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Combine the gauge/gravity duality and 
numerical techniques (e.g. lattice gauge theory) 
in order to study quantum gravity.

Motivation

Super 	

Yang-Mills

Quantum 	

Gravity

Monte Carlo 	

simulation	


of SYM



IIB string on AdS5 4d N=4 SYMequivalent

(Maldacena1997)

(D3-branes+strings)(black 3-branes)

Monte Carlo study is possible  
but computationally demanding



IIA/IIB string around 	

black p-brane	

(near horizon) (p+1)-d maximal SYM	


(Dp-branes+strings)
equivalent

(Maldacena1997, Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

smaller p is easier to simulate on computer.



Black hole = matrix model

IIA string around 	

black 0-brane	

(near horizon) (0+1)-d maximal SYM

equivalent

simulation cost ～ N6T-3

high temperature is cheap, low temperature is expensive.

we study this case

numerically cheapest



SYM STRING

gYM2～1/N gs

1/λ α’/RBH2

λ=∞, N=∞ corresponds to supergravity.

1/λ and 1/N corrections are interesting.



Possible/Impossible 	

(without fine tuning; not necessarily lattice) 

(0+1)-d

(1+1)-d

(2+1)-d

(3+1)-d

any number of SUSY, 	

various matter contents

maximal SUSY
less SUSY 	


matter fields

maximal SUSY

without matter (pure N =1)
SUSY QCD (matter fields)

Which SYM can be simulated? 

smaller  
simulation  

cost

larger  
simulation  

cost



Parameter fine tuning	

exact symmetry	

sign problem

key words:

Simulation methods



PARAMETER FINE TUNING 
PROBLEM



Pure Yang-Mills 
(bosonic)

warm-up example : 



Wilson’s lattice gauge theory

μ

ν
x

Unitary link variable

: lattice spacing



‘Exact’ symmetries
• Gauge symmetry	


!

• 90 degree rotation	


• discrete translation	


• Charge conjugation, parity

These symmetries exist at discretized level.

Otherweise raddiative corrections break those 
symmetries and fine-tuned conuter terms are needed in 

order to arrive at the correct continuum limit. 
‘parameter fine tuning’



Super Yang-Mills



‘No-Go’ for lattice SYM

• SUSY algebra contains infinitesimal translation. 	


!

• Infinitesimal translation is broken on lattice by 
construction.	


• So it is impossible to keep all supercharges 
exactly on lattice. 	


• Still it is possible to preserve a part of 
supercharges. (subalgebra which does not 
contain ∂)



• Matrix quantum mechanics is UV finite. 	


!

!

!

• We don’t even have to use lattice. Just fix 
the gauge & introduce momentum cutoff!                 
(M.H.-Nishimura-Takeuchi, 2007)

No fine tuning!
(4d N=4 is also UV finite, but it is because of 	


a cancellation of UV divergences.)



• Take the static diagonal gauge 	


!

!

• Add Faddeev-Popov term	


!

!

• Introduce momentum cutoff Λ	

!

!

• continuum limit is Λ→∞. 



• lattice with a few exact SUSY+R-symmetry             
• no fine tuning at perturbative level (Cohen-Kaplan-

Katz-Unsal 2003, Sugino 2003, Catterall 2003, D’Adda et al 2005, ... )                                      
• works even nonperturbatively (←simulation)                                                 
(Kanamori-Suzuki 2008, M.H.-Kanamori 2009, 2010)

Use other exact symmetries and/or a few exact 
SUSY to forbid SUSY breaking radiative correction.

2 dimensions

more simulations are going on. 

lattice can work!



• 3d N=8 : “Hybrid” formulation:                                                   

BMN matrix model + fuzzy sphere                           
(Maldacena-Seikh Jabbari-Van Raamsdonk 2002)                                                                                                           	


• 4d N=1 pure SYM : lattice chiral fermion assures SUSY              
(Kaplan 1984, Curci-Veneziano 1986)	


• 4d N=4 :  
• again “Hybrid” formulation:Lattice + fuzzy sphere 	

  (M.H.-Matsuura-Sugino 2010, M.H. 2010)	


•Large-N Eguchi-Kawai reduction(Ishii-Ishiki-Shimasaki-Tsuchiya, 2008)	


•Another Matrix model approach(Heckmann-Verlinde, 2011)	


•recent analysis of 4d lattice: 	

 Fine tuning is needed, but only for 3 bare lattice couplings. 	

 (Catterall-Dzienkowski-Giedt-Joseph-Wells, 2011)	


3d & 4d

simulations of 4d N=4 are ongoing by several groups. 

lattice or non-lattice,  
depending on theories.



MONTE CARLO METHOD 	

AND	


SIGN PROBLEM



• Consider field theory on Euclidean spacetime 
with the action        . 	


• Generate field configurations with probability     
Then, 	


!

!

!

•  Crucial assumption:   	


!

The principle of Monte-Carlo



Metropolis algorithm

• Consider the Gaussian integral, 

(1) vary the ‘field’ x randomly:

(2) accept the new ‘configuration’ with a probability 

where 

‘Metropolis test’

(Metropolis-Rosenbluth-et al, 1953)



Initial condition :  x=0
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Fermions



Fermions appear in a bilinear form. 	

