Supersymmetric dynamics with non-Lagrangian sectors

Y. Tachikawa

Non-Lagrangian sector を何故考えるか?

● Non-Lagrangian sector の一つの例

● Non-Lagrangian sector を使った系の解析

Non-Lagrangian sector を何故考えるか?

● Non-Lagrangian sector の一つの例

● Non-Lagrangian sector を使った系の解析

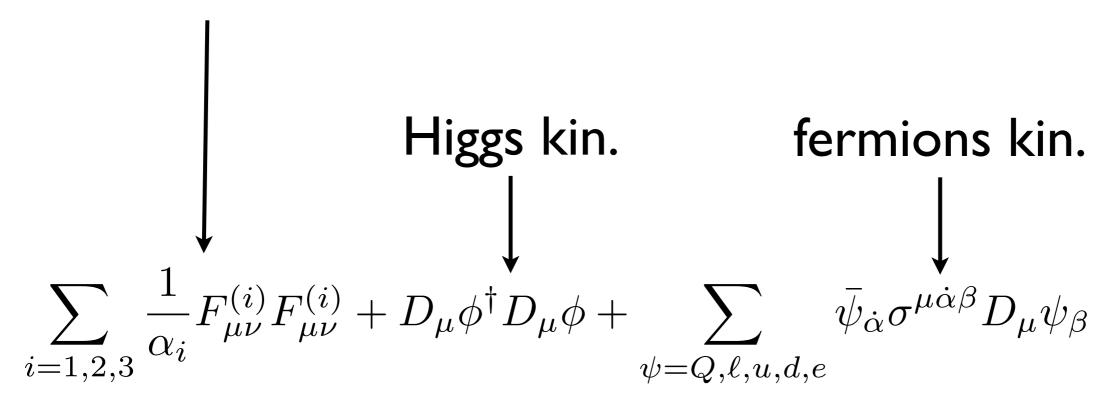
$$\sum_{i=1,2,3} \frac{1}{\alpha_i} F_{\mu\nu}^{(i)} F_{\mu\nu}^{(i)} + D_{\mu} \phi^{\dagger} D_{\mu} \phi + \sum_{\psi=Q,\ell,u,d,e} \bar{\psi}_{\dot{\alpha}} \sigma^{\mu \dot{\alpha} \beta} D_{\mu} \psi_{\beta}$$

$$+V(\phi)+y_{ij}(Q_L^i\phi)\bar{d}_R^j+\tilde{y}_{ij}(Q_L^i\phi^\dagger)\bar{u}_R^j+\hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j+c.c.$$

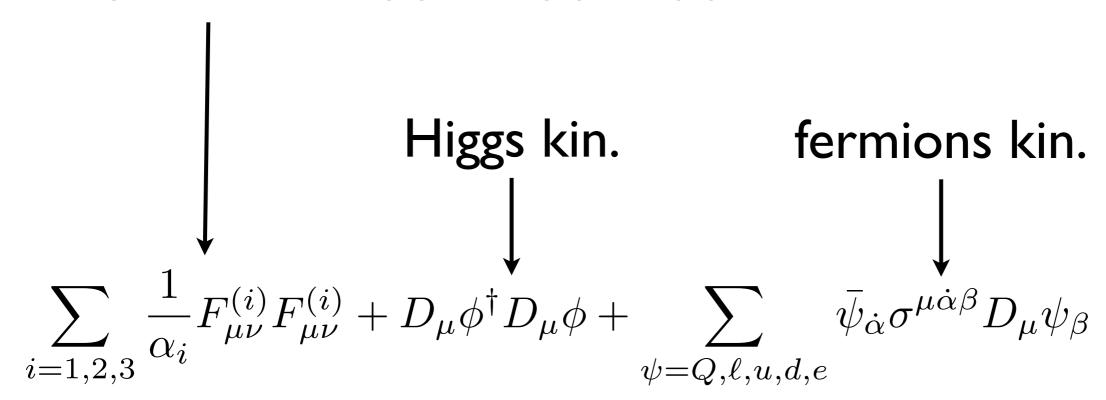
$$\sum_{i=1,2,3} \frac{1}{\alpha_i} F_{\mu\nu}^{(i)} F_{\mu\nu}^{(i)} + D_{\mu} \phi^{\dagger} D_{\mu} \phi + \sum_{\psi=Q,\ell,u,d,e} \bar{\psi}_{\dot{\alpha}} \sigma^{\mu \dot{\alpha} \beta} D_{\mu} \psi_{\beta}$$

$$+V(\phi)+y_{ij}(Q_L^i\phi)\bar{d}_R^j+\tilde{y}_{ij}(Q_L^i\phi^\dagger)\bar{u}_R^j+\hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j+c.c.$$

$$+V(\phi) + y_{ij}(Q_L^i\phi)\bar{d}_R^j + \tilde{y}_{ij}(Q_L^i\phi^{\dagger})\bar{u}_R^j + \hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j + c.c.$$

