Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models

Tomohiro Abe (KEK)

In collaboration with Junji Hisano (Nagoya) Teppei Kitahara (Univ. of Tokyo) Kohsaku Tobioka (Kavli IPUM)

> Maskawa institute February 24th 2014

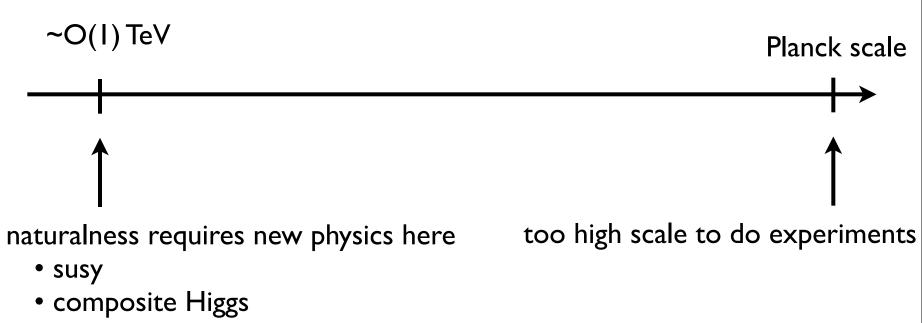
- LHC found a Higgs boson around 126 GeV
- where is the next scale?

- LHC found a Higgs boson around 126 GeV
- where is the next scale?

naturalness requires new physics here

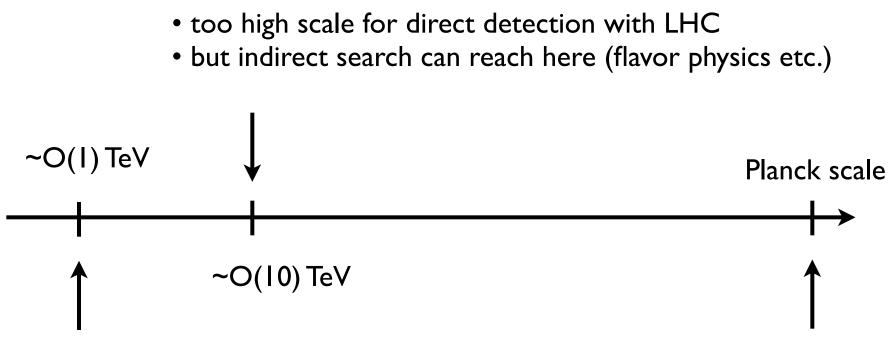
- susy
- composite Higgs
- etc

- LHC found a Higgs boson around 126 GeV
- where is the next scale?



• etc

- LHC found a Higgs boson around 126 GeV
- where is the next scale?



naturalness requires new physics here

too high scale to do experiments

- susy
- composite Higgs
- etc

electric dipole moment (EDM)

EDM has capability to seek high scale physics indirectly

$$\mathcal{L}_{EDM} = -i \frac{\mathbf{d_f}}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu}$$

- dim. 5 operator
- pick up CP violation
- need chirality flip

particle	exp. bound $[ecm]$	SM prediction (δ_{KM})	BSM expectations
neutron	$ d_n < 2.9 imes 10^{-26}$	$\sim 10^{-32}$	$\lesssim 10^{-26}$
proton	$ d_p < 5.4 imes 10^{-24}$	$\sim 10^{-32}$	$\lesssim 10^{-26}$
electron	$ d_e < 1.6 imes 10^{-27}$	$\lesssim 10^{-38}$	$\lesssim 10^{-27}$
muon	$ d_{\mu} < 2.8 \times 10^{-19}$	$\lesssim 10^{-36}$	$\lesssim 10^{-22}$

talk by Bernreuther

electric dipole moment (EDM)

EDM has capability to seek high scale physics indirectly

$$\mathcal{L}_{EDM} = -i \frac{\mathbf{d_f}}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu}$$

- dim. 5 operator
- pick up CP violation
- need chirality flip

particle	exp. bound $[ecm]$	SM prediction (δ_{KM})	BSM expectations
neutron	$ d_n < 2.9 imes 10^{-26}$	$\sim 10^{-32}$	$\lesssim 10^{-26}$
proton	$ d_p < 5.4 imes 10^{-24}$	$\sim 10^{-32}$	$\lesssim 10^{-26}$
electron	$ d_e < 1.6 \times 10^{-27}$	$\lesssim 10^{-38}$	$\lesssim 10^{-27}$
muon	$ d_{\mu} < 2.8 imes 10^{-19}$	$\lesssim 10^{-36}$	$\lesssim 10^{-22}$
	talk by Bernreuther		

2HDM with softly broken Z₂ symmetry

two-Higgs-Doublet-Model (2HDM)

- extra CP violation source in Higgs potential
- often appear in BSM (SUSY, top see-saw, W' model, ...)
- good bench mark model for BSM
- (electroweak baryogenesis?)

