Naïve-T-odd asymmetry in W+jet events at the LHC

Hiroshi Yokoya (U. of Toyama) [横谷 洋 (富山大学)]

R.Frederix(CERN), K.Hagiwara(KEK), T.Yamada(NCU,Taiwan), HY, in progress

Ref. Hagiwara, Hikasa, Kai, Phys.Rev.Lett.,52,1076 ('84) Hagiwara, Hikasa, HY, Phys.Rev.Lett.,97,221802 ('06)

益川塾 セミナー 6/4 (2014)

Outline:

- 1. Introduction: W production at hadron colliders
- 2. Parity-odd and naïve-T-odd observables
- 3. Simulation study
- 4. Summary

Physics 2013

Photo: Pnicolet via Wikimedia Commons

François Englert

Photo: G-M Greuel via Wikimedia Commons

Peter W. Higgs

ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

ATLAS Preliminary $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7.8 \text{ TeV}$

<pre></pre>		Model	ί,γ	Jets	; E ^{miss} T	∫£ dt[fb	o ⁻¹] Mass limit	j~	un (110 2010) 15	Reference				Λ
		ADD $G_{KK} + g/q$	-	1-2 j	i Yes	4.7	M _D 4.37 Te	V	n = 2	1210.4491				4
Bar A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ADD non-resonant $\ell \ell / \gamma \gamma$ ADD QBH $\rightarrow \ell q$	2y or 2e, μ 1 e, μ	- [j	_	4.7 20.3	Ms 4.18 Te	TeV	n = 3 HLZ NLO n = 6	1211.1150 1311.2906				-
Bar 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	suo	ADD BH high Nore	2μ (SS)	-	-	20.3	M ₀₁ 5	.7 TeV	$n=6,M_D=1.5$ TeV, non-rot BH	1308.4075				
Bill Singer Sin	ensi	ADD BH high $\sum p_T$ BS1 GeV $\rightarrow \ell\ell$	≥1 <i>e</i> ,µ 2 <i>e</i> ,µ	≥ 2 j 	j – _	20.3 20.3	Moi Gev mass 2 47 TeV	6.2 TeV	$n = 6$, $M_D = 1.5$ TeV, non-rot BH $k/\overline{M}_{cc} = 0.1$	ATLAS-CONF-2014-016 ATLAS-CONF-2013-017				
Bar 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	dim	RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q / \ell \ell \ell$	2 or 4 e, μ	2 j or		1.0	G _{KK} mass 845 GeV		$k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$	1203.0718				
A P A A A A A A A A A A A A A A A A	xtra	$RS1\ G_{KK}\to WW\to\ell\nu\ell\nu$	2 e, µ	-	Yes	4.7	G _{KK} mass 1.23 TeV		$k/\overline{M}_{Pl} = 0.1$	1208.2880				
No.	Ψ.	Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow t\bar{t}$	- 1е.µ :	4b ≥1b.≥:	– 1J/2i Yes	19.5 14.3	G _{KK} mass 590-710 GeV		$k/M_{Pl} = 1.0$ BR = 0.925	ATLAS-GONF-2014-005 ATLAS-CONF-2013-052				
<pre></pre>		S^1/Z_2 ED	2 e, µ	-	-	5.0	M _{KK} ≈ R ⁻¹ 4.71 1	eV		1209.2535				
		UED	2γ	-	Ves	4.8	Compact scale R ⁻¹ 1.41 TeV			ATLAS-CONE-2012-072				
	<u>ი</u> თ	SSM $Z' \rightarrow \ell\ell$	2 e, µ	-	-	20.3	Z' mass 2.86 TeV			ATLAS-CONF-2013-017				
Build of the build of t	auge	SSM $W' \rightarrow \ell v$	1 e,μ	_	Yes	20.3	W mass 0.26 TeV			ATLAS-CONF-2013-005 ATLAS-CONF-2014-017				
The second seco	g o	EGM $W' \to WZ \to \ell v \ell' \ell'$	3 e, µ	-	Yes	20.3	W' mass 1.52 TeV			ATLAS-CONF-2014-015				
	_	LEAN $W_R \rightarrow tb$	ιe,μ	2 0, 0-	ij ves	14.3	VV mass 1,84 Jev			AILAS-CONF-2013-050				
	5	Cl qqll	22	-	_	4.0 5.0	Λ	7.6 TeV 13.9	$\eta = +1$ 9 TeV $\eta_{LL} = -1$	1210.1718				
		Cl uutt	$2~e,\mu~(\rm SS)$	≥ 1 b, ≥	1j Yes	14.3	A 3.3 TeV		C = 1	ATLAS-CONF-2013-051				
	W	EFT D5 operator	-	1-2 j	. Yes	10.5	M. 731 GeV		at 90% CL for $m(\chi) < 80$ GeV	ATLAS-CONF-2012-147				
	-	EFT D9 operator	-	1 J, ≤ :	1 j Yes	20.3	M. 2.4 TeV		at 90% CL for m(x) < 100 GeV	1309.4017				
	0	Scalar LQ 1st gen	2 e 2 u	≥2j ≥2i	i –	1.0	LQ mass 660 GeV		$\beta = 1$ $\beta = 1$	1112.4828				
	-1	Scalar LQ 3 rd gen	1 e, μ, 1 τ	1 b, 1	i –	4.7	LQ mass 534 GeV		$\beta = 1$ $\beta = 1$	1303.0526				
<form></form>		Vector-like quark $TT \rightarrow Ht + X$	1 e, µ	≥ 2 b, ≥	4j Yes	14.3	T mass 790 GeV		T in (T,B) doublet	ATLAS-CONF-2013-018				
$ \frac{1}{2} = \frac{1}{2} + 1$	arks	Vector-like quark $TT \rightarrow Wb + X$	1 e, µ	≥ 1 b, \geq	3j Yes	14.3	T mass 670 GeV		isospin singlet	ATLAS-CONF-2013-060		annan I imita	ATI /	
