新しいラージN極限と インスタントン

柴 正太郎

2014/04/30 @ 益川塾

畔柳さん、花田さん、本多さん、松尾さんとの共同研究 に基づく。arXiv:1307.0809 [hep-th] (accepted by JHEP)

From Strings to M!! D-branes M-branes

- BLG theory & ABJM theory for M2-branes (2007, 2008)
- 5d/6d equivalence for M5-branes (2010)

Large-N limit?

4d SU(N) super Yang-Mills theory

In usual, it means <u>'t Hooft limit</u>:

$$N \to \infty$$
, $\lambda = g_{YM}^2 N$: fixed

 I/N expansion = genus expansion (related to string theory!)

$$F = \sum_{g=0}^{\infty} F_g(\lambda) N^{2-2g}$$

- The perturbative series (of λ) may have a finite radius of convergence at large-N.
- → Analytic continuation to strong 't Hooft coupling? (cf.AdS/CFT correspondence in string theory. M-theory?)
- Various nice properties (factorization, integrability, etc...)

Super Yang-Mills theory

- > Action SU(N) $S_{YM} = \frac{N}{\lambda} \int d^4x \operatorname{Tr} \left[\frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} (D_\mu \phi)^2 + \dots \right]$
- > N-dependence of amplitudes
- Planar diagram (genus 0) dominant! $N^{-3} \times N^2 \times N^3 = N^2$ (propagators) (vertices) (index loops)
- Non-planar diagram (genus I)
 N⁻³ × N² × N¹ = N⁰
 (propagators) (vertices) (index loops)

✓ This is why the large-N limit is called "the planar limit".

- More generally,
 - (# propagators) + (# vertices) + (# index loops)

 N^{2-2g}

= 2-2(# genus) : It is known as Euler number.

Relation to string theory

- We consider the diagrams which can be drawn on genus-g surface, called "genus-g diagrams".
- They correspond to diagrams with g closed string loops. The amplitudes: $N^{2-2g} \sim g_{YM}^{2(2g-2)} \sim g_s^{2g-2}$ (with λ fixed)
- For example, in AdS/CFT correspondence, 4d N=4 SYM is equivalent to IIB string on AdS₅ × S⁵ (by considering the bunch of D3-branes and $\alpha'/R_{AdS}^2 \sim \lambda^{-1/2}$).

String to M?

- In string theory (in AdS/CFT correspondence),
- classical gravity = planar limit $(g_s \rightarrow 0, \alpha' \rightarrow 0)$ (Only genus-0 diagrams dominate.)
- g_s correction = I/N correction (string coupling)
- α ' correction = $1/\lambda$ correction (~string length²)
- > But what about M-theory?
- We need to consider the region of $g_{YM}^2 \sim g_s \gtrsim \mathcal{O}(1)$
- Is there any large-N limit??

Another large-N limit $N \to \infty, \quad \lambda = g_{YM}^2 N \sim N^p$

- > p=0 case
- It is nothing but the 't Hooft limit.

> p>0 case

- We call it "very strongly coupled large-N limit".
- I/N expansion is different from genus expansion.
- Application for M-theory? (p=1): $g_{YM}^2 \sim g_s \gtrsim \mathcal{O}(1)$ (In 't Hooft limit, g_{YM} and g_s must become zero.)
- Instanton effect becomes finite: $\exp\left[-8\pi^2/g_{YM}^2\right] = O(1)$ (In 't Hooft limit, it is exponentially suppressed.)

Conjecture

- The very strongly coupled large-N limit is well-defined and essentially the same as the 't Hooft limit.
- More precisely: large-N limit and strong 't Hooft coupling limit commute.
- When there is no "phase transition" (or as long as one considers the same point in the moduli space), the analytic continuation from the planar limit gives the right answer.

