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 Introduction 
• LHC found a Higgs boson around 126 GeV
• where is the next scale?

~O(1) TeV

naturalness requires new physics here
• susy
• composite Higgs
• etc

Planck scale

too high scale to do experiments

~O(10) TeV

• too high scale for direct detection with LHC
• but indirect search can reach here (flavor physics etc.)



 electric dipole moment (EDM)
EDM has capability to seek high scale physics indirectly

Generic features of (chromo) EDM or WDM:

LEDM = −i
df

2
f̄σµνγ5fF

µν

LEDM has mass dimension 5, i.e. dim df = length =1/mass (in units of charge)
non-renormalizable effective interaction

• in renormalizable theories: must be induced by quantum corrections,
i.e., at 1-loop or higher loop-order

• (chromo) EDM and WDM −→ CP! in flavor-diagonal amplitudes

• LEDM flips fermion chirality fL ↔ fR, this involves fermion mass terms

How do EDM scale with mass mf of fermion f ?

df ∝ mp
f p = 1, 2, 3 or df ∝ m

p1
f M

p2
F ??

scaling depends on model of CP!

Exp. upper bounds on particle EDMs/WDMs & expectations

particle exp. bound [e cm] SM prediction (δKM) BSM expectations

neutron |dn| < 2.9 × 10−26 ∼ 10−32 <∼10−26

proton |dp| < 5.4 × 10−24 ∼ 10−32 <∼10−26

electron |de| < 1.6 × 10−27 <∼10−38 <∼10−27

muon |dµ| < 2.8 × 10−19 <∼10−36 <∼10−22

τ WDM |Re dZ
τ | < 3.6 × 10−18 <∼10−35 <∼10−20

|Im dZ
τ | < 1.1 × 10−17

τ EDM (−2.2 < Re dγ
τ < 4.5) × 10−17 <∼10−35 <∼10−20

(−2.5 < Im dγ
τ < 0.08) × 10−17

· · · · · · · · · · · ·
· · · · · · · · · · · ·

top quark dγ
t , d

Z
t , d

chr
t ∼ 10−28 <∼10−18

Compare with typical weak interaction length scale m−1
Z $ 2.2 × 10−16 cm

talk by Bernreuther

• dim. 5 operator
• pick up CP violation
• need chirality flip



200 400 600 800 1000
0

2

4

6

8

10

MH
! !GeV"

"
!#
"

Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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 2HDM with softly broken Z2 symmetry
two-Higgs-Doublet-Model (2HDM)

• extra CP violation source in Higgs potential
• often appear in BSM (SUSY, top see-saw, W’ model, ...)
• good bench mark model for BSM
• (electroweak baryogenesis?)

• we impose Z2 symmetry to avoid FCNC

Type H1 H2 uR dR eR qL / lL
I + - - - - +
II + - - + + +
X + - - - + +
Y + - - + - +



Table 1: Summary of the Higgs fields which couple to quarks and leptons in four types.

Type I II X Y
u H2 H2 H2 H2

d H2 H1 H2 H1

! H2 H1 H1 H2

and where

v =
√

v21 + v22 = (
√
2GF )

−1/2 " 246 GeV. (5)

GF is the Fermi constant. It is easy to find the charged Higgs boson mass,

m2
H± =M2 −

1

2
v2(λ4 + λ5 cos(2φ)). (6)

On the other hand, since CP symmetry is broken in the Higgs potential, we need to diagonalize a
3 by 3 matrix to find the neutral Higgs masses.

The Yukawa interaction in this model is given by

LYukawa = −qLH̃2yuuR − qLHiyddR − !LHjyeeR + h.c., (7)

where H̃2 = εH∗
2 , and i, j = 1 or 2, depending on the type of 2HDMs. While up-type quarks couple

to only to H2, leptons and down-type quarks couple to either H1 or H2 due to the Z2 symmetry.
We summarize which Higgs fields couple to fermions in Table 1.

The detail information of the models, such as mass eigenvalues, mixings, and interactions of
the Higgs bosons, are given in Appendix A.

3 Effective vertices

In this section we calculate effective vertices relevant for the Barr-Zee diagrams in a gauge invariant
way. To make our point clear, we start by exploring the relevant form of the effective vertices shown
in Fig. 2. Then we calculate effective hγγ, hZγ and H∓W±γ vertices . We also calculate the pinch
terms to make the vertices gauge invariant.