Bit Control Co	ž₿	Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	2 e.µ 2 e.µ (SS)	≥2b >1b.>	b – ⊳1iYas	14.3 14.3	B mass 725 GeV	AILAS	SUSY Search	ies [*] - 95% (JL L	ower Limits	AILA	S Preliminary
Image: Product of file acales of reference Model 6, f, h, T, Z Jet of the second of reference Model 6, f, h, T, Z Jet of the second of reference Model Reference Reference Under second of reference 1 a 2 p +	. 10	Excited quark $q^* \rightarrow q\gamma$	1γ	11	-	20.3	g' miss 3.5 TeV	Status, Ivi	0110110 2014				$\int \mathcal{L} dt = (4.6 - 22.9) \text{fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ leV}$
Bit Control Co	oited nion	Excited quark $q^* \rightarrow qg$	-	2 j	-	13.0	9° mass 3.84 To	Mod	$e, \mu,$	τ, γ Jets $E_{\rm T}^{\rm mass}$	JL dt[fl	^{b-']} Mass limit		Reference
Normality Normality <t< td=""><td>tem Exa</td><td>Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell \gamma$</td><td>1 or 2 e, μ 2 e. μ. 1 γ</td><td>1 b, 2 j o _</td><td>or1jYes _</td><td>4.7 13.0</td><td>b° mass 870 GeV</td><td>MSUGR/</td><td>A/CMSSM 0</td><td>2-6 jets Yes</td><td>20.3</td><td>φ, ğ 1.7 TeV</td><td>$m(\tilde{q})=m(\tilde{g})$</td><td>ATLAS-CONF-2013-047</td></t<>	tem Exa	Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell \gamma$	1 or 2 e, μ 2 e. μ. 1 γ	1 b, 2 j o _	or1jYes _	4.7 13.0	b° mass 870 GeV	MSUGR/	A/CMSSM 0	2-6 jets Yes	20.3	φ, ğ 1.7 TeV	$m(\tilde{q})=m(\tilde{g})$	ATLAS-CONF-2013-047
		LBSM Majorana v	2 # 11	21		21	N ⁹ mpc 15 TeV	MSUGR/	A/CMSSM 1e	7-10 jets Yes	20.3	k 1.2 lev š 1.1 TeV	any $m(\tilde{q})$	1308.1841
Bit Bit <td></td> <td>Type III Seesaw</td> <td>2 e, µ</td> <td>- ,</td> <td>-</td> <td>5.8</td> <td>N# mass 245 GeV</td> <td>$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}$</td> <td>$\tilde{r}_1^{\circ}$ \tilde{r}_1° \tilde{u}</td> <td>2-6 jets Yes 2-6 jets Yes</td> <td>20.3 20.3</td> <td>q 740 GeV š 1.3 TeV</td> <td>m(𝔅ⁿ₁)=0 GeV m(𝔅ⁿ₁)=0 GeV</td> <td>ATLAS-CONF-2013-047 ATLAS-CONF-2013-047</td>		Type III Seesaw	2 e, µ	- ,	-	5.8	N# mass 245 GeV	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}$	\tilde{r}_1° \tilde{r}_1° \tilde{u}	2-6 jets Yes 2-6 jets Yes	20.3 20.3	q 740 GeV š 1.3 TeV	m(𝔅 ⁿ ₁)=0 GeV m(𝔅 ⁿ ₁)=0 GeV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-047
Image: Image:<	othe	Higgs triplet $H^{**} \rightarrow \ell \ell$. Multi observed participa	2 ε,μ (SS)	-	_	4.7	H±± mass 409 GeV	gg, g→qq gg, g→qq gg, g→qq	$\chi_1^{\pm} \rightarrow qqW^{\pm}\chi_1^0$ 1 e $\eta(\ell\ell/\ellv/vv\chi_1^0)$ 2 e	,μ 3-6 jets Yes ,μ 0-3 jets -	20.3 20.3	ğ 1.18 TeV ğ 1.12 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ $m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	ATLAS-CONF-2013-062 ATLAS-CONF-2013-089
No. 100 100	0	Magnetic monopoles	-	_	_	2.0	monopole mass 862 GeV	GMSB (Î GMSB (Î	NLSP) 2 e NLSP) 1-2	,μ 2-4 jets Yes τ 0-2 jets Yes	4.7 20.7	§ 1.24 TeV ğ 1.4 TeV	tanβ<15 tanβ >18	1208.4688 ATLAS-CONF-2013-026
Characterize Control Control </td <td></td> <td></td> <td>√s =</td> <td>7 TeV</td> <td>$\sqrt{s} =$</td> <td>8 TeV</td> <td>10^{-1} 1</td> <td>GGM (bir</td> <td>noNLŚP) 2 noNLŚP) 1 e.u</td> <td>γ - Yes</td> <td>20.3</td> <td>8 1.28 TeV</td> <td>m($\tilde{\chi}_{1}^{0}$)>50 GeV m($\tilde{\chi}_{1}^{0}$)>50 GeV</td> <td>ATLAS-CONF-2014-001</td>			√s =	7 TeV	$\sqrt{s} =$	8 TeV	10^{-1} 1	GGM (bir	noNLŚP) 2 noNLŚP) 1 e.u	γ - Yes	20.3	8 1.28 TeV	m($\tilde{\chi}_{1}^{0}$)>50 GeV m($\tilde{\chi}_{1}^{0}$)>50 GeV	ATLAS-CONF-2014-001
Out of a sequencial is the second of the	*Ov	ly a astronian of the sumilable	monn timi	ito on n	in antain	a ar ahar		GGM (hig	ggsino-bino NLSP) 2	1 b Yes	4.8	8 900 GeV	m(\tilde{t}_1^0)>220 GeV m(\tilde{t}_2^0)>200 GeV	1211.1167
Production 0 3.0 0 3.0 0 1 1 1 1 0	Un	ny a senecourr or me avariable	111255 11111	na un n	ew state	s or prien	iomenais snown.	Gravitino	LSP 0	mono-jet Yes	10.5	<i>k</i> 650 GeV	m(g)>10 ⁻⁴ eV	ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