(if not, make them bilinear by introducing auxiliary fields.)

can be integrated out by hand.

So, simply use the ‘effective action’, 
※ Pfaffian in the case of  	


Maximal SYM

Crucial assumption:   det D > 0



Sign problem (phase problem)

• ‘Probability’ must be real positive. 	


• Life is sometimes hard... path integral 
weight e-S can be complex!

• Chern-Simons term (pure imaginary!)	

• Finite baryon chemical potential	

• Yukawa coupling	

• Super Yang-Mills

Such path integral measures cannot be 
generated by the Monte-Carlo method :(

(after the Wick rotation)

det D is complex



reweighting method

• Use the ‘phase-quenched’ effective action	


!

• Phase can be taken into account by the 
‘phase reweighting’ : 



usually the reweighting does 
not work in practice...

• violent phase fluctuation 	

  → both numerator and denominator 	

       becomes almost zero. 
• vacua of full and phase-quenched model	

  can be completely different. 

‘overlapping problem’

0/0 = ??

ρ(x)  ρquench • <phase>x  ∝ρquench(x) ρ(x)



Miracles happen in SYM!

• Almost no phase except for very low temperature. 	

(Anagnostopoulos-M.H.-Nishimura-Takeuchi 2007, 	


Catterall-Wiseman 2008, Catterall et al 2011.)

• Even when the phase fluctuates, 	

   phase quench gives right answer. 	


           (‘right’ in the sense it reproduces gravity prediction.)

• Can be justified numerically.
(M.H.-Nishimura-Sekino-Yoneya 2011, 	

Buchoff-M.H.-Matsuura, in progress)



• Maximal SYM in 1,2,3,4-dimensions  
   can be studied by Monte Carlo. 
!

• For 1,2 and 4-d, simulations are ongoing. 
!

• Sign Problem? No Problem.

Summary of this part

(But no theoretical justification for the moment)



GAUGE/GRAVITY DUALITY



IIA/IIB string around 	

black p-brane	

(near horizon) (p+1)-d maximal SYM	


(Dp-branes+strings)
equivalent

(Maldacena1997, Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

smaller p is easier to simulate on computer.



Black hole = matrix model

IIA string around 	

black 0-brane	

(near horizon) (0+1)-d maximal SYM

equivalent

simulation cost ～ N6T-3

high temperature is cheap, low temperature is expensive.

we study this case

numerically cheapest



SYM STRING

gYM2～1/N gs

1/λ α’/RBH2

λ=∞, N=∞ corresponds to supergravity.

1/λ and 1/N corrections are interesting.

But first of all, we have to test this conjecture.



• Matrix model of M-theory 

• gauge/gravity duality →dual to black 0-brane

effective dimensionless temperature Teff = λ-1/3T

D0-brane quantum mechanics

(Banks-Fishler-Shenker-Susskind, 1996 	

de Wit-Hoppe-Nicolai, 1988)

strong coupling = low temperature → more simulation cost

It should reproduce thermodynamics of black 0-brane. 



problem with flat direction

There is a flat direction even at quantum level.



‘eigenvalues’ = position of D0-branes 

bound state of eigenvalues	

= black hole flat direction	


～ gas of D0-branes

One has to restrict the path integral  
in order to extract the black hole.



Confirmation at 	

classical string level

(N=∞, gs=0)



How to tame the flat direction

In string theory, this BH is stable at gs=0. 

In the gauge theory, bound state should  
become stabler as N becomes larger

We can confirm this expectation numerically. 

solution: take N large enough.



Anagnostopoulos-M.H.-Nishimura-Takeuchi, PRL 2008 	

M.H.-Hyakutake-Nishimura-Takeuchi, PRL 2009

SUGRA

SUGRA+α’

low temp = strong coupling high temp = weak coupling

(λ-1/3T : dimensionless effective temperature)

Λ : momentum cutoff

(see also papers by Catterall-Wiseman and by Kadoh)



α’ correction
• deviation from the strong coupling (low  

temperature) corresponds to the α’ 
correction (classical stringy effect).  

• The α' correction to SUGRA starts from 
(α')3 order 

• Correction to the BH mass :                          
(α'/R2)3 ～ T1.8 

• E/N2=7.41T2.8 - 5.58T4.6

‘prediction’ by SYM simulation

(4.6 = 2.8 + 1.8)	

prediction by string 



Anagnostopoulos-M.H.-Nishimura-Takeuchi, PRL 2008 	

M.H.-Hyakutake-Nishimura-Takeuchi, PRL 2009

SUGRA

SUGRA+α’

low temp = strong coupling high temp = weak coupling

(λ-1/3T : dimensionless effective temperature)

Λ : momentum cutoff

(see also papers by Catterall-Wiseman and by Kadoh)



M.H.-Hyakutake-Nishimura-Takeuchi, PRL 2009

slope=4.6

finite cutoff effect

higher order correction 



Confirmation at 	

quantum string level

Peter Woit’s “This week’s Hype” 
on May 25, 2014 

(finite-N)



E/N2 = 7.41T2.8 - 5.58T4.6+.... 