3.1 Tensor structure of the effective vertices

We study the tensor structure of the effective vertices shown in Fig. 2. This part has two Lorentz
indices, and does not contain γ-matrices. Then it is generally written as

Γµν =A0g
µν +A1p

µ
1p

ν
1 +A2p

µ
2p

ν
2 +A12p

µ
1p

ν
2 +A21p

µ
2p

ν
1 + iΓ5ε

µνρσp1ρp2σ, (8)

where pµ1 and pν2 are the momenta of V1 and V2, respectively, and their direction is outgoing. We
consider the case that V1 is on-shell photon, and thus the terms proportional to pµ1 are dropped. In
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V =m2
1H

†
1H1 + m2

2H
†
2H2

−
(
m2

3H
†
1H2 + (h.c.)

)

+
1
2
λ1(H†

1H1)2 +
1
2
λ2(H†

2H2)2

+ λ3(H†
1H1)(H†

2H2) + λ4(H†
1H2)(H†

2H1)

+
1
2
(λ5(H†

1H2)2 + (h.c.)).

 CPV source in Higgs potential
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 CPV source in Higgs potential

• m3 and λ5 are complex and have CP phase
• they can be a source of EDM



γ

γ

γ

 two loop give larger contributions

∼ 1
(4π)2

m3
e

v4
∼ 10−42cm

∼ 1
(4π)4

me

v2
∼ 10−29cm

one loop ( O(y3) )

two loop ( O(y) ) (Barr-Zee diagrams)

Generic features of (chromo) EDM or WDM:

LEDM = −i
df

2
f̄σµνγ5fF

µν

LEDM has mass dimension 5, i.e. dim df = length =1/mass (in units of charge)
non-renormalizable effective interaction

• in renormalizable theories: must be induced by quantum corrections,
i.e., at 1-loop or higher loop-order

• (chromo) EDM and WDM −→ CP! in flavor-diagonal amplitudes

• LEDM flips fermion chirality fL ↔ fR, this involves fermion mass terms

How do EDM scale with mass mf of fermion f ?

df ∝ mp
f p = 1, 2, 3 or df ∝ m

p1
f M

p2
F ??

scaling depends on model of CP!



 Goal of this talk

• we study EDM in 2HDM with softly broken Z2 symmetry
• focus on Barr-Zee diagram
• take into account of the gauge invariance
• show numerical result of type-I, -II, -X, and -Y.
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h γ, Z

γ

H± W±

γ

h γ, Z

γ

(a)

γ, Z h

γ

(b)

H± W±

γ

(c)

W± H±

γ

(d)

FIG. 1: Barr-Zee

V2(pν
2)

V1(pµ
1 ) = on-shell photon

FIG. 2: Barr-Zee diagram contains this one-loop diagram.

C. notation

We use the following notation.
∫

x+y+z=1
=

∫ 1

0
dz

∫ 1−z

0
dy,

∫

!
=

∫
dD!

(2π)D
. (4)

III. TENSOR STRUCTURE OF THE EFFECTIVE VERTEX

In this section we explore the relevant form of s → V1V2 part to the Barr-Zee diagram, see Fig. 2. This part has
two Lorentz indices, and does not contain γ-matrices. Then it is generally written as

Γµν =A0g
µν + A1p

µ
1pν

1 + A2p
µ
2pν

2 + A12p
µ
1pν

2 + A21p
µ
2pν

1 + iΓ5ε
µνρσp1ρp2σ, (5)

where pµ
1 and pν

2 are the momenta of V1 and V2 respectively. Their direction is outgoing. We consider the case that
V1 is on-shell photon. Then we can drop the terms proportional to pµ

1 ,

Γµν =A0g
µν + A2p

µ
2pν

2 + A21p
µ
2pν

1 + iΓ5ε
µνρσp1ρp2σ, (6)

The gauge symmetry of photon requires

0 =Γµνp1µ (7)
=(A0 + (p1p2)A21)pν

1 + (p1p2)A2p
ν
2 , (8)

namely

A0 + (p1p2)A21 =0, (9)
(p1p2)A2 =0. (10)

Then Eq. (6) is

Γµν =(pµ
2pν

1 − (p1p2)gµν)A21 + iΓ5ε
µνρσp1ρp2σ. (11)

Therefore we can define the effective vertex for h-V1-V2 in the case that V1 is on-shell photon by

Γµν(p1, p2) =Γ(p1, p2) (−(p1p2)gµν + pµ
2pν

1) + iΓ5(p1, p2)εµνρσp1ρp2σ. (12)

Note that this tensor structure is led from the the gauge symmetry of on-shell photon. Then all the effective vertices
must be this form. We would like to emphasize this point because sometimes this point seems overlooked, for example
the tensor structure in Eq. (9) in Ref. [6] is different from Eq. (12).