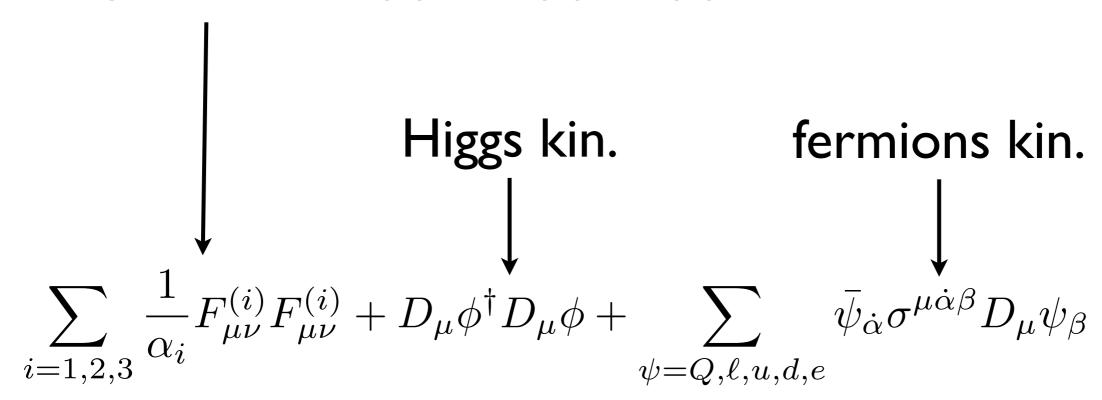


$$+V(\phi)+y_{ij}(Q_L^i\phi)\bar{d}_R^j+\tilde{y}_{ij}(Q_L^i\phi^\dagger)\bar{u}_R^j+\hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j+c.c.$$



$$+V(\phi)+y_{ij}(Q_L^i\phi)\bar{d}_R^j+\tilde{y}_{ij}(Q_L^i\phi^\dagger)\bar{u}_R^j+\hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j+c.c.$$

Higgs pot.



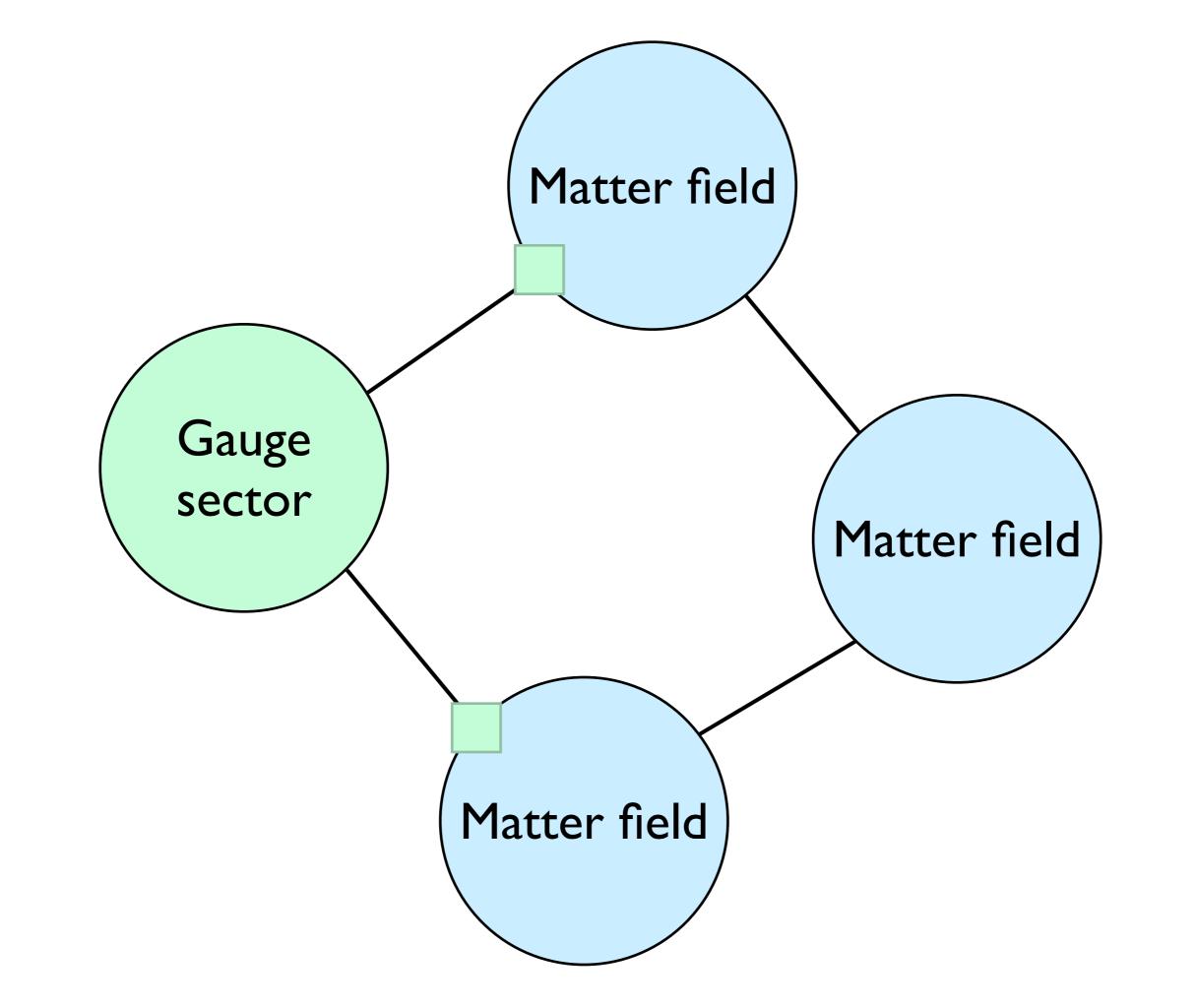
$$+V(\phi) + y_{ij}(Q_L^i\phi)\bar{d}_R^j + \tilde{y}_{ij}(Q_L^i\phi^\dagger)\bar{u}_R^j + \hat{y}_{ij}(\ell_L^i\phi)\bar{e}_R^j + c.c.$$