• we impose Z_2 symmetry to avoid FCNC

Туре	H ₁	H ₂	UR	d _R	e r	q _L / I _L
I	+	-	-	-	-	+
	+	-	-	+	+	+
X	+	-	-	-	+	+
Y	+	-	-	+	-	+

$\mathcal{L}_{\text{Yukawa}} = -\overline{q}_L \widetilde{H}_2 y_u u_R - \overline{q}_L H_i y_d d_R - \overline{\ell}_L H_j y_e e_R + h.c.$

Type	Ι	II	Х	Y
u	H_2	H_2	H_2	H_2
d	H_2	H_1	H_2	H_1
l	H_2	H_1	H_1	H_2

 $\widetilde{H}_2 = \epsilon H_2^*$

CPV source in Higgs potential

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2$$

- $\left(m_3^2 H_1^{\dagger} H_2 + (h.c.) \right)$
+ $\frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2$
+ $\lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$
+ $\frac{1}{2} (\lambda_5 (H_1^{\dagger} H_2)^2 + (h.c.)).$

CPV source in Higgs potential

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2$$

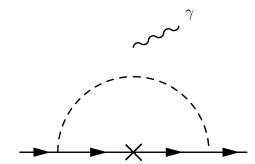
- $\left(m_3^2 H_1^{\dagger} H_2 + (h.c.) \right)$
+ $\frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2$
+ $\lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$
+ $\frac{1}{2} (\lambda_5 (H_1^{\dagger} H_2)^2 + (h.c.)).$

- m_3 and λ_5 are complex and have CP phase
- they can be a source of EDM

two loop give larger contributions

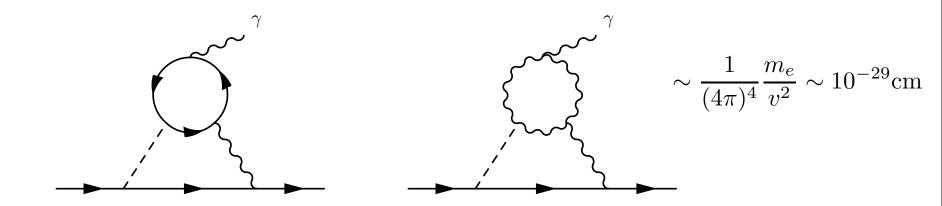
one loop ($O(y^3)$)

 $\mathcal{L}_{EDM} = -i \frac{\mathbf{d_f}}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu}$



$$\sim \frac{1}{(4\pi)^2} \frac{m_e^3}{v^4} \sim 10^{-42} \text{cm}$$

two loop (O(y)) (Barr-Zee diagrams)



Goal of this talk

- we study EDM in 2HDM with softly broken Z_2 symmetry
- focus on Barr-Zee diagram
- take into account of the gauge invariance
- show numerical result of type-I, -II, -X, and -Y.

Contents

I. Introduction

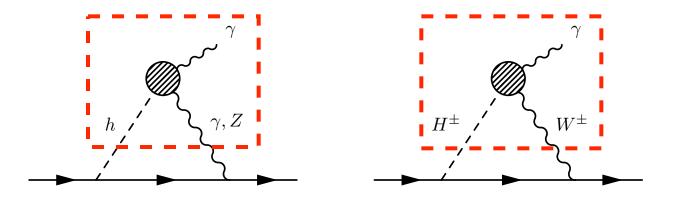
- 2. Barr-Zee diagram
- 3. Pinch technique for EDM calculation
- 4. Numerical result
- 5. Summay

Contents

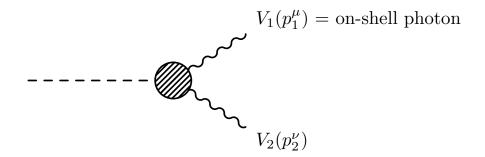
I. Introduction

- 2. Barr-Zee diagram
- 3. Pinch technique for EDM calculation
- 4. Numerical result
- 5. Summay

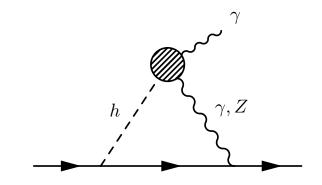
• Barr-Zee diagram includes $h\gamma\gamma$, $hZ\gamma$, and $HW\gamma$ loop subdiagrams



• we start by calculating hyp, hZy, and HWy effective vertex



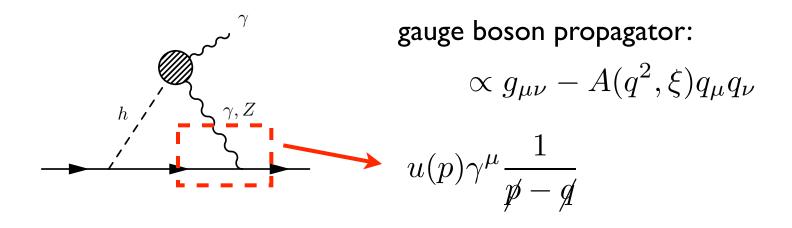
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant



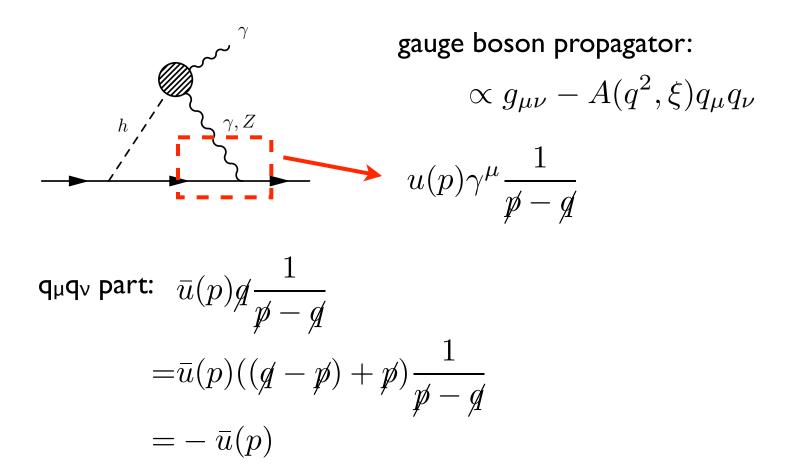
gauge boson propagator:

$$\propto g_{\mu\nu} - A(q^2,\xi)q_\mu q_
u$$

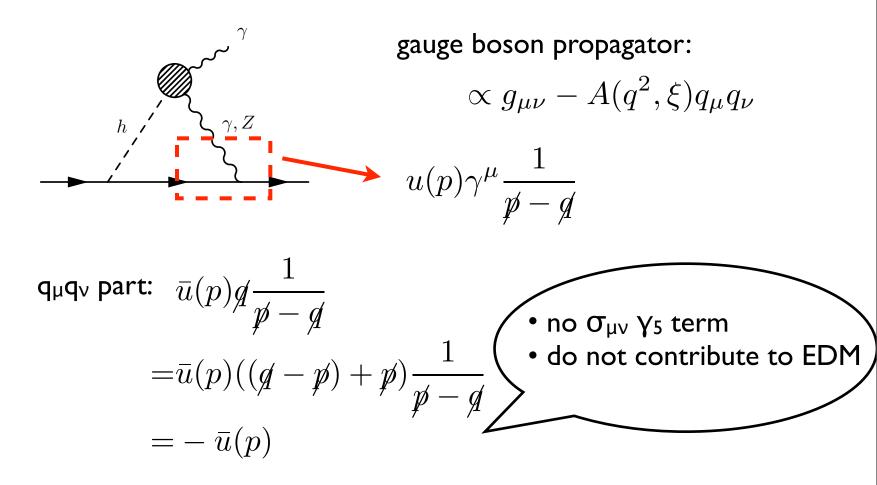
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant



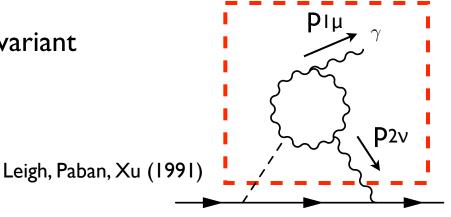
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant



• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant

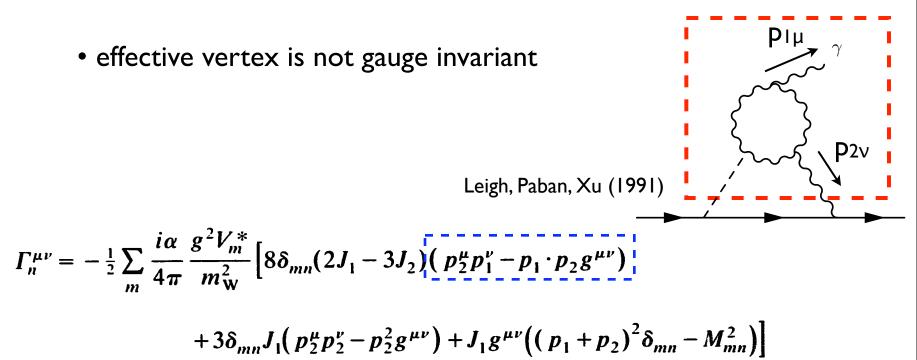


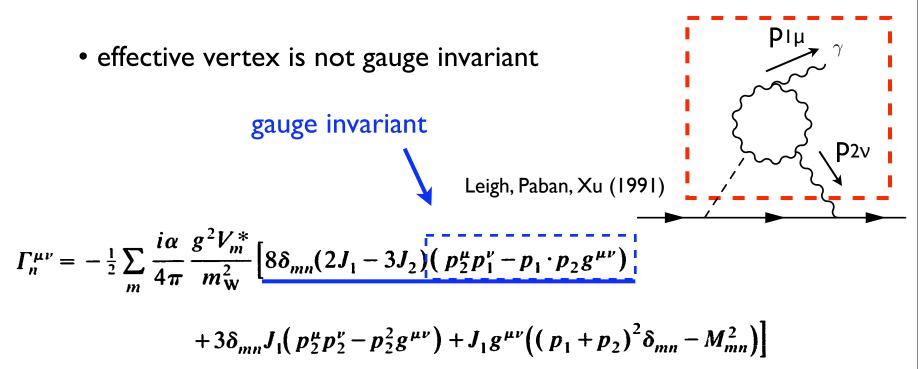
• effective vertex is not gauge invariant