$ \left \begin{array}{c} \mathbf{r} \\ \mathbf{r} $								$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$	c	3 b Yes 7-10 jets Ves	20.1	š 1.2 TeV ž 11 TeV	m(\tilde{k}_{1}^{0}) <600 GeV	ATLAS-CONF-2013-061 1308 1841
= -								$\tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$	0-1	e,μ 3 <i>b</i> Yes	20.1	8 1.34 TeV	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$	ATLAS-CONF-2013-061
$ \begin{bmatrix} b_{1}^{1}, b_{1}^{1}, b_{2}^{1}, b_{1}^{2}, b_{1}^{2}, b_{2}^{1}, b_{1}^{2}, b_{2}^{2}, b_{1}^{2}, b_{2}^{2}, b_{2}^$								$g \rightarrow bt \chi_1$	-1-0-11	e,μ 3.b Yes	20.1	<i>k</i> 1.3 lev	m(X ₁)<300 GeV	1308 2631
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 - \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 - \tilde{b}_1 \tilde{b}_1$	$\rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, μ	(SS) 0-3 b Yes	20.7	<i>b</i> ₁ 275-430 GeV	$m(\tilde{\chi}_{1}^{0}) = 2 m(\tilde{\chi}_{1}^{0})$	ATLAS-CONF-2013-007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$\tilde{t}_1 \tilde{t}_1$ (light)	$\tilde{t}_1 \rightarrow b \tilde{t}_1$ $\tilde{t}_1 \rightarrow W b \tilde{\tilde{t}}_1^0$ 2 e	,μ 0-2 jets Yes	20.3	\tilde{t}_1 130-210 GeV	$m(\tilde{\chi}_1) = 55 \text{ GeV}$ $m(\tilde{\chi}_1^0) = m(\tilde{t}_1) \cdot m(W) \cdot 50 \text{ GeV}, m(\tilde{t}_1) < < m(\tilde{\chi}_1^{\pm})$	1403.4853
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								τ ₁ τ ₁ (medi τ ₁ τ ₁ (medi	ium), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^{\vee}$ 2 e ium), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 0	,μ 2 jets Yes 2 b Yes	20.3 20.1	t1 215-530 GeV t1 150-580 GeV	$m(\tilde{\chi}_{1}^{\prime\prime})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1403.4853 1308.2631
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$\tilde{t}_1 \tilde{t}_1$ (heav $\tilde{t}_1 \tilde{t}_1$ (heav	y), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 1 e y), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 0	.μ 1.b Yes 2.b Yes	20.7 20.5	\vec{t}_1 200-610 GeV \vec{t}_1 320-660 GeV	$m(\tilde{x}_1^0)=0 \text{ GeV}$ $m(\tilde{x}_1^0)=0 \text{ GeV}$	ATLAS-CONF-2013-037 ATLAS-CONF-2013-024
$\frac{1}{12} \frac{1}{12} \frac{1}{12} - $								$\tilde{\overline{D}}$ $\tilde{\overline{I}}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow \tilde{a}$ $\tilde{\overline{I}}_1 \tilde{I}_1$ (natur	$c\tilde{\chi}_{1}^{0}$ C ral GMSB) 2 e, μ	mono-jet/c-tag Yes	20.3 20.3	<i>i</i> ₁ 90-200 GeV <i>i</i> ₁ 150-580 GeV	m(ī₁)-m(īℓ₁)<85 GeV m(ữ₁)>150 GeV	ATLAS-CONF-2013-068 1403.5222
								$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_2$	<i>i</i> ₁ + Z 3 <i>e</i> , μ	(Z) 1 b Yes	20.3	12 290-600 GeV	m($\tilde{\chi}_{1}^{0}$)<200 GeV	1403.5222
$ \begin{aligned} & \left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$								$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}$, $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}$	$\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$ 2 e $\rightarrow \tilde{\ell} v(\ell \tilde{v})$ 2 e	,μ 0 Yes ,μ 0 Yes	20.3 20.3	<i>t̃</i> 90-325 GeV <i>x̃</i> [±] 140-465 GeV	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1403.5294 1403.5294
$ \begin{array}{ccccccccccccccccccccccccccccccccc$								$\begin{array}{c} \mathbf{A} \stackrel{\mathbf{O}}{=} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+}, \tilde{\chi}_{1}^{+} \\ \mathbf{A} \stackrel{\mathbf{O}}{=} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \end{array}$	$\rightarrow \tilde{\tau} v(\tau \tilde{\nu})$ 2 $v \tilde{\ell}, \ell(\tilde{v}v), \ell \tilde{v} \tilde{\ell}, \ell(\tilde{v}v)$ 3 e	τ - Yes	20.7 20.3	<i>x</i> [±] <i>x</i> [±] . <i>x</i> ⁰ 700 GeV m(<i>x</i> [±])−m	$m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ $\tilde{\chi}_{2}^{0}) = m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2013-028 1402.7029