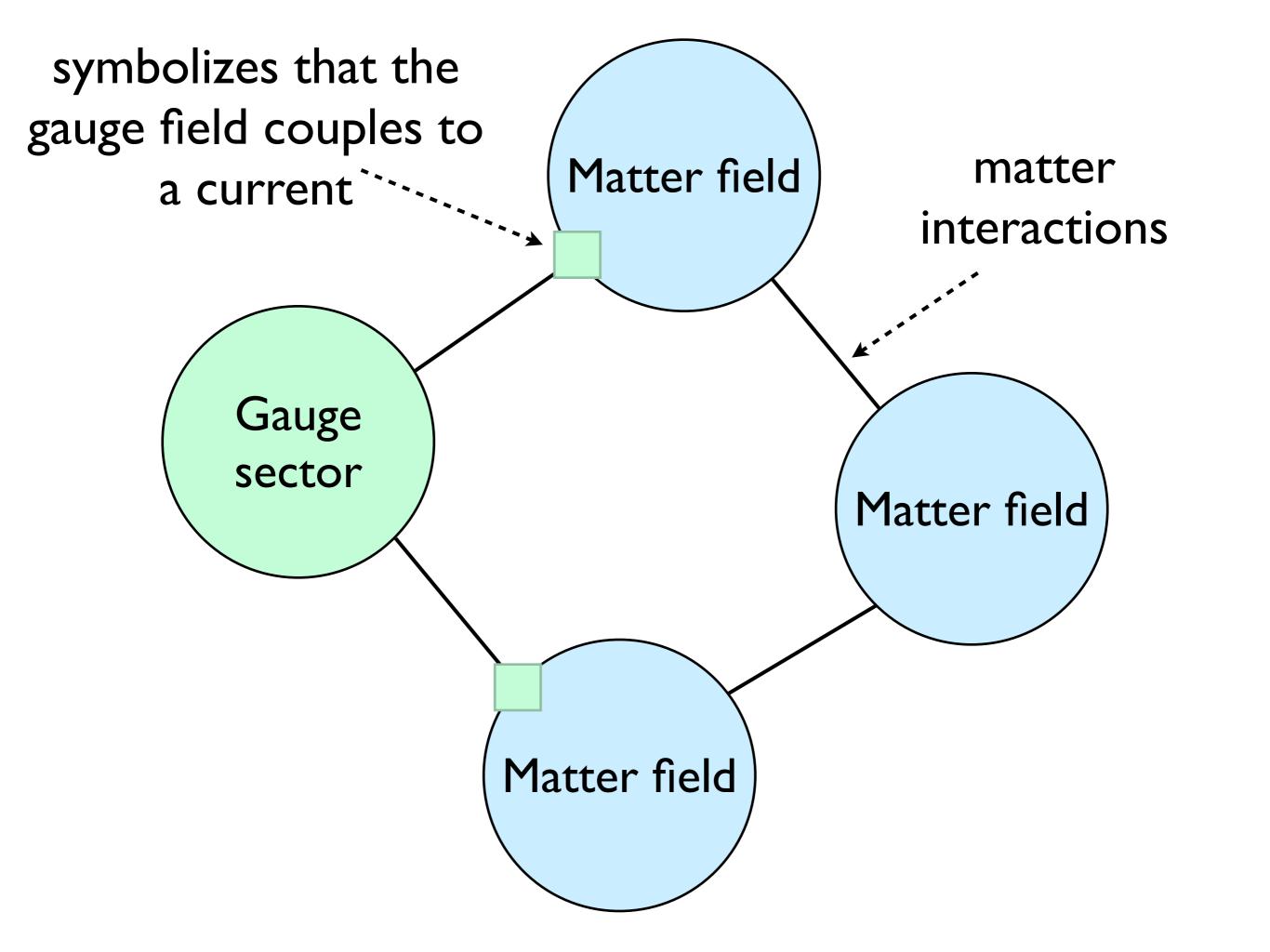
Higgs pot.

