Inflation through hidden Yukawa couplings in the extra dimension

Tetsutaro Higaki (Keio University)

Based on work (in progress) with Y. Tatsuta (Waseda).

What we want to focus on

An inflation model \leftrightarrow Symmetries

Planck unit in this talk

$$M_{\rm Pl} \simeq 2.4 \times 10^{18} {\rm GeV} \equiv 1.$$

Contents

- 1. Introduction: Review of inflation
- 2. Flat inflaton potential & symmetry
- 3. A UV completion in the string theory
- 4. Conclusion & discussion

1. Introduction: Review of inflation

Cosmic Microwave Background (CMB)

where T \sim 2.7 K.

[Planck collaborations]

Inflation: origin of CMB

Accelerating expansion of the universe

Planck satellite

Why inflation?

- Generating <u>density fluctuations</u> : ΔT/T ~ 10⁻⁵
 = seeds of galaxies (= those of us)
- Solutions for fine-tuning problems by the expansion
 - Flatness problem: $\Omega_{curvature} << 1$
 - Horizon problem : T \sim 2.7K in CMB all over the sky

(Flat) Freedman-Robertson-Walker metric

$$ds^2 = -dt^2 + a(t)^2 \delta_{ij} dx^i dx^j$$

a(t): Scale factor $H = \frac{\dot{a}}{a}$: Hubble parameter

Inflation driven by an inflaton $\boldsymbol{\varphi}$

• EOM

 $\ddot{\phi} + 3H\dot{\phi} + V' = 0$

• Friedman Eq.

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3}\left(\frac{1}{2}\dot{\phi}^2 + V\right)$$

• Slow-roll conditions

Inflation!!

$$V(\phi)$$
Slow roll
$$V_{inf}$$

$$\phi = \phi_{inf}$$

$$\epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \ll 1, \quad \eta = \frac{V''}{V} \ll 1$$

 $a \propto e^{Ht}$

Inflation driven by an inflaton φ

• EOM $\dot{\phi} \simeq -\frac{V'}{\mathbf{3}H}$ _^ V(φ) Slow roll • Friedman Eq. $H^2 = \left(\frac{\dot{a}}{a}\right)^2 \simeq \frac{1}{3}V$ V_{inf} $\phi = \phi_{inf}$ Slow-roll conditions $\frac{\dot{H}}{H^2} \ll 1, \quad \ddot{\phi} \ll H \dot{\phi}$ $\epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \ll 1, \quad \eta = \frac{V''}{V} \ll 1$ $a \propto e^{Ht}$ Inflation!!

Φ

Metric perturbation

• Perturbations to FRW metric:

$$ds^{2} = -dt^{2} + a(t)^{2} e^{2\zeta(t,\vec{x})} [\delta_{ij} + h_{ij}(t,\vec{x})] dx^{i} dx^{j}$$

ζ : Scalar perturbation from inflaton

h: Tensor perturbation

(gravitational wave itself from inflation energy V_{inf}) \rightarrow B-mode polarization in CMB photon

ζ = Inflaton's quantum fluctuation $\delta \varphi$

$$\left(\zeta \sim \frac{\delta \rho_{\phi}}{\rho_{\phi}} \sim H \delta t \sim \frac{H}{\dot{\phi}} \delta \phi \sim \frac{V^{3/2}}{V'} \right)$$