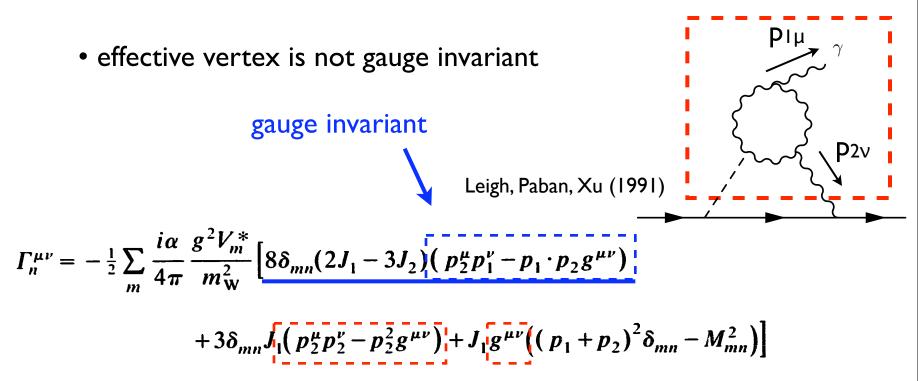


$$\Gamma_n^{\mu\nu} = -\frac{1}{2} \sum_m \frac{i\alpha}{4\pi} \frac{g^2 V_m^*}{m_W^2} \Big[8\delta_{mn} (2J_1 - 3J_2) \big(p_2^{\mu} p_1^{\nu} - p_1 \cdot p_2 g^{\mu\nu} \big) \Big]$$

$$+3\delta_{mn}J_{1}(p_{2}^{\mu}p_{2}^{\nu}-p_{2}^{2}g^{\mu\nu})+J_{1}g^{\mu\nu}((p_{1}+p_{2})^{2}\delta_{mn}-M_{mn}^{2})]$$







<u>gauge invariance of the effective vertex</u> • effective vertex is not gauge invariant

 $\Gamma_{n}^{\mu\nu} = -\frac{1}{2} \sum_{m} \frac{i\alpha}{4\pi} \frac{g^{2} V_{m}^{*}}{m_{W}^{2}} \left[8\delta_{mn} (2J_{1} - 3J_{2}) \left(p_{2}^{\mu} p_{1}^{\nu} - p_{1} \cdot p_{2} g^{\mu\nu} \right) \right]$ + $3\delta_{mn} J_{1} \left(p_{2}^{\mu} p_{2}^{\nu} - p_{2}^{2} g^{\mu\nu} \right) + J_{1} g^{\mu\nu} \left((p_{1} + p_{2})^{2} \delta_{mn} - M_{mn}^{2} \right) \right]$

NOT gauge invariant

<u>gauge invariance of the effective vertex</u> effective vertex is not gauge invariant gauge invariant Leigh, Paban, Xu (1991) $\Gamma_n^{\mu\nu} = -\frac{1}{2} \sum_m \frac{i\alpha}{4\pi} \frac{g^2 V_m^*}{m_W^2} \Big[8\delta_{mn} (2J_1 - 3J_2) \Big(p_2^{\mu} p_1^{\nu} - p_1 \cdot p_2 g^{\mu\nu} \Big) \Big]$ $+3\delta_{mn}J_{1}(p_{2}^{\mu}p_{2}^{\nu}-p_{2}^{2}g^{\mu\nu})+J_{1}g^{\mu\nu}((p_{1}+p_{2})^{2}\delta_{mn}-M_{mn}^{2})$ **NOT** gauge invariant

- previous works did not care the gauge invariance
- we improve this point

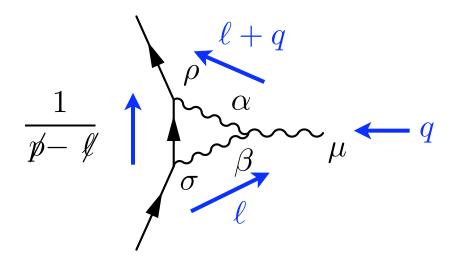
Contents

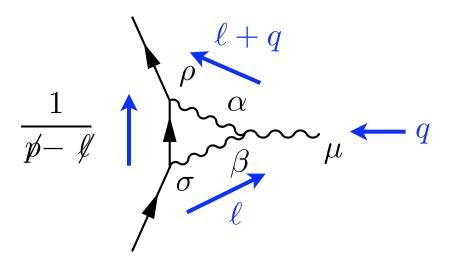
- I. Introduction
- 2. Barr-Zee diagram
- 3. Pinch technique for EDM calculation
- 4. Numerical result
- 5. Summay

example: gauge boson self-energy (γZ) are not gauge invariant

$$i\Pi_{\mu\nu}^{Z\gamma} = i\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)\Pi_T(q^2) + i\frac{q_{\mu}q_{\nu}}{q^2}\Pi_L(q^2)$$

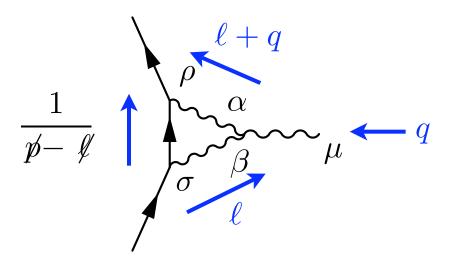
- sum of all relevant diagrams are gauge invariant
- pinch technique: barrow some terms from vertex corrections
- then self-energy are made gauge invariant





derivative coupling:

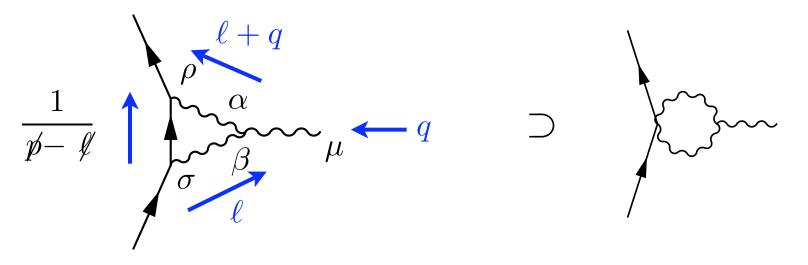
 $[(l-p) + (p+q) - 2q]_{\alpha} g_{\mu\beta} + [(l-p) + p + 2q]_{\beta} g_{\mu\alpha} + (-(l+q) - l)_{\mu} g_{\alpha\beta}.$



derivative coupling:

$$[(l-p) + (p+q) - 2q]_{\alpha} g_{\mu\beta} + [(l-p) + p + 2q]_{\beta} g_{\mu\alpha} + (-(l+q) - l)_{\mu} g_{\alpha\beta}.$$

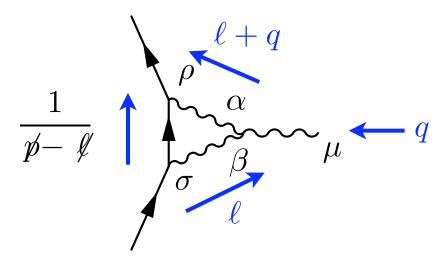
cancel the fermion propagator



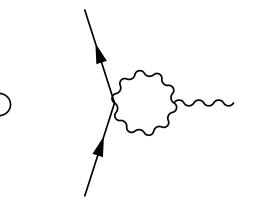
derivative coupling:

$$[(l-p) + (p+q) - 2q]_{\alpha} g_{\mu\beta} + [(l-p) + p + 2q]_{\beta} g_{\mu\alpha} + (-(l+q) - l)_{\mu} g_{\alpha\beta}.$$

cancel the fermion propagator



derivative coupling:



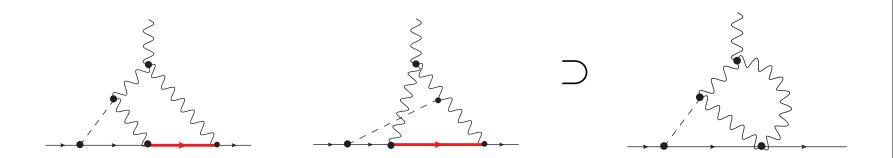
- almost self-energy diagram
- make self-energy gauge invariant

 $[(l-p) + (p+q) - 2q]_{\alpha} g_{\mu\beta} + [(l-p) + p + 2q]_{\beta} g_{\mu\alpha} + (-(l+q) - l)_{\mu} g_{\alpha\beta}.$

cancel the fermion propagator

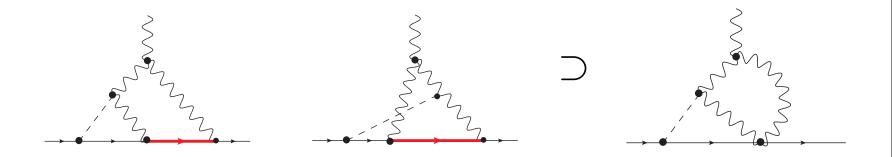
pinch technique for Barr-Zee

• we have the following non-Barr-Zee diagrams



pinch technique for Barr-Zee

• we have the following non-Barr-Zee diagrams

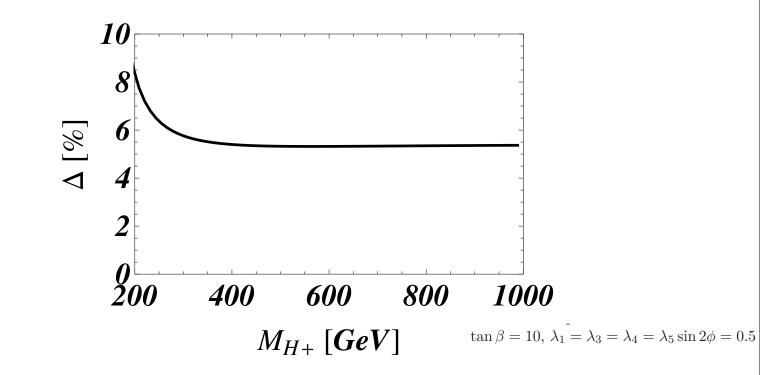


• we have checked this diagram certainly work for the gauge invariance



EDM w/ and w/o pinch contributions

 Δ = (gauge no inv - gauge inv)/gauge inv

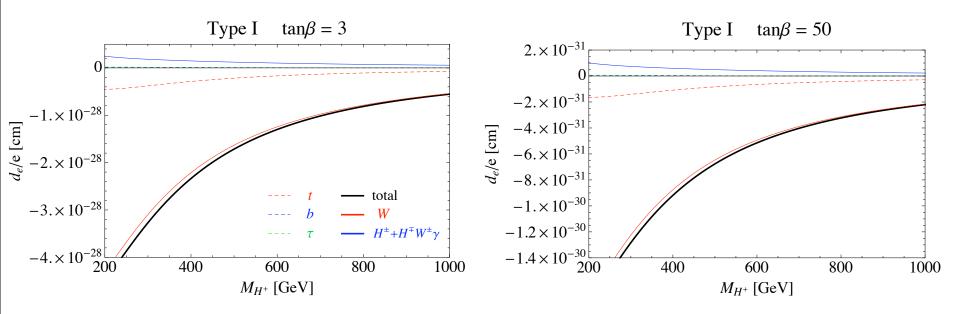


- Not too big difference, but not too small difference
- Anyway, result is now gauge invariant and reliable