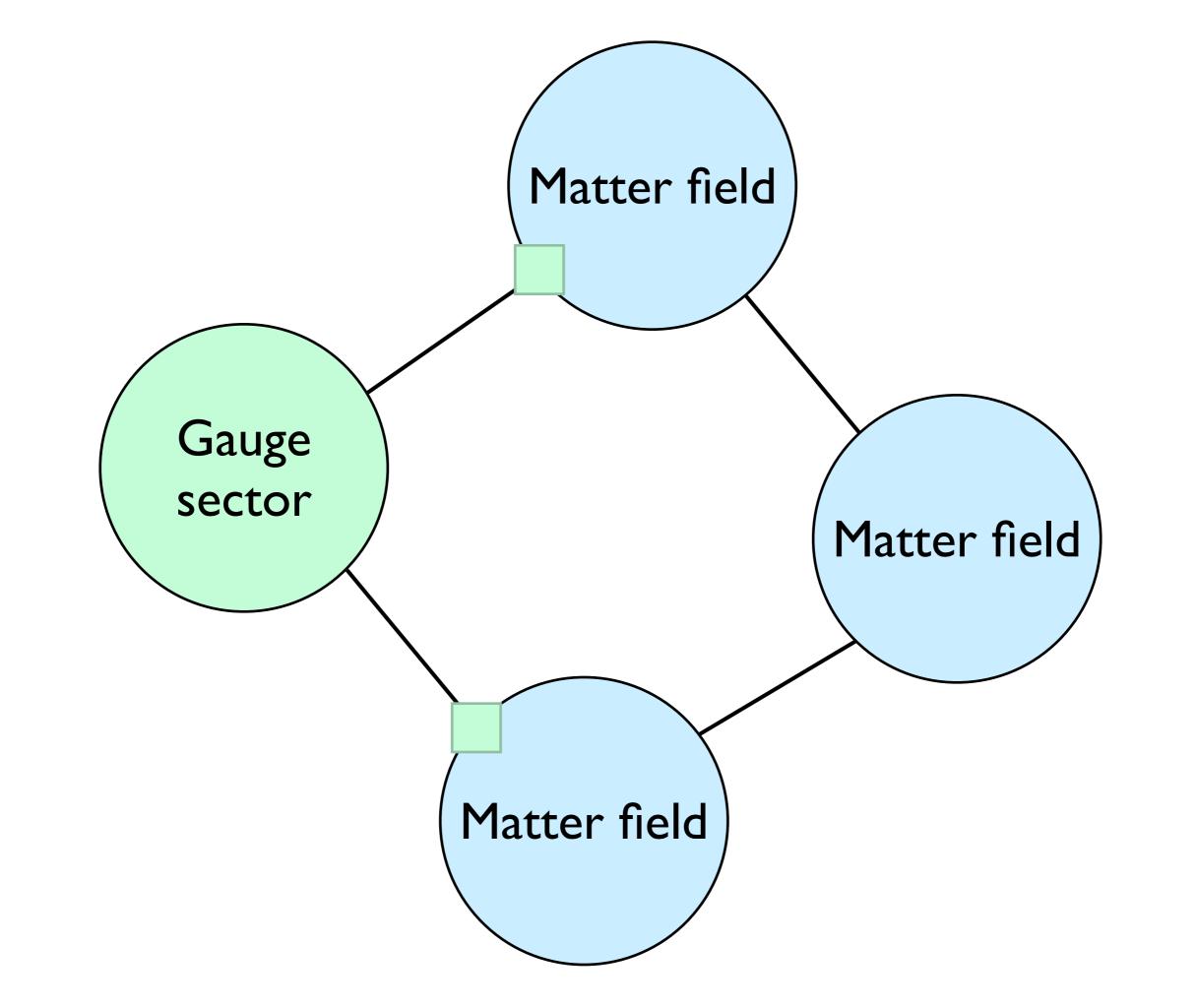
Yukawa interactions

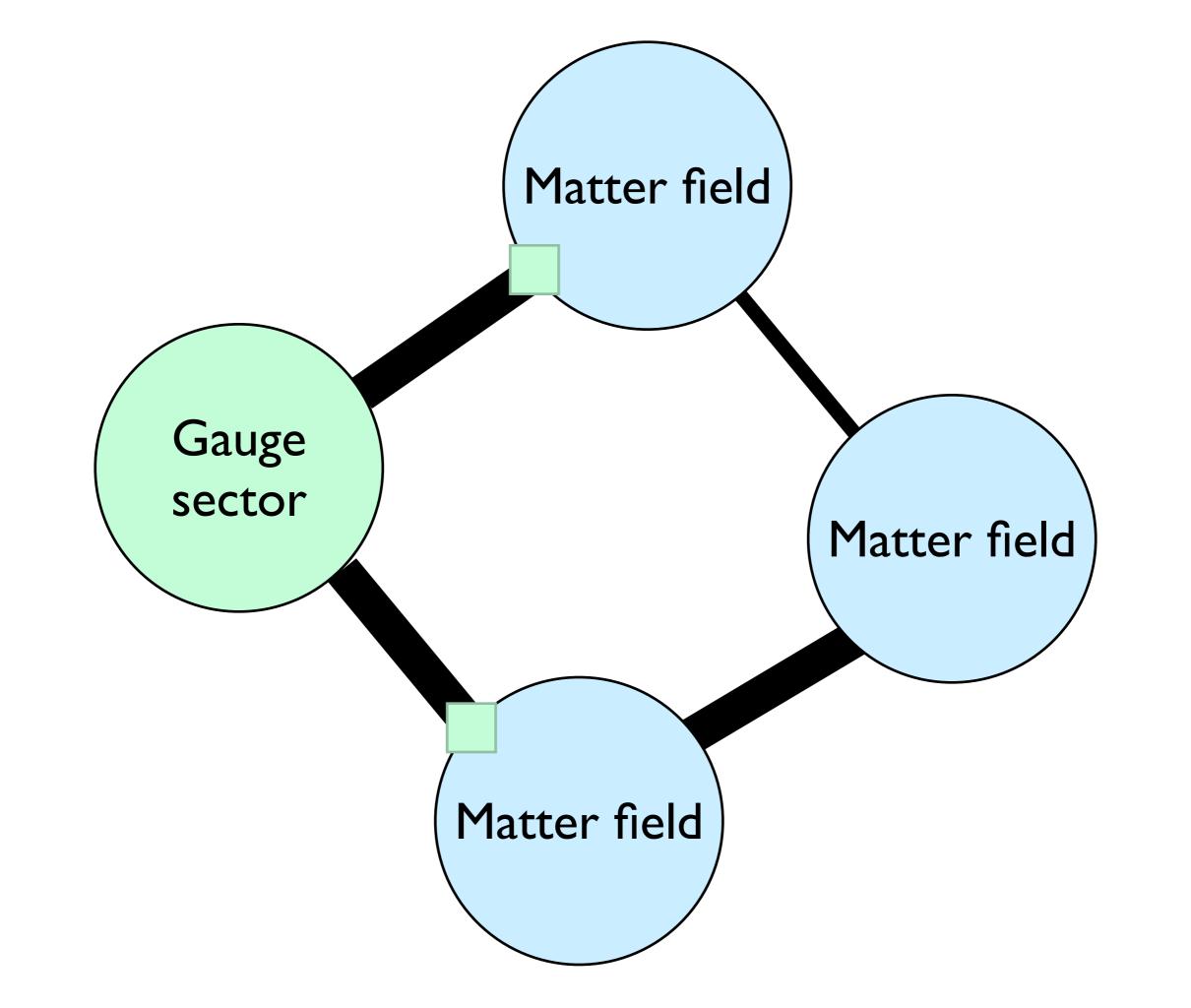
- A conventional QFT problem:
 - Pick elementary fermions and bosons with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