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W$	$\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0}$ 2-3	e,μ 0 Yes	20.3	x ⁺ ₁ x ⁰ / ₂ x ⁺ ₁ x ⁰ / ₂ z [±] z ⁰ 225 CeV	$m(\tilde{\chi}_1^{\circ})=m(\tilde{\chi}_2^{\circ}), m(\tilde{\chi}_1^{\circ})=0, \text{ sleptons decoupled}$ $m(\tilde{\chi}_1^{\circ})=m(\tilde{\chi}_2^{\circ}), m(\tilde{\chi}_1^{\circ})=0, \text{ sleptons decoupled}$	1403.5294, 1402.7029
Stable stopped RStable stopped RStab								$\chi_1 \chi_2 \rightarrow W$ Direct $\tilde{\chi}_1^+$	$\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disap	p.trk 1 jet Yes	20.3	λ1 λ2 200 GeV	$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$	ATLAS-CONF-2013-069
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Stable, st	topped \tilde{g} R-hadron 0 table $\tilde{\chi}^{0} \rightarrow \tilde{\chi}^{0} \rightarrow \tilde{\chi}^{0}$ (1-2	1-5 jets Yes	22.9 15.9	ž 832 GeV	m(μ̃ ⁰)=100 GeV, 10 μs<τ(ĝ)<1000 s 10 <tanβ<50< td=""><td>ATLAS-CONF-2013-057 ATLAS-CONF-2013-058</td></tanβ<50<>	ATLAS-CONF-2013-057 ATLAS-CONF-2013-058
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									$\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ 2	γ - Yes	4.7	ž ¹ 230 GeV	$0.4 < \tau(\tilde{\chi}_1^0) < 2 \text{ ns}$	1304.6310
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$\dot{q}\tilde{q}, \chi_1 \rightarrow q$	$\eta q \mu (HPV) = \mu, \text{ dis}$ $\tilde{\gamma}_{\tau} + X, \tilde{\gamma}_{\tau} \rightarrow e + \mu = 2 e$.μ	20.3	Y 1.0 lev Y 1.61 TeV	1.5 <cr<156 bh(μ)="1," m(x<sub="" mm,="">1)=108 GeV X₁₁=0.10, λ₁₃₂=0.05</cr<156>	1212.1272
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								LFV pp-	$\tilde{\tau}_{\tau} + X, \tilde{\tau}_{\tau} \rightarrow e(\mu) + \tau$ 1 e, μ	1+7	4.6	ν _r 1.1 TeV	$\lambda_{311}^{(1)}=0.10, \lambda_{1(2)33}=0.05$ $\lambda_{311}^{(2)}=m(\tilde{a})$ (7)-(1) mm	1212.1272
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+}$	$\rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e}$ 4 e	,μ - Yes	20.7	x [±] 760 GeV	$m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0$	ATLAS-CONF-2012-140 ATLAS-CONF-2013-036
$\tilde{g} \rightarrow t_1, t_1 \rightarrow bs$ $2e, \mu$ (SS) $0.3 b$ Yes 20.7 \tilde{z} 880 GeVATLAS-CONF-2013-007Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ 0 $4j$ els $ 4.6$ sgluon100-287 GeVincl. limit from 1110.26931210.4826Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ $2e, \mu$ (SS) $2b$ Yes 14.3 sgluon100-287 GeVincl. limit from 1110.26931210.4826WiMP interaction (DS Dirac V) 0 mono-jet V $sgluon$ 350-800 GeVm(v)ATLAS-CONF-2013-051WIMP interaction (DS Dirac V) 0 mono-jet V $sgluon$ 350-800 GeVm(v)ATLAS-CONF-2013-051WIMP interaction (DS Dirac V) 0 mono-jet V $sgluon$ 350-800 GeVm(v)ATLAS-CONF-2013-051ATLAS-CONF-2012-407 $sgluon$ $sgluon$ $sgluon$ $sgluon$ $sgluon$ $sgluon$								$\begin{array}{c} \chi_1\chi_1, \chi_1\\ \tilde{g} \rightarrow q q q \end{array}$	$\rightarrow W \chi_1^-, \chi_1^- \rightarrow \tau \tau \tilde{\nu}_v, e \tau \tilde{\nu}_\tau$ 3 e. µ	6-7 jets -	20.7	x1 350 GeV ğ 916 GeV	m(¥i)>80 GeV, A ₁₃₃ >0 BR(t)=BR(b)=BR(c)=0%	ATLAS-CONF-2013-036 ATLAS-CONF-2013-091
$\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $								$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1$	$\rightarrow bs$ 2 e, μ	(55) 0-3 b Yes	20.7	8 880 GeV	inal limit from 1110 2602	ATLAS-CONF-2013-007
								Scalar gli	uon pair, sgluon $\rightarrow qq$ 0 uon pair, sgluon $\rightarrow t\bar{t}$ 2 e, μ	(SS) 2 b Yes	14.3	sgluon 350-800 GeV	m(v)<80 GeV limit of < 687 GeV for D8	ATLAS-CONF-2013-051