          +(1/N2)(-5.77T0.4+aT2.2+...) 

          +(1/N4)(bT-2.6+cT-2.0+...) 

          +..... 

gs correction in the gravity side (Y. Hyakutake, PTEP 2013)

• We study T～0.1, so that unknown part is negligible.                                        



How to tame the flat direction

We have to consider small values of N. 

FLAT DIRECTION IS BACK!

It is unavoidable, because we want to study  
an unstable object — evaporating BH. 



add potential  γ∫dt |TrX2/N - Rcut|

A practical solution (1)

at  TrX2/N > Rcut

Put the BH in a box.

ΣTrXi2/N
Rcut

introduce a potential 
which push D0-branes 

back into BH

i



distribution of trX2/N

(U(4), T=0.10, momentum 	

cutoff Λ=10; Rcut=4.2)

A practical solution (2)

tail = flat direction

peak = BH

Where is the border of BH?

ΣTrXi2/N
i



distribution of trX2/N <E/N2> calculated at 	

trX2/N < x  

(U(4), T=0.10, momentum 	

cutoff Λ=10; Rcut=4.2)

A practical solution (3)

tail = flat direction

peak = BH

Where is the border of BH?

ΣTrXi2/N; x
i



distribution of trX2/N <E/N2> calculated at 	

trX2/N < x  

(U(4), T=0.10, momentum 	

cutoff Λ=10; Rcut=4.2)

A practical solution (4)

value @ plateau = energy of BH

plateau

tail = flat direction

peak = BH

ΣTrXi2/N; x
i



M.H.-Hyakutake-Ishiki-Nishimura, Science 2014



Negative specific heat
(the same as Schwarzschild BH in 11d)

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014



E/N2  - (7.41T2.8-5.77T0.4/N2) vs.  1/N4

SU(3)

SU(4)
SU(5)

→ remaining part is 	

proportional to 1/N4 	


indeed!!

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014
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Correlation functions 
(GKPW relation)

• Recipe to calculate the correlation function at 
large-N and strong coupling from supergravity 
(Gubser-Klebanov-Polyakov 1998, Witten1998) 

• Similar relation holds also in D0-brane theory.  

!

 

(Sekino-Yoneya 1999)

calculable 	

via SUGRA

G K P W



                     two-point functions, SU(3), pbc

(M.H.-Nishimuea-Sekino-Yoneya 2009,2011)

finite 	

volume 	

effectSUGRA is valid 	


at long distance	

(and large-N)



                     two-point functions, SU(3), pbc

(M.H.-Nishimuea-Sekino-Yoneya 2009,2011)

finite 	

volume 	

effect

SUGRA is valid 	

at long distanceSU(3) is large-N 	


:) 



two-point functions, SU(2), pbc
(M.H.-Nishimura-Sekino-Yoneya 2011)



two-point functions, SU(2), pbc
(M.H.-Nishimura-Sekino-Yoneya 2011)

SU(2) is large-N  	

:o



Polyakov loop with scalar
(Maldacena 1998; Rey-Yee 1998)

boundary=Polyakov loop



1.89/T0.6 ～ area

M.H.-Miwa-Nishimura-Takeuchi, 2008



Maldacena’s conjecture is correct  
at finite temperature,  

including 1/λ and 1/N corrections,  
at least to the next-to-leading order.

conclusion

Let’s find good numerical problems in SYM   
which are useful for learning about quantum gravity!

九後さん: SFTも計算機に載せて 
京スーパーコンピューターで調べませんか？



backup slides



black p-brane solution 

SUGRA is valid at

<< 1

>> 1



higher dimensions require 
more computational cost

※ Pfaffian for 	

Majorana fermions

Dirac operator (adjoint repr.) :  N2Lp+1×N2Lp+1

cost for calculating determinant is	

(N2Lp+1)3 = N6L3(p+1)

(0+1)-d is the best starting point



Wilson’s lattice gauge theory

μ

ν
x

Unitary link variable

: lattice spacing



‘Exact’ symmetries

• Gauge symmetry	


!

• 90 degree rotation	


• discrete translation	


• Charge conjugation, parity

These symmetries exist at discretized level.



Continuum limit             respects exact      
symmetries at discretized level. 

Exact symmetries at discretized level	

 	

gauge invariance, translational invariance,	

rotationally invariant,... in the continuum limit.    	

 

What happens if the gauge symmetry is 	

explicitly (not spontaneously) broken, 	


(e.g. the sharp momentum cutoff prescription)? 



• We are interested in low-energy, long-distance 
physics (compared to the lattice spacing    ). 	


• So let us integrate out high frequency modes. 

Then...

gauge symmetry breaking radiative corrections can appear.	

 	


To kill them, one has to add counterterms to lattice action, 
whose coefficients must be fine-tuned!

‘fine tuning problem’

This is the reason why we must 
preserve symmetries exactly. 


