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® A conventional QFT problem:

® Pick elementary fermions and bosons
with symmetry currents.

® Couple gauge fields to currents.
® Add interaction terms

® We then analyze the system.



® |t often becomes strongly coupled in the
IR, interesting!

® Somehow we assume it’s
in the UV.

® |t doesn’t have to be.
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® A conventional QFT problem:

® Pick elementary fermions and bosons
with symmetry currents.

® Couple gauge fields to currents.
® Add interaction terms

® We then analyze the system.
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® A non-conventional QFT problem:

® Pick a non-trivial CFT
with symmetry currents.

® Couple gauge fields to currents.
® Add interaction terms

® We then analyze the system.



® A non-trivial CFT:

® is still a quantum field theory

® has “composite” operators, correlation
functions...

® in general, you don’t know if it has a
Lagrangian in terms of elementary fields.



® A non-conventional QFT problem:

® Pick a non-trivial CFT
with symmetry currents.

® Couple gauge fields to currents.
® Add interaction terms
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sector
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o Non Trivial
Non-trivial CFT can CFT interactions through
couple to gauge field operators

via currents
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® A non-conventional QFT problem:

® Pick a non-trivial CFT
with symmetry currents.

® Couple gauge fields to currents.
® Add interaction terms

® We then analyze the system.
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Elementary scalars+fermions
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a hon-trivial CFT

Can be called a non-Lagrangian theory.
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a hon-trivial CFT

It can have multiple dual descriptions
and no one description captures all features of it.



6d “non-Lagrangian” theory
on N Mb5-branes

KK reduction

\4

a hon-trivial CFT

The only known construction can be
a reduction from higher-dimensional theory



® To fully understand dualities involving
Mb5-branes, non-Lagrangian theories can’t
be avoided.

® The reason is that the 6d theory on
N Mb-branes on general space is in itself
non-Lagrangian.
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S50, let’s consider this theory as the starting point.
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The space of QFTs (my subjective impression)
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® |f you're interested in QFT in general, and if
you start your work by writing down a
Lagrangian of the form

scalar + fermion + gauge + interactions,

® You might be missing a lot ! Be mindful !
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How to study them!?

® No general framework yet available.

® N=2&| supersymmetric ones are tractable,
thanks to supersymmetry.

® Many N=2 examples are now known.



1996 Minahan-Nemeschansky’s E, theory

2007 Argyres-Seiberg duality
2007 Argyres-Wittig’s examples

2009 Gaiotto’s TN theory

My work on SO version
2010 Chacaltana-Distler’s examples

2013 My work with friends ...
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® As an example, let me discuss Minahan-
Nemeschansky’s theory.

® A bit of preparation is necessary.

® We'll start from N=2 SQCD:



N=2 supersymmetric SU(N.) with N flavors

As N=1| supersymmetric gauge theory,

SU(N¢) vector multiplet Wa
SU(Nc) adjoint chiral ®
Nf SU(Nc) fundamental chiral q

Nt SU(Nc) antifundamental chiral g

W= qdq
|-loop B function = 2N—Ns



N=2 supersymmetric SU(N.) with N flavors

In components, Two gauginos

SU(Nc) vector / 74 \‘

SU(N¢) adjoint scalar

Nf SU(Nc) fundamental fermion+scalar W q m
Nf SU(Nc¢) antifundamental fermion+scalar g
W= qdq

|-loop B function = 2Nc—Ns
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B function=0 mm N=2 SU(2)
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M-N’s E¢ theory
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M-N’s E¢ theory
is N=2 supersymmetric.

has E¢ flavor symmetry.

has no Lagrangian description
with E¢ symmetry.



M-N’s E¢ theory
is N=2 supersymmetric.

has E¢ flavor symmetry.

has no Lagrangian description
with E¢ symmetry.

proof:

any N=2 susy gauge theory is

an N=1| susy gauge theory with superpotential
W= gdgq .

Its flavor symmetry can be explicitly found;

it can only be SU, SO or Sp.