[Azeyanagi-Fujita-Hanada '12]

[Azeyanagi-Hanada-Honda-Matsuo-SS '13]

N

 $\lambda = g_{YM}^2 N$

Observation:

Analytic continuation to M-theory

Effective theory on M2-branes

> ABJM theory (dual to M-theory on $AdS_4 \times S^7/Z_k$)

$$S_{ABJM} = \frac{k}{2\pi} \int d\tau d^2 x \left(\text{Tr} \left[(D_{\mu} \Phi_A^{\dagger}) (D^{\mu} \Phi^A) + i \Psi^{\dagger A} \gamma^{\mu} D_{\mu} \Psi_A \right] \right)$$

$$(\text{Chern-Simons level}) + \mathcal{L}_{CS}^{(1)} - \mathcal{L}_{CS}^{(2)} - V_B - V_F \right),$$
where
$$U(N) \times U(N) \text{ gauge group} \qquad A, B, C, D = 1, \dots, 4$$

$$\mathcal{L}_{CS}^{(i)} = \frac{1}{2} \epsilon^{\mu\nu\rho} \text{Tr} \left[A_{\mu}^{(i)} \partial_{\nu} A_{\rho}^{(i)} + \frac{2}{3} A_{\mu}^{(i)} A_{\nu}^{(i)} A_{\rho}^{(i)} \right],$$

$$V_B = \frac{1}{3} \text{Tr} \left[\Phi_A^{\dagger} \Phi^A \Phi_B^{\dagger} \Phi^B \Phi_C^{\dagger} \Phi^C + \Phi^A \Phi_A^{\dagger} \Phi^B \Phi_B^{\dagger} \Phi^C \Phi_C^{\dagger} + 4 \Phi^A \Phi_B^{\dagger} \Phi^C \Phi_A^{\dagger} \Phi^B \Phi_C^{\dagger} - 6 \Phi^A \Phi_B^{\dagger} \Phi^B \Phi_A^{\dagger} \Phi^C \Phi_C^{\dagger} \right],$$

$$V_F = i \text{Tr} \left[\Phi_A^{\dagger} \Phi^A \Psi^{\dagger B} \Psi_B - \Phi^A \Phi_A^{\dagger} \Psi_B \Psi^{\dagger B} - 2 \Phi_A^{\dagger} \Phi^B \Psi^{\dagger A} \Psi_B + 2 \Phi^A \Phi_B^{\dagger} \Psi_A \Psi^{\dagger B} - \epsilon^{ABCD} \Phi_A^{\dagger} \Psi_B \Phi_C^{\dagger} \Psi_D + \epsilon_{ABCD} \Phi^A \Psi^{\dagger B} \Phi^C \Psi^{\dagger D} \right],$$

Perturbative gauge theory

Free energy

• We can calculate it by using ABJM matrix model (which is derived by using localization technique).

[Kapustin-Willett-Yaakov '09]

 It agrees with SUGRA predictions. (We checked it smoothly connects them and perturbative ones.) [Drukker-Marino-Putrov '10]

[Hanada-Honda-Honma-Nishimura-SS-Yoshida '12]

 ✓ In IIA string region: (N^{1/5} ≪ k ≪ N)
 ✓ In M-theory region: (k ≪ N^{1/5})
 F = π√2/3 √kN^{3/2}
 The same expression! (k ≪ N^{1/5})

- Analytic continuation from $\,\lambda=\mathcal{O}(1)\,$ to $\lambda=\mathcal{O}(N)\,$

Planar part is dominant!

 \sim

even in M-theory region!

$$F = \sum_{g=0}^{\infty} F_g(\lambda) N^{2-2g}$$

N-dependent in M-theory region

- AdS/CFT tells us that, at strong coupling, α'-expansion (I/λ-expansion) is good, at least in IIA string region.
- Then, only the leading term in each F_g is important.

For F₀ (g=0):
$$\frac{\pi\sqrt{2}}{3} \frac{N^2}{\sqrt{\lambda}}$$
, For F_g (g>0): $c_g \frac{N^{2-2g}}{\lambda^{\frac{1}{2}-g}}$

• The planar part (g=0) dominates even outside the planar limit : $\lambda \sim N^p \ (0$

What about M5-branes?