3

 subdiagram in Barr-Zee diagram

• Barr-Zee diagram includes hγγ, hZγ, and HWγ loop subdiagrams

• we start by calculating hγγ, hZγ, and HWγ effective vertex



h γ, Z

γ

∝ gµν −A(q2, ξ)qµqν

 subdiagram in Barr-Zee diagram
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant

gauge boson propagator:
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!p− !q
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 subdiagram in Barr-Zee diagram
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant

gauge boson propagator:

u(p)γµ 1

!p− !q

ū(p)!q
1

!p− !q

=ū(p)((!q − !p) + !p)
1

!p− !q
=− ū(p)

qμqν part:　



h γ, Z

γ

∝ gµν −A(q2, ξ)qµqν

 subdiagram in Barr-Zee diagram
• If effective vertex is gauge invariant, Barr-Zee diagram is gauge invariant

gauge boson propagator:

u(p)γµ 1

!p− !q

ū(p)!q
1

!p− !q

=ū(p)((!q − !p) + !p)
1

!p− !q
=− ū(p)

qμqν part:　
• no σμν γ5 term
• do not contribute to EDM
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p1μ

p2ν
Leigh, Paban, Xu (1991)
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• previous works did not care the gauge invariance
• we improve this point
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 pinch technique (review)

example: gauge boson self-energy ( γZ ) are not gauge invariant

+ (wave functions)

• sum of all relevant diagrams are gauge invariant
• pinch technique: barrow some terms from vertex corrections
• then self-energy are made gauge invariant
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Figure 1: graph1

1 pinch calclulations

In this note, we treat the SM fermion (except top quark) are massless. This assumption is valid in
the S and T parameter calculations. In the beyond the SM, such as UED model, massive fermions
can be in the internal lines in the following diagrams. In that case, we need careful treatment.

In the following, we take the Feynman gauge. In the other gauges, we have to calculate box
diagrams as well as the following diagrams.

1.1 graph 1

In this section, we calcluate the diagram shown in Fig. 1
∫

d4l

(2π)2

(
−i

1√
2

e

s
T+

)
γρ i

!p1 − "l

(
−i

1√
2

e

s
T−

)
γσ (1.1)

× −igρα

(l + q)2 − m2
W

−igσβ

l2 − m2
W

(1.2)

×
(e

s
c
)

((l − q)αgµβ + (q − (−l − q))βgµα + (−(l + q) − l)µgαβ) . (1.3)

Here we decompose the last lines as follows:

[(l − p) + (p + q) − 2q]α gµβ + [(l − p) + p + 2q]β gµα + (−(l + q) − l)µgαβ . (1.4)

Note that the momenta which has α or β in their indices are contracted with the gamma matrix and
can cancel the fermion propagator. For example, let us see the (· · · )α terms. There are three terms;
(l − p)α, (p + q)α, and (−2q)α. (l − p)α cancels the fermion propagator, and give the pinch term.
(p+q)α finally becomes the external fermion mass through the equation of motion. Since the external
fermion mass is zero in our example, we simply drop (p + q)α. (−2q)α does not cancel the fermion
propagator, and gives the “pure” vertex corrections.1 In the same way, we find the pinch term in
(· · · )β . (l− p)β gives the pinch term. In the (· · · )µ term, there is no pinch terms. We keep only pinch

1The word, ”pure” vertex corrections, is not a formal word. We just emphasize this term is not translated into
self-energy.

2

derivative coupling:
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derivative coupling:
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• almost self-energy diagram
• make self-energy gauge invariant
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FIG. 3: The diagrams containing the pinch terms for the effective hγγ and hZγ couplings. We pinch the fermion line shown
with red color. The dashed lines attached to the fermion line are the physical scalars, not attached are would-be NG bosons.
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FIG. 4: The diagrams we find after pinched away the red lines in Fig. 3. Figs. 3(a) and 3(b) become Fig. 4(a), Figs. 3(c) and
3(d) become Fig. 4(b).