Contents

- I. Introduction
- 2. Barr-Zee diagram
- 3. Pinch technique for EDM calculation
- 4. Numerical result
- 5. Summay

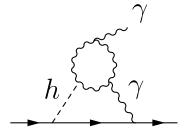
electron EDM (type I)



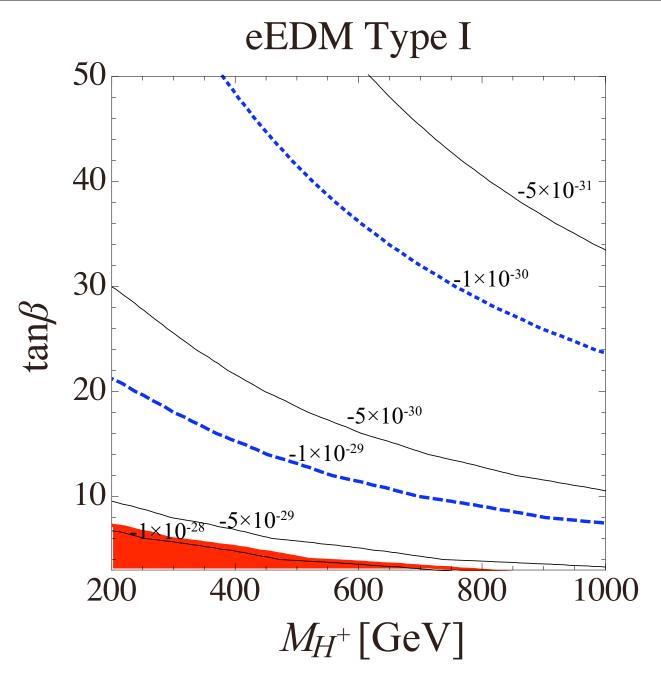
• The dominant contribution comes from

1

 $1 + \tan^2 \beta$

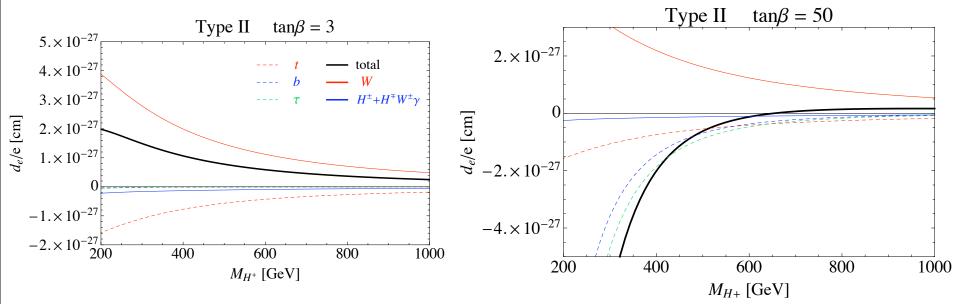


• tanB dependence



 $\lambda_1 = \lambda_3 = \lambda_4 = 0.5$ $\lambda_5 \sin 2\phi = 0.5$

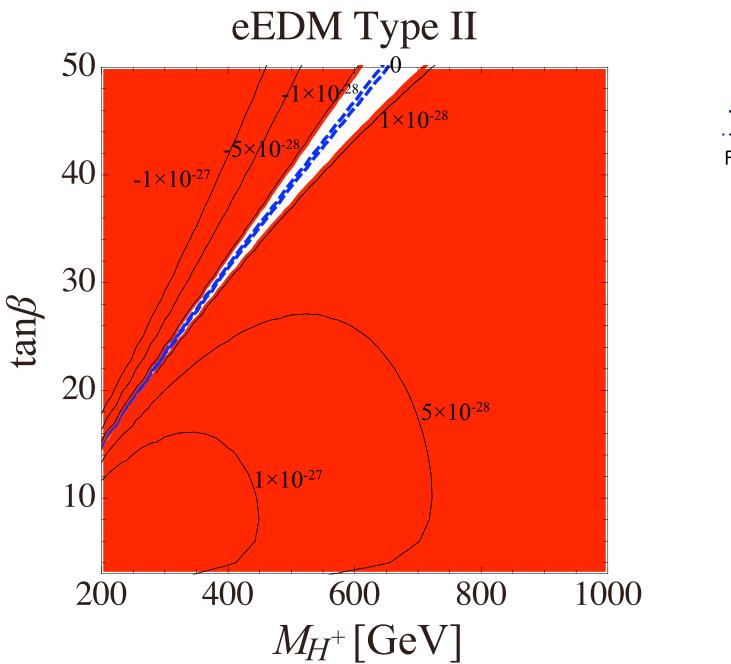
electron EDM (type II)



h

h

- The dominant contribution comes from
- In large tanB region, bottom and tau also contribute