Oth

 $\sqrt{s} = 7 \text{ TeV}$ full data

 $\sqrt{s} = 8$ TeV $\sqrt{s} = 8$ TeV partial data full data

 10^{-1} *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

.

1

Mass scale [TeV]

LHCで、既に、

100 nb × 20 fb⁻¹ = 2 × 10⁹ 個のWボソンが生成。 そのうちの一割くらい、ジェットが一個以上同時に生成される。 (ジェットが同時に生成されると、Wボソンは反跳横運動量を持つ。) ev, μ vへの崩壊は、それぞれ、1割ずつ程度。 既に、10⁷個程の W(→ev, μ v) + jet イベントが生成されている。

Inclusive W :

W+ 1jet :

• Physics of W-boson:

Cross-sections \rightarrow pQCD prediction, parton distribution functions Distributions (leptonic decay) \rightarrow mass, width, polarization Associated Jets \rightarrow QCD showering, MonteCarlo modeling

- QCD や PDF の理解
- NP プロセスへの応用
- NP Search の BG として
- 物理量の決定

Theory calculations on the cross-sections

$$pp \to W^{\pm} + X$$

NNLO available only for the inclusive cross-section

Anastasiou, Dixon, Melnikov, Petriello ('03)

	MSTW08	ABKM09	HERA	JR09
W^+	6.16 ± 0.11	6.42 ± 0.09	6.42 ± 0.16	5.92 ± 0.12
W^-	4.30 ± 0.08	4.29 ± 0.07	4.42 ± 0.10	4.03 ± 0.08

theory uncertainty :

scale uncertainty : <1%
PDF uncertainty : 4-6%</pre>

NLO calc. for W + multi-jets processes (W+3jets, 4jets, 5jets,,,)

• NLO for W+1jet, 2jets known for long time.

Arnold, Reno ('90), Campbell, Ellis ('02)

• Around ~2009, several groups finished W+3jets.

Ellis, Melnikov, Zanderighi (09), BlackHat collab.,,,

• BlackHat + SHERPA collaboration

further completed W+4jets ('10) and W+5jets ('13)^{*q*}

Breakthrough in new methods to evaluate loop amplitudes (BCF,OPP,,,)

Lepton Angular Distributions

• Information of the polarization of W-boson

 \rightarrow details of production mechanism

• Distributions can be expressed by using 9 structure functions.

Density Matrix Formula

W-boson's decay density matrix (lepton DM)

can be explicitly evaluated by using the LO amplitude.

対角成分 : Wの3つの偏極状態(+,0,-)からの崩壊分布 非対角成分 : 異なる偏極状態の干渉効果 → 方位角依存性

Density Matrix Formula

♦ W-boson's Production DM

$$P_{\lambda\lambda'} = (\epsilon_{\lambda}^* \cdot \mathcal{P})(\epsilon_{\lambda'}^* \cdot \mathcal{P})^*$$

• Structure functions :

$$\begin{split} \hat{F}_{1} &= \frac{1}{2} \left(P_{++} + P_{00} + P_{--} \right), \ \hat{F}_{6} &= \sqrt{2} \operatorname{Re} \left(P_{+0} + P_{-0} \right), \\ \hat{F}_{2} &= \frac{1}{2} P_{00}, \qquad \qquad \hat{F}_{7} = i \sqrt{2} \operatorname{Im} \left(P_{+0} - P_{-0} \right), \\ \hat{F}_{3} &= \frac{1}{\sqrt{2}} \operatorname{Re} \left(P_{+0} - P_{-0} \right), \qquad \qquad \hat{F}_{8} = \frac{i}{\sqrt{2}} \operatorname{Im} \left(P_{+0} + P_{-0} \right), \\ \hat{F}_{4} &= \operatorname{Re} \left(P_{+-} \right), \qquad \qquad \qquad \hat{F}_{9} = i \operatorname{Im} \left(P_{+-} \right) \\ \hat{F}_{5} &= P_{++} - P_{--} \end{split}$$

$$\begin{aligned} &7,8,9 \Leftrightarrow \operatorname{Imaginary part} \end{aligned}$$

• Convolute with parton distribution functions

$$F_i(q_T^2,\cos\hat{\theta}) = \sum_{a,b} \int dY f_{a/p}(x_+,\mu_F^2) f_{b/\bar{p}}(x_-,\mu_F^2) \widehat{F}_i^{ab\to W^-j}$$

Lepton Angular Distribution

$$\frac{d^{4}\sigma}{dq_{T}^{2}d\cos\theta d\cos\theta d\phi} = F_{1}(1+\cos^{2}\theta) + F_{2}(1-3\cos\theta^{2}) \qquad \begin{array}{l} \textbf{P-even:} F_{1^{*}6} \\ \textbf{LO} : \text{Chaichian et.al.}(`82) \\ \textbf{LO} : \text{Chaichian et.al.}(`82) \\ \textbf{NLO} : \text{Mirkes}(`92) \\ + F_{5}\cos\theta + F_{6}\sin\theta\cos\phi \\ + F_{7}\sin\theta\sin\phi + F_{8}\sin2\theta\sin\phi \\ \textbf{P:} \phi \rightarrow -\phi \qquad + F_{9}\sin^{2}\theta\sin2\phi \end{array} \qquad \begin{array}{l} \textbf{P-odd:} F_{7^{*}9} \\ \textbf{LO} (\text{one-loop}) : \\ \textbf{Hagiwara,} \textbf{Hikasa,} \textbf{Kai}(`84) \\ \textbf{NLO} : \text{not yet} \end{array}$$

- ●角度積分するとF₁項のみが残る → 断面積はF₁のみで決まる。
- •9個の構造関数は、Wボソンの偏極の情報を反映している。
- 方位角依存性は、干渉効果から生ずる。

Ρ

ATLAS EPJC72,2001(2012)

At the LHC, only polar angular distribution has been measured, so far.