® How do you know such a thing exists!?

® |f you accept that string theory exists as a

consistent quantum theory,
you can use type-E¢ 7-brane of F-theory

probed by a D3-brane.

® |f you prefer purely field theoretical
approach, you can proceed as follows.

® |t takes some efforts, so please be patient.



Construction of
M-N E¢ theory



The |-loop beta function of
N=2 SU(N.) with 2N flavors g, g

vanishes, and the coupling constant

T=41Ti /g2 + O/2TT

is exactly marginal.

Q. What happens if you send g— 0!



The |-loop beta function of
N=2 SU(N.) with 2N flavors g, g

vanishes, and the coupling constant

T=41Ti /g2 + O/2TT

is exactly marginal.
Q. What happens if you send g— 0!

A. Depends on 0.



The |-loop beta function of
N=2 SU(N.) with 2N flavors g, g

vanishes, and the coupling constant

T=41Ti /g2 + O/2TT

is exactly marginal.
Q. What happens if you send g— 0!

A. Depends on 0.

General O is complicated, so let’s just
consider CP invariant cases 0=0, TT



You can study what happens in the extremely
strong coupling limit

g oo
because the Seiberg-VWitten curve contains the

info of all the masses and all the multiplicities of
all SUSY particles in the system.



When 6=0:

Study what happens to the Seiberg-Witten curve
when g— 0.

It happens that

the Seiberg-Witten curve at the coupling g
is equal to

the Seiberg-Witten curve at the coupling g'=1/g



When 6=0:

S0, it is quite likely that

N=2 SU(N.) with 2N flavors g, §
at coupling g

is equal to

N=2 SU(N.) with 2N flavors q’, @’
at coupling g'=1/g



When B=11:

Study what happens to the Seiberg-Witten curve
when g— 0.

It happens that

the Seiberg-Witten curve at the coupling g
is not equal to

the Seiberg-Witten curve at the coupling g'=1/g

when N¢ > 2.



When B=11:

Rather, it happens that

the Seiberg-Witten curve of
N=2 SU(N.) with 2N flavors g, g
at coupling g

is equal to

the Seiberg-Witten curve of SU(2) gauge theory
at coupling g'=1/g,
coupled to one flavor plus something.



When B=11:

It is then likely that

N=2 SU(Nc) with 2N flavors g, §
at coupling g

is equal to

N=2 SU(2) gauge theory
at coupling g'=1l/g,
coupled to one flavor plus something.
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U(l)B
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of SU(2) ¥

T

SU(2)

gauge

SU(2)F
multiplet

A non
Lagrangian |'
Theory
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We isolated

A non
Lagrangian
Theory

with SUQ)F  and  SU@2NoF

flavor symmetry.



When N.= 3

A non
Lagrangian
Theory

SU(2)r  and  SU(2NJ)r=SU(6)

combines to Eg.

This is the Minahan-Nemeschansky theory.



On current
2-pt functions



When B=11:

SU(3)

gauge
muItAipIet

SU(3) gauée coupling is
exactly marginal.

U(l)B

/x v

6 flavors

\/h

SU(6)F



U(l)e

One flavor
of SU(2) ¥

T

SU(2)
gauge
multiplet A non
i Lagrangian |'

Theory

e

SU(2) gauge coupling is SU(6)F

exactly marginal.



|-loop B func. of
SU(2) with 4 flavors
IS zero.

Wm{:}wv

4x

WQWW

|-loop P func. of
SU(2) with | flavor
plus MN theory is zero.

I1x
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The Minahan-Nemeschansky theory

A non
Lagrangian
Theory

SU(2)r SU(2No)r=SU(6)

/ \

Gu? jvPyMN =3 P How about this?
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The Minahan-Nemeschansky theory

A non
Lagrangian

Theory
';ﬂ \/ A
SU(2)r SU(2No)r=SU(6)
(u? jv°> =3 &% Gu? jv*> = N 8%
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The Minahan-Nemeschansky theory

E¢ symmetry

<jIJa jvb> ='3 §ab <jua jvb>‘= 3 §ab

Compatible!