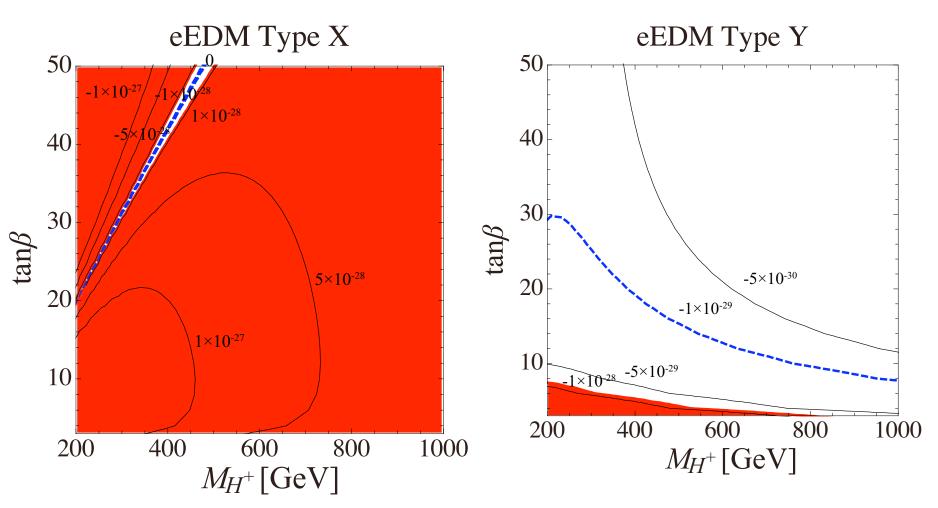


Fr, ThOYbF, WN Future Prospects

 $\lambda_1 = \lambda_3 = \lambda_4 = 0.5$ $\lambda_5 \sin 2\phi = 0.5$

electron EDM (type X and Y)

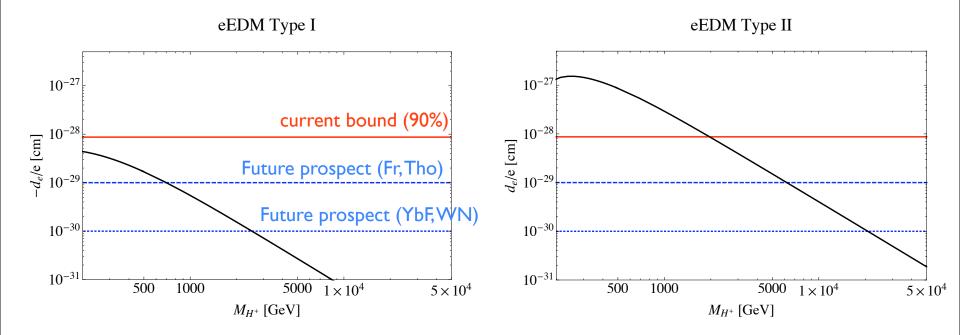
- Type X is similar to type II
- Type Y is similar to Type I



 $\lambda_1 = \lambda_3 = \lambda_4 = 0.5$

 $\lambda_5 \sin 2\phi = 0.5$

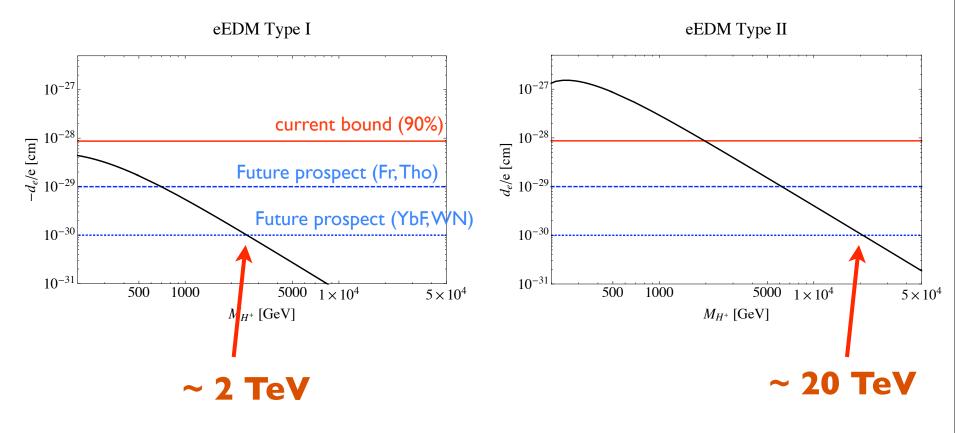
electron EDM in heavy M limit



 $\tan \beta = 10, \, \lambda_1 = \lambda_3 = \lambda_4 = \lambda_5 \sin 2\phi = 0.5$

Chance to seek O(10) TeV scale

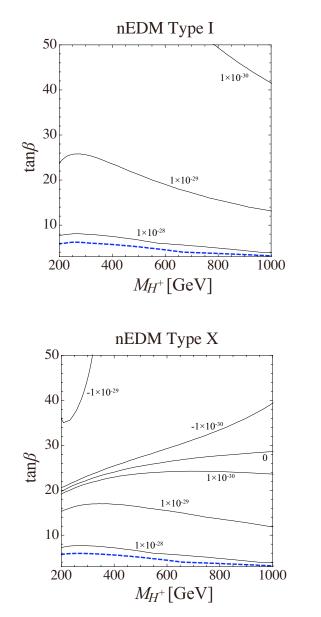
electron EDM in heavy M limit

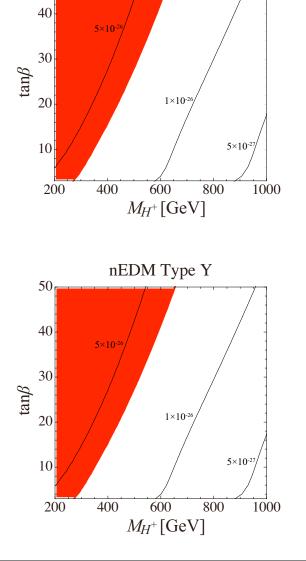


 $\tan \beta = 10, \, \lambda_1 = \lambda_3 = \lambda_4 = \lambda_5 \sin 2\phi = 0.5$