CMB fluctuation generated by inflaton

Theory and observations

$$P_{\zeta} \simeq \frac{2V}{3\pi^{2}r} \left(\frac{k}{k_{0}}\right)^{n_{s}-1}$$

$$n_{s} \simeq 1 - 3\left(\frac{V'}{V}\right)^{2} + 2\left(\frac{V''}{V}\right)$$

$$r \simeq 8\left(\frac{V'}{V}\right)^{2}$$

$$P_{\zeta}^{\text{obs}}(k = k_{0}) \simeq 2.5 \times 10^{-9}$$

$$k_{0} = 0.002 \text{Mpc}^{-1}$$

P_ζ: Power spectrum = (ΔT/T)² from scalar, $P_{\zeta} \simeq (\Delta T/T)^2_{\text{scalar}}$

 n_s : Spectral index = scale dependence of P_{ζ}

r: Tensor to scalar ratio = ($\Delta T/T$)² ratio of gravitational wave to scalar, $r \simeq \frac{(\Delta T/T)_{\text{tensor}}^2}{(\Delta T/T)_{\text{scalar}}^2}$

(n_s, r)-contour: focus on small r

[Planck 2015 collaborations]

0.25Planck 2013 Planck TT+lowP Planck TT, TE, EE+lowP 0.20Conver Natural inflation Hilltop quartic model Tensor-to-scalar ratio ($r_{0.002}$) 0.10 0.15 α attractors Concave $n_s = 0.968 \pm 0.006$ Power-law inflation Low scale SB SUSY R^2 inflation $V \propto \phi^3$ r < 0.11 (95% CL) $V \propto \phi^2$ $V \propto \phi^{4/3}$ $V \propto \phi$ 0.05 $V \propto \phi^{2/3}$ 1 $N_{*} = 50$ N_{*}=60 0.000.94 0.960.981.00Primordial tilt (n_s)

(n_s, r)-contour: focus on small r

[Planck 2015 collaborations]

2. Flat inflaton potential & symmetry

Inflaton potential: very small slope and curvature

Control of potential flatness by shift symmetry

• Shift symmetry $\phi \rightarrow \phi + \text{const.}$ for a flat inflaton potential:

$$\left[V(\phi) = 0 \right]$$

if the symmetry is exact.

Control of potential flatness by shift symmetry

• Shift symmetry $\phi \rightarrow \phi + const.$ for a flat inflaton potential:

 $V(\phi) = 0$ if the symmetry is exact.

 \succ Chaotic (monodromy) inflation: softly-broken only by a single scale μ

[Linde]; [Silverstein, Westphal]; [McAllister, Silverstein, Westphal]

$$V(\phi) = \mu^{4-n} \phi^n$$

Control of potential flatness by shift symmetry

• Shift symmetry $\phi \rightarrow \phi + const.$ for a flat inflaton potential:

 $V(\phi) = 0$ if the symmetry is exact.

 \succ Chaotic (monodromy) inflation: softly-broken only by a single scale μ

[Linde]; [Silverstein, Westphal]; [McAllister, Silverstein, Westphal]

$$V(\phi) = \mu^{4-n} \phi^n.$$

 \blacktriangleright Natural inflation: broken but a discrete shift symmetry below Λ [Freese, Frieman, Olinto]

$$\phi \to \phi + 2\pi f; \quad V(\phi) = \Lambda^4 \cos\left(\frac{\phi}{f}\right).$$

Natural inflation & discrete shift symmetry

Natural inflation: well-controlled by a discrete shift symmetry

$$\phi \to \phi + 2\pi f; \quad V = \Lambda^4 \cos\left(\frac{\phi}{f}\right).$$

Natural inflation & discrete shift symmetry

Natural inflation: well-controlled by a discrete shift symmetry

$$\phi \to \phi + 2\pi f; \quad V = \Lambda^4 \cos\left(\frac{\phi}{f}\right).$$

Natural inflation and f-dependence

• f \rightarrow small: ϕ_{inf} is near hilltop for a long slow-roll:

$$\phi_{\inf} \sim \pi f \to \epsilon \sim 0 \ll |\eta|.$$

• $f \rightarrow$ large: Chaotic inflation

$$V = \frac{m^2}{2}\phi^2$$
, $r = 0.16\left(\frac{50}{N}\right)$, $\epsilon = \eta = \frac{1}{2N}$

$$N = \log(a_f/a_{\inf}) = \int_{t_{\inf}}^{t_f} H dt \simeq \int_{\phi_f}^{\phi_{\inf}} \frac{V}{V'} d\phi \quad :\text{e-folding}$$

Natural inflation & discrete shift symmetry

Natural inflation: well-controlled by a discrete shift symmetry

$$\phi \to \phi + 2\pi f; \quad V = \Lambda^4 \cos\left(\frac{\phi}{f}\right).$$

Natural inflation for a small r?