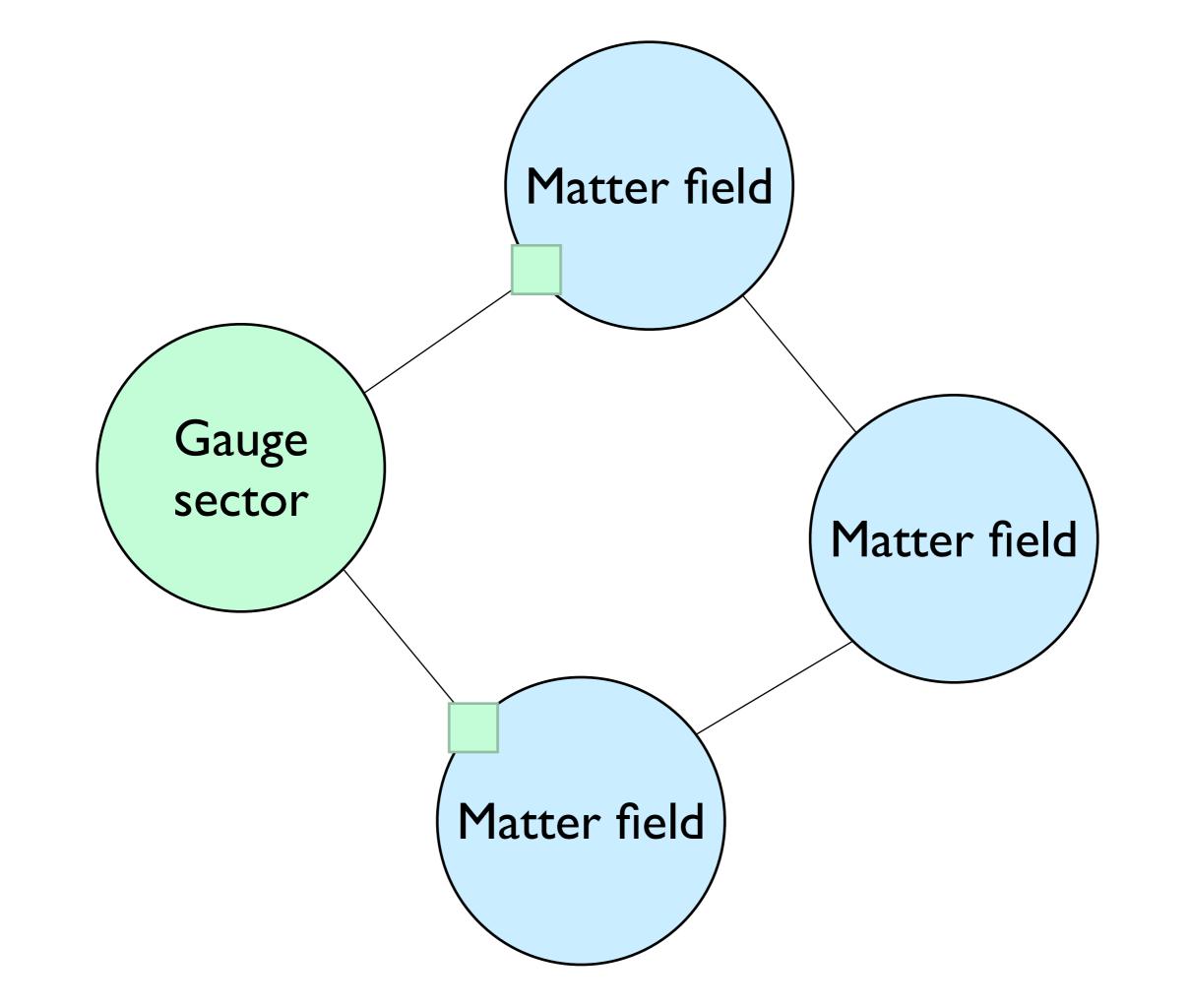
- It often becomes strongly coupled in the IR, interesting!
- Somehow we assume it's asymptotically free in the UV.
- It doesn't have to be.











Free field

Gauge sector

Free field

Free field

- A conventional QFT problem:
 - Pick elementary fermions and bosons with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

A trivial Conformal Field Theory

- A conventional QFT problem:
 - Pick elementary fermions and bosons with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

- A conventional QFT problem:
 - Pick a trivial CFT with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

- A non-conventional QFT problem:
 - Pick a non-trivial CFT with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

- A non-trivial CFT:
 - is still a quantum field theory
 - has "composite" operators, correlation functions...
 - in general, you don't know if it has a Lagrangian in terms of elementary fields.