This result is consistent with previous works, for example in Eq. (9) in Ref. [6, 7].
Although the gauge invariance requires ΓP = ΓB = ΓC = 0 as we discussed in Sec. III, it is not satisfied in Eqs. (24)

and (25). So we should consider the gauge invariance for EDM calculation carefully. As discussed in Ref. [6], ΓC

terms do not contribute to the EDM because of
∑

h gA
h!!gWWh = 0. ΓB terms do not contribute to EDM neither,

because these terms can not keep σµνγ5 structure as we discussed in Sec. III. Then ΓP terms are the only problematic
terms. Actually ΓP terms vanish once we consider the pinch contributions.

D. Pinch terms

There are many two-loop diagrams which contribute to EDM, as well as Barr-Zee diagrams. Once we calculate all
the diagrams, of course the result is gauge invariant. Therefore the gauge variant terms we discussed above should
be canceled out with contributions from non-Barr-Zee diagrams. In order to see this cancellation, we do not need to
calculate all the diagrams, but only pinch contributions are enough. By using the pinch technique [9], we can borrow
some terms from non-Barr-Zee diagrams and can recover the gauge invariance of Eqs. (24) and (25).

We calculate the diagram shown in Fig. 3. These diagrams contain derivative couplings, thus contain terms in
which internal fermion propagators are canceled. We pick up the terms in which the fermion line with red color in
Fig. 3 is canceled out. These terms are schematically shown in Fig. 4. In Feynman gauge1, we find
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calculate all the diagrams, but only pinch contributions are enough. By using the pinch technique [9], we can borrow
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We calculate the diagram shown in Fig. 3. These diagrams contain derivative couplings, thus contain terms in
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Red Dashed = gauge no inv

Black Thick = gauge inv 
gauge no invはΓが内線のW boson loop Barr Zeeの過去の文献の
結果を利用してeEDMを求めました。
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Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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 EDM w/ and w/o pinch contributions

• Not too big difference, but not too small difference
• Anyway, result is now gauge invariant and reliable
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Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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Figure 5: Numerical improvement of electron EDM by the pinch contributions in the type-II 2HDM.
We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126 GeV Higgs mass.

the electron EDM in the type-II case is qualitatively different from the type-I case. Even when
tan β is large, the W boson and top quark contributions are not suppressed and the bottom quark
and tau lepton contributions also become dominant due to the non-decoupling effect. Since the
signs of the bottom quark and tau lepton contributions are opposite to that of the W boson, the
accidental cancellation occurs in some parameter region. Thus, the tanβ dependence is non-trivial
in the type-II case.

In Figs. 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ and charged
Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with
red color in the figures show the excluded regions by the latest upper bound on electron EDM,
which is derived by the ACME experiment,

|de| <8.7× 10−29e cm (90% CL [3]). (51)

The blue dashed lines are the future prospects given in Table 2.

experiments sensitivities on de
Fr [16] 1× 10−29e cm

YbF molecule [17] 1× 10−30e cm
WN ion [18] 1× 10−30e cm

Table 2: Future prospects on electron EDM.

The electron EDM in the type-X and Y models has similar behavior to the type-II and I ones,
respectively, because leptons couple to H2 in type-I and Y models, and to H1 in type-II and X
models. We find that type-II and type-X 2HDMs are strongly constrained by the recent ACME
experimental result, except for regions where the cancellation among diagrams occurs, as shown
in Fig. 8. Furthermore, the future experiments could cover wide parameter regions with charged
Higgs mass smaller than 1 TeV even in type-I and Y cases.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [19] is operative,
the neutron EDM is generated by higher-dimensional CP-violating operators in QCD, such as quark
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Summary
✓EDM is a good window for high scale physics

✓we have studied EDM in 2HDM

✓Barr-Zee diagram is now gauge invariant thanks to the pinch 
terms

✓numerical results:
★ we might reach O(10) TeV scale by future experiments
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 why not gauge invariant?

• Barr-Zee diagrams are not the all diagrams at two-loop level
• After taking non-Barr-Zee diagrams, gauge invariance of EDM is 

recovered
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 why not gauge invariant?

• Barr-Zee diagrams are not the all diagrams at two-loop level
• After taking non-Barr-Zee diagrams, gauge invariance of EDM is 

recovered