Multi-natural inflation: a bottom-up approach

[Czerny, Takahashi]; [Czerny, TH, Takahashi]; [TH, Takahashi]; [Kobayashi, Takahashi]; [Czerny, Kobayashi, Takahashi]

• Modification for it: Adding cosine function(s) to natural inflation

$$V(\phi) = V_0 - \Lambda^4 \left[\cos\left(\frac{\phi}{f_1}\right) + B\cos\left(\frac{\phi}{f_2} + \theta\right) \right].$$

Multi-natural inflation: a bottom-up approach

[Czerny, Takahashi]; [Czerny, TH, Takahashi]; [TH, Takahashi]; [Kobayashi, Takahashi]; [Czerny, Kobayashi, Takahashi]

Modification for it: Adding cosine function(s) to natural inflation

$$V(\phi) = V_0 - \Lambda^4 \left[\cos\left(\frac{\phi}{f_1}\right) + B\cos\left(\frac{\phi}{f_2} + \theta\right) \right].$$

- r < 0.11
- $f_1, f_2 < M_{Pl}$ via a tuning: $B \sim (f_2/f_1)^2, \ \theta \sim -\pi (f_1/f_2)$
 - \rightarrow Good against weak gravity conjecture.

Cf. Possible to have a modulation for $f_1 >> f_2 \& B << 1$ (Running n_s).

A UV completion and compactification

• Q. How is this model controlled? :

> What are discrete symmetries for control?

> What are their origins?

• A. Discrete symmetry from compactification of extra dimension

3. A UV completion in the string theory

String theory as the origin of forces & matter

String theory compactification on torus

• Let 10D = 4D spacetime + 2d torus (T²) + X₄ (something)

String theory compactification on torus

• Let 10D = 4D spacetime + 2d torus (T²) + X₄ (something)

Consider intersecting D6-branes in IIA model; just one direction of D6 on T²

(Similarly, possible to consider magnetized D-branes in IIB model)

String theory compactification on torus

• Let 10D = 4D spacetime + 2d torus (T²) + X₄ (something)

- Consider intersecting D6-branes in IIA model; just one direction of D6 on T² (Similarly, possible to consider magnetized D-branes in IIB model)
- Inflation energy: SUSY-breaking by Izawa-Yanagida-Intriligator-Thomas (IYIT)

$$W = y_{ijk} X^{i} Y^{j} \Phi^{k} \quad \rightarrow \quad y_{ijk} \mathcal{M}^{ij} \Phi^{k} + Z \Big[\mathsf{Pf}(\mathcal{M}) - \Lambda^{4}_{SU(2)} \Big]$$

An example of D6-brane configuration

Spacetime	0	1	2	3	4	5	6	7	8	9			
D6 _a D6 _b	0 0	0 0	0 0	0 0	O ×	× O	O ×	× O	0 0	× ×		T ²	

4

An example of D6-branes on T^2

[Cremades-Ibanez-Marhesano]

- Branes (gauge theories) = lines
- Matter = Intersection points
- Yukawa coupling = Sum of triangles (Winding modes)

#(b•c) = 5 (k =0,1,2,3,4)

Example: Parts of D6-branes on T²

[Cremades-Ibanez-Marhesano]

- Branes (gauge theories) = lines
- Matter = Intersection points
- Yukawa coupling = Sum of triangles (Winding modes)

#(b•c) = 5 (k =0,1,2,3,4)