- Effective field theory is not known yet.
- Recently, however, the special class (called "class S") of 4d N=2 theories has been widely studied as the theory of M5-brane on 2d punctured Riemann surface. [Gaiotto '09]

special (simple) examples

• 4d N=2* SYM : main topic of this seminar

mass deformation

• 4d N=4 SYM (maximal SUSY) :

Effective theory on D3-branes (IIB string on $AdS_5 \times S^5$)

Example I: 4d N=4 SYM

AdS₅/CFT₄ correspondence

[Maldacena '97]

> 4d N=4 SYM is equivalent to IIB string on $AdS_5 \times S^5$:

$$g_{YM}^2 \sim g_s \,, \ \alpha'/R_{AdS}^2 \sim \lambda^{-1/2} \qquad \lambda = g_{YM}^2 N$$

• Perturbative string picture is valid when

$$g_s \ll 1, \ \lambda \gg 1$$

- In usual, one takes the 't Hooft limit first and then consider strong 't Hooft coupling. (tree-level string)
- Or one consider large-but-finite-N with $\lambda = O(1)$, so that I/N expansion and string loop expansion coincide.
- However, such limit is not required for the validity of the weakly coupled gravity description.

Very strongly coupled large-N

[Azeyanagi-Fujita-Hanada '12]

When there is gravity dual:

$$\tilde{F}(\lambda, N) = F(g_s, \alpha')$$

$$= g_s^{-2}F_0(\alpha') + F_1(\alpha') + g_s^2F_2(\alpha') + \cdots$$

$$= g_s^{-2}(f_{0,0}) + f_{0,1}\alpha' + f_{0,2}\alpha'^2 + \cdots)$$

$$+ (f_{1,0} + f_{1,1}\alpha' + f_{1,2}\alpha'^2 + \cdots)$$

$$+ g_s^2(f_{2,0} + f_{2,1}\alpha' + f_{2,2}\alpha'^2 + \cdots) + \cdots$$

• f_{0,0} dominates as long as $g_s \ll 1$, $\lambda \gg 1$

• At $1 \ll \lambda \ll N$, it is simply the same expression as the SUGRA = planar limit. So the very strongly coupled limit exists!!

• In addition, the analytic continuation to $N < \lambda$ can be confirmed by using S-duality.

Example 2 (main topic): 4d N=2* SYM

[Azeyanagi-Hanada-Honda-Matsuo-SS'13]

Free energy

- 4d N=2* SYM can be obtained by mass deformation of N=4 SYM. Here we consider N=2* U(kN) SYM.
- Free energy is calculated by using Nekrasov's formula.

$$\mathcal{Z}_{\mathcal{N}=2^*} = \int d^{kN} a \Big(\prod_{\substack{i,j=1\\i< j}}^{kN} (a_i - a_j)^2 \Big) Z_{\mathcal{N}=2^*}^{(\text{pert})}(a_i, m) \big| Z_{\mathcal{N}=2^*}^{(\text{inst})}(a_i, \tilde{m}) \big|^2 \exp\left(-\frac{8\pi^2}{g_p^2} \sum_{i=1}^{kN} a_i^2\right)$$
perturbative instanton classical

- \checkmark g_p is YM coupling and a_i are Coulomb parameters (moduli).
- \checkmark Classical part : almost the same as N=4 case
- Perturbative part : I-loop quantum effect
- Instanton part : non-perturbative contribution

Perturbative part

$$F^{(\text{pert})} = -(kN)^2 (1+m^2) \left(\frac{1}{2}\log\frac{\lambda_p(1+m^2)}{16\pi^2} + \frac{1}{4} + \gamma\right)$$

- This sector takes the same expression in the 't Hooft limit and the very strongly coupled large-N limit. That is, they are related by "analytic continuation".
- The conditions in this expression are as follows:

✓ We need to use the saddle point method for the integral of *a*, so we assume g_p² ≪ 1, or equivalently, λ_p = g_p²(kN) ≪ N
 ✓ We use the spectral density of *a* for λ_p ≫ 4π²m²/(m² + 1) which obeys the semi-circle law. [Douglas-Shenker '95]