天頂角分布(対角要素)はTevatron, LHCで測られていて、理論計算とよく一致。

方位角分布(非対角要素)は、 P-even分布のみ測定されている (CDF実験)。

- Some of P-even distributions have been measured by CDF collaboration.
 - → agree with pQCD (NLO) calc. within errors.
- However, P-odd distributions have not been measured at all.

Our work : revisit the P-odd effects and demonstrate the method to measure the P-odd distributions for the LHC.

Parity-odd and naïve-T-odd observables

General arguments of parity-odd asymmetry

- Parity transformation : $(\vec{p}, \vec{s}) \rightarrow (-\vec{p}, \vec{s})$
- Parity-odd observables :

$$ullet$$
 with spin : $\langle ec{p}_\ell \cdot ec{s}
angle
ightarrow - \langle ec{p}_\ell \cdot ec{s}
angle$

 \bullet without spin : $\langle \vec{p_p} \times \vec{q} \cdot \vec{p_\ell} \rangle \rightarrow - \langle \vec{p_p} \times \vec{q} \cdot \vec{p_\ell} \rangle$

(need a source of parity-violation, e.g. weak int.)

(we don't consider the other type of parity-violating phenomena, such as charge asymmetry,,,)

T.D. Lee and C.N. Yang; C.S. Wu

• β -decay of polarized nucleus : $Co^{60} \rightarrow Ni^{60} + e^- + \nu$

Parity-odd and Naïve-T ($\stackrel{\sim}{\mathsf{T}}$)-odd

• P-odd observables without spins are interesting, because these are naïve-T (\widetilde{T}) -odd at the same time.

T-transformation : $(\vec{p}, \vec{s}) \rightarrow (-\vec{p}, -\vec{s})$ (anti-unitary) $T|i(\vec{p}, \vec{s})\rangle = \langle \tilde{i}(-\vec{p}, -\vec{s})|$

Unitarity and $\widetilde{\mathsf{T}}\text{-}\mathsf{odd}$ quantity

• Unitarity of S-matrix $\begin{aligned} SS^{\dagger} &= 1\\ S_{fi} &= \delta_{fi} + i(2\pi)^{4} \delta^{4} (P_{f} - P_{i}) T_{fi} \end{aligned}$

$$T_{fi} - T_{if}^* = iA_{fi}$$
 where $A_{fi} = \sum_n T_{nf}^* T_{ni} (2\pi)^4 \delta^4 (P_n - P_i)$
absorptive part

gives
$$|T_{fi}|^2 = |T_{if}|^2 - 2 \operatorname{Im}(T_{if}^* A_{fi}) + |A_{fi}|^2$$

 $\widetilde{\mathsf{T}}$ -odd quantity \int subtract $|T_{\widetilde{fi}}|^2$

$$|T_{fi}|^2 - |T_{\tilde{f}\tilde{i}}|^2 = (|T_{if}|^2 - |T_{\tilde{f}\tilde{i}}|^2) - 2\operatorname{Im}(T_{fi}^*A_{fi}) - |A_{fi}|^2$$

Time-reversal violation

 \rightarrow emerges from the absorptive parts of the scattering amplitude

In perturbation theory, the absorptive part of scattering amplitudes can be calculated by the imaginary part of the amplitudes.

Therefore, measurement of naïve-T-odd quantities can test the perturbative predictions for the absorptive part of scattering amplitudes; i.e. the scattering phase or the strong phase.

$\stackrel{\sim}{\mathsf{T}}\text{-odd}$ asymmetry in hard processes

 T-odd asymmetries in hard processes have been calculated in the e⁺e⁻→3jets, Semi-Inclusive DIS, DY and top decay processes.

• Absorptive parts of these processes are related with each other by crossing and analyticity

Korner, Malic, Merebashvili ('00)

• So far, no experimental measurements for these processes

T-odd asymmetry in hadron physics

Polarization

-0.1

-0.2

-0.3

(%)

0 0.1 0.2 0.3

0.4

 X_{F}

p, > 1 GeV/c

- Large T-odd asymmetries have been observed in hadron spin physics
 - $\sim \langle \vec{p}_p imes \vec{p}_{\sf A} \cdot \vec{s}_{\sf A}
 angle$ **1.** Λ -polarization in $p + N \to \Lambda^{\uparrow} + X$

2.
$$A_N \text{ in } p + p^{\uparrow} \to \pi + X$$

$$A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \langle \vec{p}_p \times \vec{s}_p \cdot \vec{p}_\pi \rangle$$

- STSA needs chirality-flip amplitude, in addition to the complex phase
 - Non-perturbative QCD effects inside nucleon
 - Transverse-momentum-dependent PDF 1.
 - 2. Higher-twist effects