• Discrete symmetries from "Torus property × D-brane configuration":

$$W = y_{ijk} X^i Y^j \Phi^k$$

 $SL(2,\mathbb{Z}) \times (\text{periodicity}) \times (\mathbb{Z}_2)^2$

relevant to control y_{ijk} . (preliminary result)

• Torus property × D-brane configuration ~ SL(2,Z) × periodicity × $(Z_2)^2$

$$W = y_{ijk} X^i Y^j \Phi^k$$

$$y_{ijk} \sim \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\nu, \tau) = \sum_{l=-\infty}^{\infty} e^{\pi i (a+l)^2 \tau} e^{2\pi i (a+l)(\nu+b)}$$

 $\tau = (B+iA)/\alpha'$

B: NS B-field axion, A: torus area v + b: brane position moduli

a: brane intersection #-dependent number

• Torus property × D-brane configuration ~ SL(2,Z) × periodicity × $(Z_2)^2$

$$W = y_{ijk} X^i Y^j \Phi^k$$

$$y_{ijk} \sim \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\nu, \tau) = \sum_{l=-\infty}^{\infty} e^{\pi i (a+l)^2 \tau} e^{2\pi i (a+l)(\nu+b)}$$

 $\tau = (B+iA)/\alpha'$

Periodicity :
$$u
ightarrow
u + n + m au, \quad m,n \in \mathbb{Z}.$$

$$\cdot SL(2,\mathbb{Z}): \ au o rac{a au+b}{c au+d}, \quad ad-bc=1, \quad a,b,c,d\in\mathbb{Z}.$$

(T-dual of complex structure on T²)

• Torus property × D-brane configuration ~ SL(2,Z) × periodicity × $(Z_2)^2$

• Torus property \times D-brane configuration \sim SL(2,Z) \times periodicity \times (Z₂)²

$$W = y_{ijk} X^i Y^j \Phi^k$$

 $(\mathbb{Z}_2 imes \mathbb{Z}_2)$ invariant Yukawa coupling y_{ijk} :

1.
$$(X^i, Y^j, \Phi^k) \rightarrow (-X^i, -Y^j, \Phi^k)$$

2. $\rightarrow (X^i, -Y^j, -\Phi^k)$

Low energy W & explicit form of Yukawas

• Low energy W in IYIT model:

$$W = y_{ijk} \mathcal{M}^{ij} \Phi^k$$

with taking $Pf(\mathcal{M}) = -\mathcal{M}_{13}\mathcal{M}_{24} = \Lambda^4$.

 $(|\mathcal{M}_{13}| = |\mathcal{M}_{24}|)$

 $A/\alpha' \sim 1.81$; $f \sim 0.39 M_{\mathsf{Pl}}$ for Planck results

4. Review of other attempts for natural inflation

Natural inflation & discrete shift symmetry

Natural inflation: well-controlled by a discrete shift symmetry

$$\phi \to \phi + 2\pi f; \quad V = \Lambda^4 \cos\left(\frac{\phi}{f}\right).$$

Aligned natural inflation for $f > M_{Pl}$

• Two axions: $\phi_1 \rightarrow \phi_1 + 2\pi f_1$, $\phi_2 \rightarrow \phi_2 + 2\pi f_2$

[Kim, Nilles, Peloso]

$$V = \Lambda_1^4 \cos\left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2}\right) + \Lambda_2^4 \cos\left(m_1 \frac{\phi_1}{f_1} + m_2 \frac{\phi_2}{f_2}\right) \qquad n_i, \ m_i \in \mathbb{Z}$$

For
$$\Lambda_1 >> \Lambda_2$$
, $\phi \equiv \frac{f_1 f_2}{\sqrt{(n_1 f_1)^2 + (n_2 f_2)^2}} \left(-n_2 \frac{\phi_1}{f_2} + n_1 \frac{\phi_2}{f_1} \right)$ becomes inflaton:

$$V_{\text{eff}} = \Lambda_2^4 \cos\left(\frac{\phi}{f_{\text{eff}}}\right) \qquad \qquad f_{\text{eff}} = \frac{\sqrt{(n_1 f_1)^2 + (n_2 f_2)^2}}{|n_1 m_2 - n_2 m_1|}$$