On chiral operators



When B=11:
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A
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gauge
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The Minahan-Nemeschansky theory

A non
Lagrangian
Theory

NS

has a tr P’ -like operator u of dimension 3.
P

All BPS operators can be determined this way.



The Minahan-Nemeschansky theory

A non
Lagrangian
Theory

NS

For example, it has 78 operators of dimension 2
transforming as the adjoint of E¢



M-N’s E¢ theory

mass deform.

\/

N=2 SU(2) with 4 flavors

Higgsing
(uy#*0
SU(2) adjoint & > N=2U(1)
q u= tr P2 with massive

g charged fields



Higgsing
(wy#*0

M-N’s E¢ theory

v

N=2 SU(2) with 4 flavors

mass deform.

- N=2 U(I)

=" with massive
charged fields

mass deform.

SU(2) adjoint ¢

Q

q

Higgsing v
(uy*+0
> N=2 U(I)
u=tr ¢2 with massive

charged fields



M-N’s E¢ theory

N=2 SU(2) 4mform.
with 4 flavors
B function=0 mm N=2 SU(2)

with 3 flavors

N=2 SU(2) Mform.
with 2 flavors
mm N=2 SU(2)

with | flavor

N=2SUR) e

without flavor



M-N’s E¢ theory

N=2 SU(2) 4mform.
with 4 flavors
B function=0 mm N=2 SU(2)

with 3 flavors

N=2 SU(2) Mform.

with 2 flavors —



M-N’s E7 theory

M-N’s E¢ theory

N=2 SU(2) 4mform.
with 4 flavors
B function=0 mm N=2 SU(2)

with 3 flavors

N=2 SU(2) Mform.

with 2 flavors —



M-N’s Es theory

M-N's E; theory‘mfom

M-N’s E¢ theory

N=2 SU(2) 4mform.
with 4 flavors
B function=0 mm N=2 SU(2)

with 3 flavors

N=2 SU(2) Mform.

with 2 flavors —



Non-Lagrangian!

-

M-N’s Eg theory

M-N's E; theory‘mfom

M-N’s E¢ theory

N=2 SU(2) Ad/eform.
with 4 flavors
B function=0 mm; N=2 SU(2)

with 3 flavors

N=2 SU(2) Mform.

with 2 flavors —



M-N's E¢ theory

WwF0 L N=2 U

mass deform.

A\

N=2 SU(2) with 4 flavors

=" with massive
charged fields

mass deform.

v

(u+0



M-N’s E7 theory

M-N's E¢ theory

mass deform.

> N=2 U(l)
with massive
charged fields

mass deform.

Uy +

\4

v

N=2 SU(2) with 4 flavors

mass deform.

> N=2 U(l)
with massive
charged fields

u=?22?

mass deform.

v

(u+0



M-N’s E7 theory

mass deform.

M-N's E¢ theory

(uy+0
> N=2 U(l)
y=m" with massive
charged fields

mass deform.

(uy=+0

A\

- N=2 U(I)



M-N’s Eg theory

M-N’s E7 theory

mass deform.

> N=2 U(l)
with massive
charged fields

mass deform.

v

(uy=+0

M-N's E¢ theory

mass deform.

> N=2 U(l)
with massive
charged fields

u=122

mass deform.

(uy=+0

\4

- N=2 U(I)



M-N’s E, theory

is N=2 supersymmetric.

has En flavor symmetry.

has an operator u which can be given a vev
so that the theory becomes U(l) + massive

is just a natural cousin of SU(2) with flavors



scaling

6
4
3

dimension of u = 2

tr 2

A

4/3
3/2
6/5

M-N’s Es theory
M-N’s E7 theory
M-N’s E¢ theory
SU(2) with 4 flavors
SU(2) with 2 flavors
SU(2) with 3 flavors
SU(2) with | flavors



Non-Lagrangians
are “everywhere”
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N=2 SU(NC)
with 2N flavors
g—0