Chance to seek O(10) TeV scale

neutron EDM



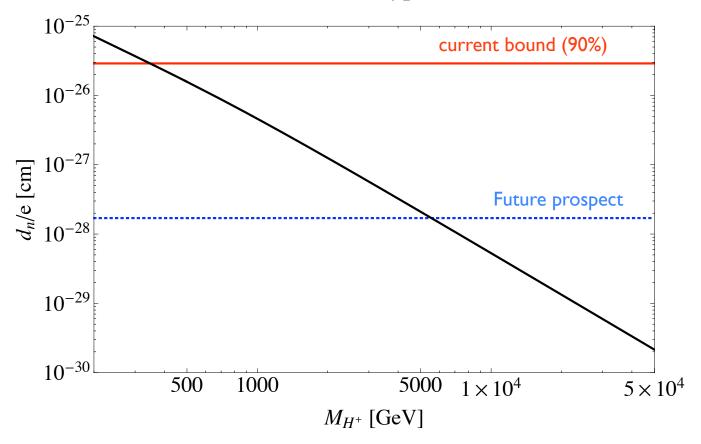


nEDM Type II

50

 $\lambda_1 = \lambda_3 = \lambda_4 = 0.5$ $\lambda_5 \sin 2\phi = 0.5$

nEDM Type II

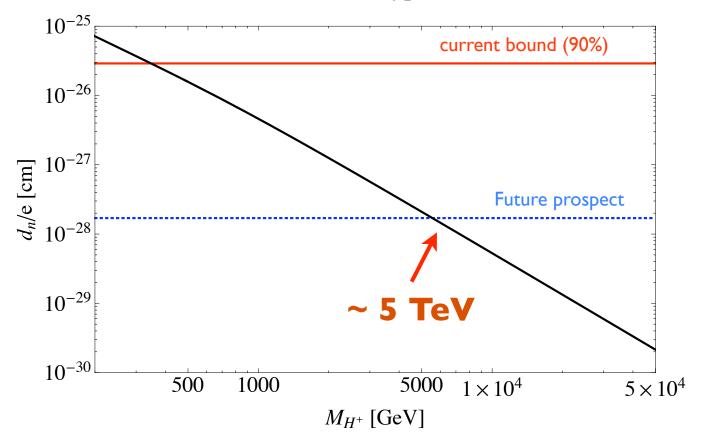


• Type Y is same

• Type I and X are too small.

 $\tan \beta = 10, \, \lambda_1 = \lambda_3 = \lambda_4 = \lambda_5 \sin 2\phi = 0.5$

nEDM Type II

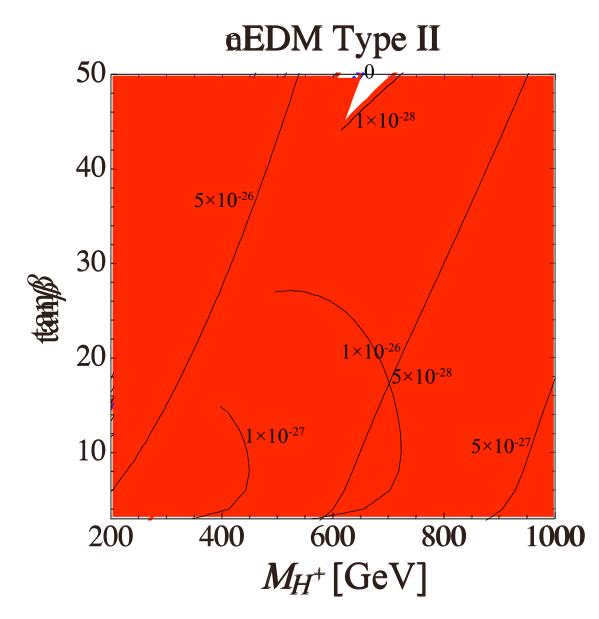


• Type Y is same

• Type I and X are too small.

 $\tan \beta = 10, \, \lambda_1 = \lambda_3 = \lambda_4 = \lambda_5 \sin 2\phi = 0.5$

eEDM and nEDM (type II)



 $\lambda_1 = \lambda_3 = \lambda_4 = 0.5$ $\lambda_5 \sin 2\phi = 0.5$

Contents

- I. Introduction
- 2. Barr-Zee diagram
- 3. Pinch technique for EDM calculation
- 4. Numerical result
- 5. Summay

 \checkmark EDM is a good window for high scale physics

 \checkmark we have studied EDM in 2HDM

✓Barr-Zee diagram is now gauge invariant thanks to the pinch terms

✓ numerical results:
 ★ we might reach O(10) TeV scale by future experiments

BACKUP SLIDES

why not gauge invariant?

- Barr-Zee diagrams are not the all diagrams at two-loop level
- After taking non-Barr-Zee diagrams, gauge invariance of EDM is recovered

why not gauge invariant?

- Barr-Zee diagrams are not the all diagrams at two-loop level
- After taking non-Barr-Zee diagrams, gauge invariance of EDM is recovered