The weak gravity conjecture

[Arkani-hamed, Motl, Nicolis, Vafa]

The conjecture: "The gravity is the weakest force."

$$\left(\begin{array}{c} q \gtrsim \frac{m}{M_{\text{Pl}}} \\ M_{\text{Pl}} \end{array} \right) \quad (F_{U(1)} = \frac{q^2}{r^2} \gtrsim F_g = G_N \frac{m^2}{r^2} \right)$$

- But, one might have an axion interaction of $M_{Pl} < f: \mathcal{L} = \frac{\phi}{f} \mathcal{O} < \frac{\phi}{M_{Pl}} \mathcal{O}$.
- What if we have a weaker force than gravity?

 $M_P \equiv 1$

The Weak Gravity Conjecture

[Slide from G. Shiu]

Take a U(1) and a single family with q < m (WGC)

All these (BH) states are stable. Trouble w/ remnants Susskind '95;

($G_N \rightarrow 0$ via Bekenstein-Hawking formula)

Need a light state into which they can decay

$$\frac{q}{m} \ge "1" \equiv \frac{Q_{Ext}}{M_{Ext}}$$

The weak gravity conjecture for axion

[Arkani-hamed, Motl, Nicolis, Vafa]

The conjecture for axion potential via one instanton effect:

$$\left(\frac{1}{f} \gtrsim \frac{S}{M_{\rm Pl}}\right) \qquad V_{\rm 1-inst} = e^{-S} M_{\rm Pl}^4 \cos\left(\frac{\phi}{f}\right)$$

• Axion interaction for
$$M_{PI} < f: \mathcal{L} = \frac{\phi}{f} \mathcal{O} < \frac{\phi}{M_{PI}} \mathcal{O}.$$

A possible loophole

[Slide from G. Shiu]

The WGC requires f·m<1 for ONE instanton, but not ALL

$$V = e^{-m} \left[1 - \cos\left(\frac{\Phi}{F}\right) \right] + e^{-M} \left[1 - \cos\left(\frac{\Phi}{f}\right) \right]$$

With $1 < m \ll M$, $F \gg M_P > f$, $M \times f \ll 1$

Multi-natural inflation!

 The second instanton fulfills the WGC, but is negligible, an "spectator". Inflation is governed by the first term.

Potential with modulations

Recent studies of potentials with modulation

• Potential via WGC = Multi-natural inflation!:

4. Conclusion & discussion

Conclusion

- Planck result can suggest a small r (< 0.11).
- Discrete symmetries control an inflation model; **3** multi-instantons.
- UV completion: compactification periodicity and brane configuration: $SL(2,\mathbb{Z}) \times (\text{periodicity}) \times (\mathbb{Z}_2)^2 + \text{constraint on torus area} (A/\alpha' \sim 2).$ (preliminary result)
- General message:

Compactification may help slow roll inflation due to discrete symmetries.

Discussion

• Moduli stabilization during inflation required:

 $H_{inf} \sim gravitino mass < Heavy moduli.$

Flux + racetrack (KL) model would help this issue.

Otherwise, slow roll inflation may be broken by a large inflaton mass via:

- Heavy moduli-inflaton mixing
- > Quantum corrections from SUSY-breaking.

Appendix

The Weak Gravity Conjecture

[Slide from G. Shiu]

Arkani-Hamed et al. '06

For bound states to decay, there must a particle w/

$$\frac{q}{m} \ge "1" \equiv \frac{Q_{Ext}}{M_{Ext}}$$

Strong-WGC: satisfied by *lightest* charged particle

Weak-WGC: satisfied by <u>any</u> charged particle

