* and each hinge gives two junctions » n 7 tjunction}

# C(v) = n 7 ipolygon} —##{segment } +# {junction} __ 2—2g(v)
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Restricting to manifolds

Feynman diagrams

3D manifolds

- The set of connected diagrams

Not 3D manifolds

Some diagrams represent 3D manifolds:

(Two tetrahedra glued at four faces)

.. .

""""""""" >>

But some do not.

b
E A
L




Restricting to manifolds

Feynman diagrams

- The set of connected diagrams

3D manifolds

tetrahedral
decompositions

Not tetrahedral decompositions

There are diagrams which do not represent tetrahedral decompositions.

The free energy of 3D gravity:

>

tetrahedral
decompositions

of 3D manifold

[> We restrict diagrams to “tetrahedral decompositions of 3D manifold”.




Restricting to manifolds
How to restrict diagrams

Again we set A to be a matrix ring: A = Ms,,(R) (n = 3m)

and change the form of C :

(a1bicidi)(azgbacada)(asbscads) i diaz sdoas sdzay $bsca sbact sbics
C = ) ) ) 7324 )
3
mn
|:> C(alblCldl)(a2b202d2)(a3b3c3d3) — %wd1a2wdza3wd3a1wb302wb201w5103
n
o 1,, O
w = 0 o 1,,
1,, O 0

tr(w®) Every index loop becomes the trace of w.



Restricting to manifolds

o 1,, O
w = 0O 0 1, is the shift matrix.
1,, O 0

[ 3m (=0 mod 3)
»tr(wl)—{o (l#0 mod 3)

o n — oo (n = 3m)
If we take the limit n n2uy : fixed

m=) The dominant contributions : the diagrams with I = 3 for every index loop (*)

(to be proved in the next slide)

4

Each index loop represents a corner of a tetrahedron.

4

These diagrams represent tetrahedral decompositions.



Restricting to manifolds

Proof of (*)

We recall ¢ =3l and define the following numbers.

I s2(7y) : # of triangles th(v) : #of I-gons
i t1(v) : # of segments

st(v) : #of k - hinges
l so(y) : # of vertices t&(v) : #of k -junctions

mE) These satisfy D ta(v) =3sy, Y ti(v) =2sF, Y lth(v) =2t (v)

>3
The Boltzmann weight is expressed as
1 TT 5 - lygon 4
w(~y) = —— \52 LT 229 polyg
0 =g 1w 11 Ealia)
~ : segment
_ 1d(v)
1 5 14k (v) na2-29(v) /1) 59 \ (1/3 of a triangle)
“sll (H(A w500 (5) X
CE k>2 '«

Here, d(v) =2t;(v) —=3) th(v) => (I—3)th(v) >0

>3 >3

. e the limi n — oo (n = 3m)
If we take the limit %’ nQIuk: fixed junction
(1/2 of a hinge)

=) The dominant contributions : the diagrams with d(v) =0
¢&=) the diagrams with [ = 3 for every index loop



Restricting to manifolds

Triangle-hinge models generates 3D oriented tetrahedral decompositions.

Two triangles (upper and lower side of a thickened triangle)
always have opposite orientations.

If we define local orientation to each tetrahedron,
two tetrahedra glued at their faces
always have the same orientation.



Restricting to manifolds

The Boltzmann weight of the diagram 77 is expressed as
_ 3d(v)
_ ! 2 Vi | (7)20) (1)
we) = g5 11 [(H(x ) ) (5) ;

|:> If we further take the limit = o°,

. S : . \/
the dominant contributions: the diagrams with g(v) =0 for "v

@ The genus of X (v)

Each vertex of these diagrams has a neighborhood of S* .

This neighborhood is homeomorphic to B>. a

¥

These diagrams represent 3D manifolds. : ; > (v)
—

We can single out tetrahedral decompositions of orientable 3D manifolds
by taking the large " limit of the parameters.
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Assigning matter degrees of freedom

Assigning matter degrees of freedom

We have discussed 3D “pure gravity”.

In order to assign matter degres of freedom, A = Agrav @ Amatt
we set A to be a tensor product of algebras : C' = CgrayCmatt (factorized)

J4grav ::-A43W1<E§)

C'(a1bicidi)(az2bzcadz)(aszbsesds)

grav

iwdl agwdzagwdgal wb302wb261 wbl C3

ns

|:> The index function F () = F(7;.A) also factorizes :
‘/—-.(/7; A) — '/—-.(’77 Agrav)‘/—-.(’y; Amatt)

Agrav restricts the diagrams to tetrahedral decompositions of 3D manifold

Amatt can represent matter degrees of freedom

In the following, we only discuss Amatt (and omit the index of Agrav )



Assigning matter degrees of freedom

Set Amatt also to be a matrix ring :  Amatt = Mq(R) = @ Reqp

and choose C' to have the form :

q
AC(@1B17161)(@2B27202) (3 837303) — § /\aﬁp&a2p52a3p53qug?ﬁngz’hpgl’m
(0% 87 (6%

a,f=1

(pa)?? = 6,73, : projection matrix

The four index loops in each tetrahedron gives the factor

tr(palpagpag )tr(pagpalpoz4 )tr(palpozgpa4)tr(pozgpagpa4)

_ 1 (a1 =g =ag = ay)
0 (otherwise)

I:> Each tetrahedron has a single color.



Assigning matter degrees of freedom

q
Interaction term (Amate part) :  AC(@ A0 (ezfanede)(esfsists) — N (X gpdree pozes pdsen pfata pfart s
a,B=1

Feynman rules

(1) Assignacolora =1,...,q to each tetrahedron
(2) If two adjacent tetrahedra have colors a and 3, multiply Ao (Amatt part)

(3) Sum over all distinct tetrahedral decompositions of 3D manifold (Agrav part)

This is the ¢ -state spin system on 3D random volumes.

Example: ¢ = 2 4=) The Ising model coupled to 3D QG

Comment

In the similar way, we can put local spin systems
on simplices of arbitrary dimensions.

(tetrahedra, triangles, edges and vertices)



Summary

We proposed a new class of matrix models which generate 3D random volumes.

The models are characterized by semisimple associative algebras A .

Although most of the Feynman diagrams do not represent manifolds,

we can reduce the possible diagrams

to those representing tetrahedral decompositions of 3D manifolds.

We can assign matter degrees of freedom on simplices of any dimensions.

Future directions

Further developing the analytic treatment

Inventing a machinery to restrict the diagrams to a particular topology

Assigning matter degrees of freedom corresponding to
the target space coordinates X* and investigating the critical behaviors
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