0.2 0.4 0.6 0.8 X_E **FNAL-E704**: π⁺ 30 **π** 20 10 <^z -10 -20 -30 -40

0.5 0.6 0.7 0.8

Strong phase in direct CP violation

• Direct CP violation in the meson decay

 $A(B \to f) = |D_1|e^{i(\theta_1 + \phi_1)} + |D_2|e^{i(\theta_2 + \phi_2)}$ $A(\bar{B} \to \bar{f}) = |D_1|e^{i(-\theta_1 + \phi_1)} + |D_2|e^{i(-\theta_2 + \phi_2)}$ $\theta_i : \text{ weak phases}$ $\phi_i : \text{ strong phases}$ $|A|^2 - |\bar{A}|^2 \propto \sin(\theta_1 - \theta_2) \sin(\phi_1 - \phi_2)$

後田さん

26

Lepton Angular Distribution

$$\frac{d^4\sigma}{dq_T^2 d\cos\theta d\cos\theta d\phi} = F$$

$$F_1(1+\cos^2\theta)+F_2(1-3\cos\theta^2)$$

- + $F_3 \sin 2\theta \cos \phi + F_4 \sin^2 \theta \cos 2\phi$
- + $F_5 \cos \theta + F_6 \sin \theta \cos \phi$
- + $F_7 \sin \theta \sin \phi + F_8 \sin 2\theta \sin \phi$
- $\mathsf{P}: \phi \to -\phi \qquad + F_9 \sin^2 \theta \sin 2\phi$

```
P-even : F_{1^{\sim}6}
```

```
LO : Chaichian et.al.('82)
NLO: Mirkes('92)
```

P-odd : F_{7~9}

LO (one-loop) : Hagiwara,Hikasa,Kai('84) NLO: not yet

- •9個の構造関数は、Wボソンの偏極の情報を反映している。
- •方位角依存性は、干渉効果から生ずる。
- 角度積分すると F_1 項のみが残る → 断面積は F_1 のみで決まる。
- P-odd な分布は、loop-levelで、absorptive partから生じる。

One-loop calculation

Hagiwara, Hikasa, Kai('84)

- Absorptive part for the W-jet production in one-loop level :
 - 1. Annihilation subprocess : $q\bar{q}' \rightarrow Wg$

2. Compton subprocess : $qg \rightarrow Wq' \ (\bar{q}g \rightarrow W\bar{q}')$

One-loop calculation

Origin of the imaginary part in the loop (Feynman) integrals;

$$\begin{cases} \log(x-i\epsilon) \to -i\pi \theta(-x) \\ \text{Li}_2(x-i\epsilon) \to i\pi \ln(x) \theta(x-1) \end{cases} \qquad \frac{1}{\Delta - i\epsilon} \to \mathsf{P}\frac{1}{\Delta} + i\pi \delta(\Delta) \\ \text{in the integrand} \end{cases}$$

Methods of calculation;

- 1. Analytic calculation by standard Feynman parameter integrals
- 2. Express by loop scalar functions and use the fortran code "FF" Passarino, Veltman ('79), Oldenborgh ('91)
- IR divergences are regulated by using gluon mass scheme or DR.
- Check of the results by the gauge invariance

 $A_i(q_T^2, \cos \hat{\theta}) = F_i / F_1$ for i = 7, 8, 9

 $\sin heta$ sin ϕ

sin 2 θ sin ϕ

 $\sin^2\theta\sin 2\phi$

Parity-odd asymmetries

 $A_i(q_T^2, \cos \hat{\theta}) = F_i / F_1$ for i = 7, 8, 9

A A A_{7} 0.15 0.04 0.02 LHC 0.1 $pp, \sqrt{S} = 8 \text{ TeV}$ $q_{T} = 20 \text{ GeV}$ 0.02 40 GeV 60 GeV 0.01 80 GeV 0.05 with CTEQ6M 100 GeV 0 0 0 A₇ ~ 10-15%, -0.05 $A_8 \sim a$ few %, -0.02 -0.01 -0.1 $A_q \sim a \text{ few } \%$ -0.04 L -0.15 -0.02 0 0 0 $\cos\hat{\theta}$ $\sin^2\theta\sin 2\phi$ $\sin\theta\sin\phi$ $\sin 2\theta \sin \phi$

Simulation study for the LHC measurement

R.Frederix(CERN), K.Hagiwara(KEK), T.Yamada(NCU, Taiwan), HY, in progress

(focusing on A_7)

MC simulation with P-odd effects

MC tools are required by experimentalists to simulate their measurement. Detect effects (acceptance, resolution), ISR/FSR, hadronization → smearing of distribution, asymmetries

• We have two tools:

aMC@NLO

The Hor Pec

Ney MC

Download the code from

https://launchpad.net/mg5amcnlo

The project	aMC@NLO is a collaborative project that aims at providing accur- predictions in the form of public MC tools for LHC Physics in the
Home People Contact News	Standard Model and beyond, by systematically including NLO corrections in the simulations performed by event generators. It is organized in a modular way and implemented in the <u>MadGraph</u> framework. It is based on high-efficiency techniques for NLO
MC Tools (registration needed)	computations: the <u>FKS</u> subtraction method, the <u>OPP/CutTools</u> techn to compute one-loop amplitudes (as implemented in <u>MadFKS</u> and <u>MadLoop</u> , respectively), and on the <u>MC@NLO</u> formalism for matching short-distance cross sections with parton shower Monte Carlo's.
Download aMC@NLO Help and FAQs Event samples DB Special Codes	aMC@NLO is public and available for download since Nov 2012. It features the full automation of the computations QCD corrections Standard Model processes at colliders. As time progresses and/or upon request, the following features will be made available on t web site:
Communication	 Process-specific MC@NLO codes, that generate hard events to given as inputs to parton-shower Monte Carlo's
Citations	 Samples of hard events, to be showered

aMC@NLO web page

NLO Event generation just in four lines

./bin/mg5 S $MG5_aMC>$ generate p p > mu+ vm j [QCD] MG5_aMC> output MG5_aMC> launch

parton-level hadron-level (pythia, herwig) detector-level (PGS, delphes, ,)

$$W^+(\to \mu^+ \nu_\mu) + 1$$
-jet :