[Russo-Zarembo '12]

One-instanton part

$$\begin{split} F_Y^{(\text{inst})} &= -\log(\mathcal{Z}_Y/\mathcal{Z}_{\emptyset}) \quad \text{for the Young tableau} \quad Y = (\Box, \emptyset, \cdots, \emptyset) \\ & b \quad a \\ F_Y^{(\text{inst})} &\simeq \underbrace{\frac{8\pi^2}{g_p^2}}_{-} \log\left[\frac{(1-\tilde{m})^2}{(2-\tilde{m})\tilde{m}}\right] \\ & -kN \int da \, \rho(a) \log\left[\frac{(2-i(b-a)-\tilde{m})(i(b-a)-\tilde{m})}{(2-i(b-a))i(b-a)}\right] \end{split}$$

 $O(\log g_p^2)$: interactions between instantons

- Compared to the perturbative part, it is subdominant in the both limits. But a different point is:
- ✓ In the 't Hooft limit, it is exponentially suppressed as ~ e^{-N} .
- ✓ In the very strongly coupled large-N limit $(g_p \sim I)$, it may give comparable contribution $O(N^0)$ as the genus-one diagrams in the perturbative sector.

(Whole of) free energy

 By summing up all the parts and by taking into account the multi-instanton configurations, one obtains

$$F = -\log \mathcal{Z}_{\emptyset} + kN \log \left| 1 + \sum_{\tilde{Y}} e^{-F_{\tilde{Y}}^{(\text{inst})}} \right|^2$$

perturbative part

instanton with only $Y_1 \neq \emptyset$

Note that the interaction between instantons is negligible.

 Then the free energy for generic tableaux decomposes to a sum of contribution from each eigenvalue a as

$$F_Y^{(\text{inst})} \simeq \sum_{Y_i \neq \emptyset} F_{Y_i}^{(\text{inst})} \qquad Y = (Y_1, \dots, Y_{kN})$$

 In both limits the planar part (~ N²) is dominant and they are related by "analytic continuation".

Further evidence: Orbifold equivalence

[Azeyanagi-Hanada-Honda-Matsuo-SS'13]

In the gauge side, correlation func. In of Z_k -invariant operators coincide models with that in the orbifolded theory. two

In the gravity side, Z_k -invariant modes do not distinguish these two theories.

- In this discussion, the planar limit is not really necessary: classical gravity discussion is the key.
- From the gauge theory viewpoint, the equivalence is gone as soon as the nonplanar diagrams are taken into account.

 When the daughter theory keeps N=2 SUSY, one can easily confirm the orbifold equivalence by using the Nekrasov's formula. In both large-N limits,

$$F_p(\lambda, N) = kF_d(\lambda, N)$$

• The equivalence holds at each instanton sector. (The sector with the same total number of instantons.)

Towards SYM with less SUSY

You can use Nekrasov's formula.

You can take it to be non-SUSY!

$$F_p(\lambda, N) = kF_d(\lambda, N)$$

- The orbifold equivalence requires that the vacuum structures of the parent and daughter theories be properly related.
- When the number of instantons and anti-instantons is O(I), the vacuum structures don't change, so the equivalence holds.
- However, when it becomes O(N), the vacuum structures in the very strongly coupled large-N limit are modified and hence careful identification of the right vacua is required.

Conclusion and Discussion

- Both in the very strongly coupled large-N limit and in the 't Hooft limit, the planar sector is dominant.
- In addition, the two large-N limits are smoothly related by analytic continuation. (No transitions in our cases.)
- > Application for 4d N=2 theories in "class S"
- Gauge/gravity correspondence in M-theory?

On-shell action of IId SUGRA (Gaiotto-Maldacena geometry) Here energy of 4d N=2 gauge theory

• IId SUGRA, corresponding to "planar" in gauge theory side, may know the instantons in the large-N limit with fixed g_{YM} ! [Azeyanagi-Hanada-Honda-Matsuo-SS, in progress]