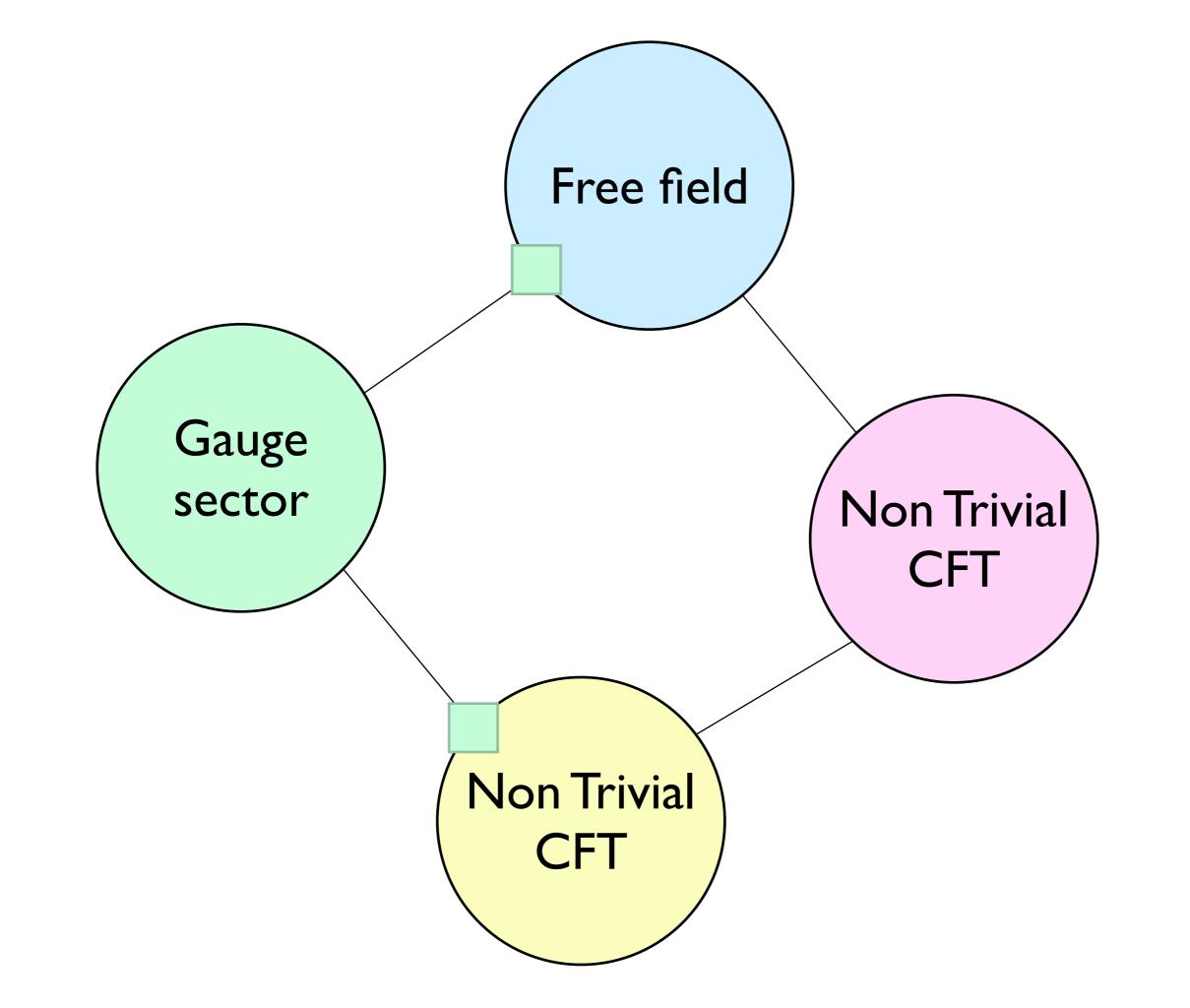
- A non-conventional QFT problem:
 - Pick a non-trivial CFT with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