- Cross-section of the generated events (Q_T>15 GeV): 1.2 nb
- Cross-sections after cuts

p_T^μ , $ \eta_\mu <$ 2.5 :	0.94 nb
$ ot\!$	0.75 nb
$Q_T > 30 \text{ GeV}$:	0.29 nb
$M_T^W >$ 60 GeV :	0.29 nb
$p_T^j >$ 30 GeV, $ \eta_j <$ 5 :	0.13 nb

0.13 nb \times 20 fb⁻¹ = 2.6 \times 10⁶ events

• Two-fold ambiguity:

(longitudinal) neutrino momentum cannot be measured, but solved by using W-boson on-shell condition.

- \rightarrow Two-fold ambiguity in determining
 - W-jet c.m. frame $\cos \hat{\theta}$, \hat{s} , x_{\pm} ,,
 - W-rest frame $\cos \theta$, $(\sin \theta, \phi)$
- However, to measure A₇, we only need to measure

 $\sin\theta\sin\phi$

(to avoid cancellation)

 $\cos \hat{\theta}$

 \rightarrow y-component of p_l in the lab. frame

→ use pseudo-rapidity difference of lepton and jet, instead. $\Delta \eta = \eta_{\ell} - \eta_{jet}$

Measurement at collider experiments

• Events in the transverse plane

(p^y)_I is invariant under the Lorentz Boost from lab. frame to the W-rest frame

Missing E_T resolution may be crucial for the accuracy of $(p^I)_y$ measurement

MC simulation : distributions (parton-level)

38

- Asymmetric distribution appears when the scattering angle is fixed.
- Small p^y events are cut → Good for P-odd, because sign mis-id becomes rare.

MC simulation : distributions (parton-level) ³⁹

 $\Delta\eta (=\eta_\ell - \eta_j)$ distribution

- Strong positive correlation with the scattering angle.
- Measurement of $\Delta\eta$ is affected by ISR jets.

 \rightarrow Smearing of the P-odd distribution and the P-odd asymmetry.

MC simulation : P-odd asymmetry

• Comparison of the P-odd asymmetry at the parton-level and detector-level(PGS).

$$A_{LR} = \frac{N(\hat{p}_{\ell}^{y} > 0) - N(\hat{p}_{\ell}^{y} < 0)}{N(\hat{p}_{\ell}^{y} > 0) + N(\hat{p}_{\ell}^{y} < 0)}$$

left-right asymmetry (A₇を反映)

破線 : スケール不定性

$$\mu = Q_T/2, Q_T, 2Q_T$$

誤差棒 :
8TeV, 20fb⁻¹での統計エラー
 $\delta A(\text{bin}) = \sqrt{1/N_{\text{evt}}(\text{bin})}$
 $\simeq 0.1\%$

 $|A|/\delta A = 4 \sim 20$

MC simulation : ISR/FSR and detector effects⁴¹

 Asymmetry reduction by ISR/FSR effects and detector smearing

~ 10%-20%

• Possible sources: \vec{E}_T resolution \rightarrow small, since small p_{γ}^{l} events are cut. miss $\Delta \eta$ measurement by ISR jets \rightarrow can be large, especially for larger $\Delta \eta$

• Scale uncertainty is also enlarged by detector effects:

 \rightarrow (probably) change of the ISR jets distribution

MC simulation : LO MC vs aMC@NLO

• LO MC vs. aMC@NLO : after the detector sim.(PGS)

- P-odd cross-section unchanged \rightarrow consistent with the order of calculation.
- Reduction of the asymmetry in aMC@NLO,

due to the K-factor (~ 1.5 - 2) in the denominator (total cross-section).

→ It must be important to check the P-odd part at NLO (2-loop calc). At present, it is a kind of theory uncertainty.

Future prospects :

this study

- LO in P-odd part
- analytically known since long time ('84~)

next step

W+ n-jet @ 1-loop

- LO in P-odd part
- no analytic cal.
- calculable by aMC@NLO

future

W+ 1-jet @ 2-loop

- NLO in P-odd part
- check the K-factor for P-odd
- check the perturbative convergence of the P-odd asymmetries

other process

$$t \to bW^+g$$
 @ 1-loop

- LO is known analytically
- observability at the LHC or ILC
- reconstruction at collider is challenging

Summary

- Naïve-T-odd asymmetry emerges from the absorptive part of the scattering amplitudes. In a hard process it can be predicted, and comparison with experimental measurement would be an interesting test.
- We study the naïve-T-odd (P-odd) asymmetry in W+jet production at the LHC at one-loop level, with detailed simulation study for the realistic experimental situations.
- The asymmetry is 5%-10% level, and would be observable even after NPQCD effect and detector smearing.
- It will be a first observation of naïve-T-odd observables in hard process.