N=2 SU(Nc)
with 2N flavors
g=1/g—0

N=2 SU(NC)
with 2N flavors
g—0

N=2 SU(2) with | flavors
+ non-Lagrangian matter

g’=|/g—0
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U(l)B
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of SU(2) ¥

T

SU(2)

gauge

multiplet
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N=2 SU(2)
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g—0




N=2 SU(2)
with 4 flavors
g=1/g—0

N=2 SU(2)
with 4 flavors
g—0

N=2 SU(2)
with 4 flavors

g’=|/g—0



N=2 SU(2)
with 4 flavors
g=1/g—0

N=2 SU(2)
with 4 flavors
g—0

N=2 SU(2)
with 4 flavors

g’=1/g—0

Known as the triality since 1994 !



N=2 SU(Nc)
with 2N flavors
g=1/g—0

N=2 SU(NC)
with 2N flavors
g—0

N=2 SU(2) with | flavor
Natural generalization needs + non-Lagrangian matter

non-Lagrangian theories! g”=1/g—0
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SUSY breaking with
non-Lagrangian sector

AE—8z AU/HB, BESOR. KEHE

[1308.0064]



SUSY breaking model by lzawa-Yanagida-
Intriligator-Thomas used a SUSY
SU(2)=Sp(|) gauge theory.

Sp(n) generalization was soon found.
No SU(n) generalization was found ...

You need a non-Lagrangian sector !
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o N=| SU2) 7 — 3 5.

Qaiu
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. matter @izl

ali]l

N=1 SUQ) 7'— VI

Qaiu
a=1,2 : i=1,2: u=I,2

M (ij) = Qaiu ijv £ab guv

N(uv) = Qaiu ijv gab gij 75{,72_ \\/\\4\&

WAFZ EIFTTMI Ny &EWS1TH & B
> EEF,

R (T (& tr M2 = tr N2




. matter 835
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N=I SUQR) 7 — I8

Qaiu
a=1,2 ; i=1,2; u=lI,2

My = Qaiu Qbjy €3 €W

N = Qaiu Qbjy gbgi N —ILRLT

INAFZ EIFTTMI Ny &EWS1TH & B
> EAEF,

EFHICIE tr M2 = tr N2 + A4




//\ Z%%—:JZHT IVLl ) Nuv é: L\51T75’—U é:/l_,\
> EAEF,

EFHICIE tr M2 = tr N2 + A4
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® J—singletSi , T Z&9
® Superpotential W=tr SM + tr TN

e ST TZ%: M=N=0,
o FDEIEFFH— SUSY HiEN 5,




o LA DVPolcl &:

® Qu lCc SUQR) ZHEE S ESDH IYIT,

® Qu Z M-N.D Ec BfmICE =R Z .
SUR2) Z= SUR) ICEBZRZ B, {AIHL?




o IYIT CEE oo &:

® Q.iu Ca=I,2;i=1,2;u=1,2

® Mi ,N, C tr M2 = tr N2
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— % T E¢ D adjoint TZE#,

o E, 7z Zf7EF SUB)XxSU3)xSU(3) T f

e
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® Qaiux Q’aiu\ Lab \ Mll \ I\luV
® trlL2=1trM?2=1tr N

® a=|,23:i=1,2,3;u=1,2,3
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ali]l

® Q.u. Qau_  LPL. Mi. N
 trl2=1trM?=trN?
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o NAF alc N=1 SUB) XY NIk

fEa St b

® tr M2 =tr N2+ A\é [CZE;
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e MN. D Eg IEzmICiE Mi . Ny
o tr M2 = tr N2

® 7/]\\2_ L N=1 SU(3) /\7 I\)I/A-ﬂi%o

o tr M2 = tr N2+ A\¢ [CZE T,

o 7 —singletSi , T Z2&9
® Superpotential W=tr SM + tr TN

o ST TZE7: M=N=0,
o FDEL EFF— SUSY NI 5,




Summary
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