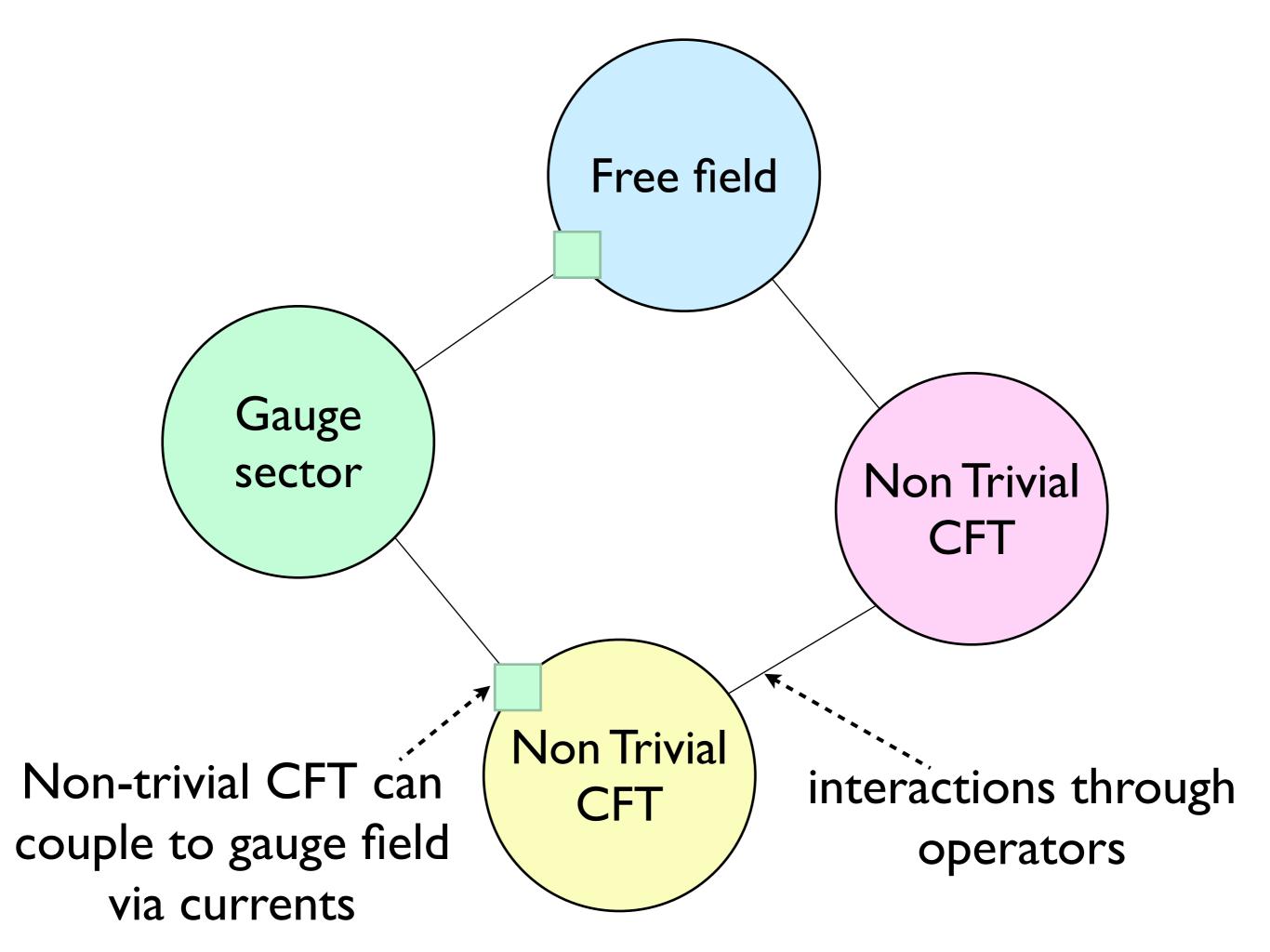
Free field

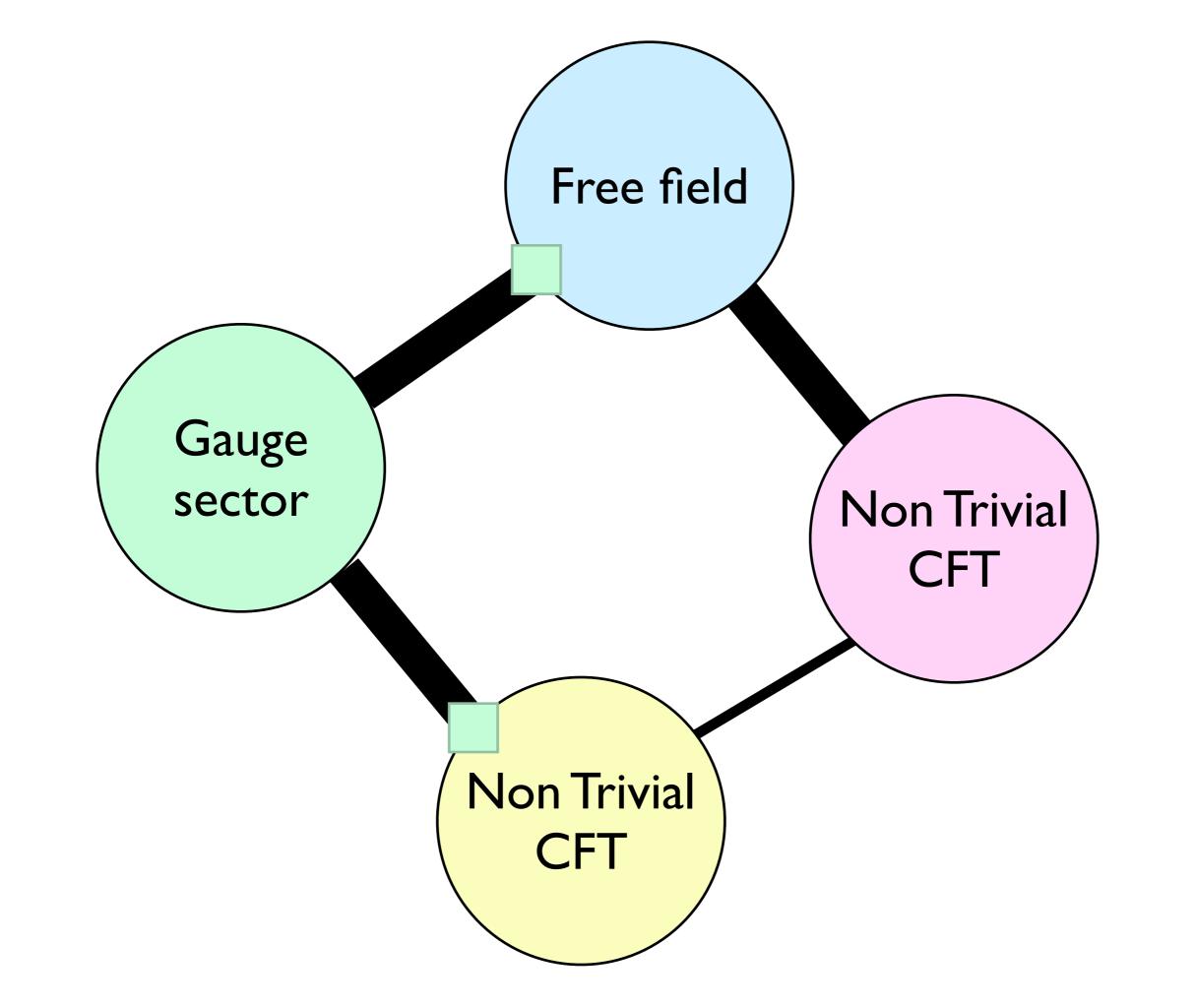
Gauge sector

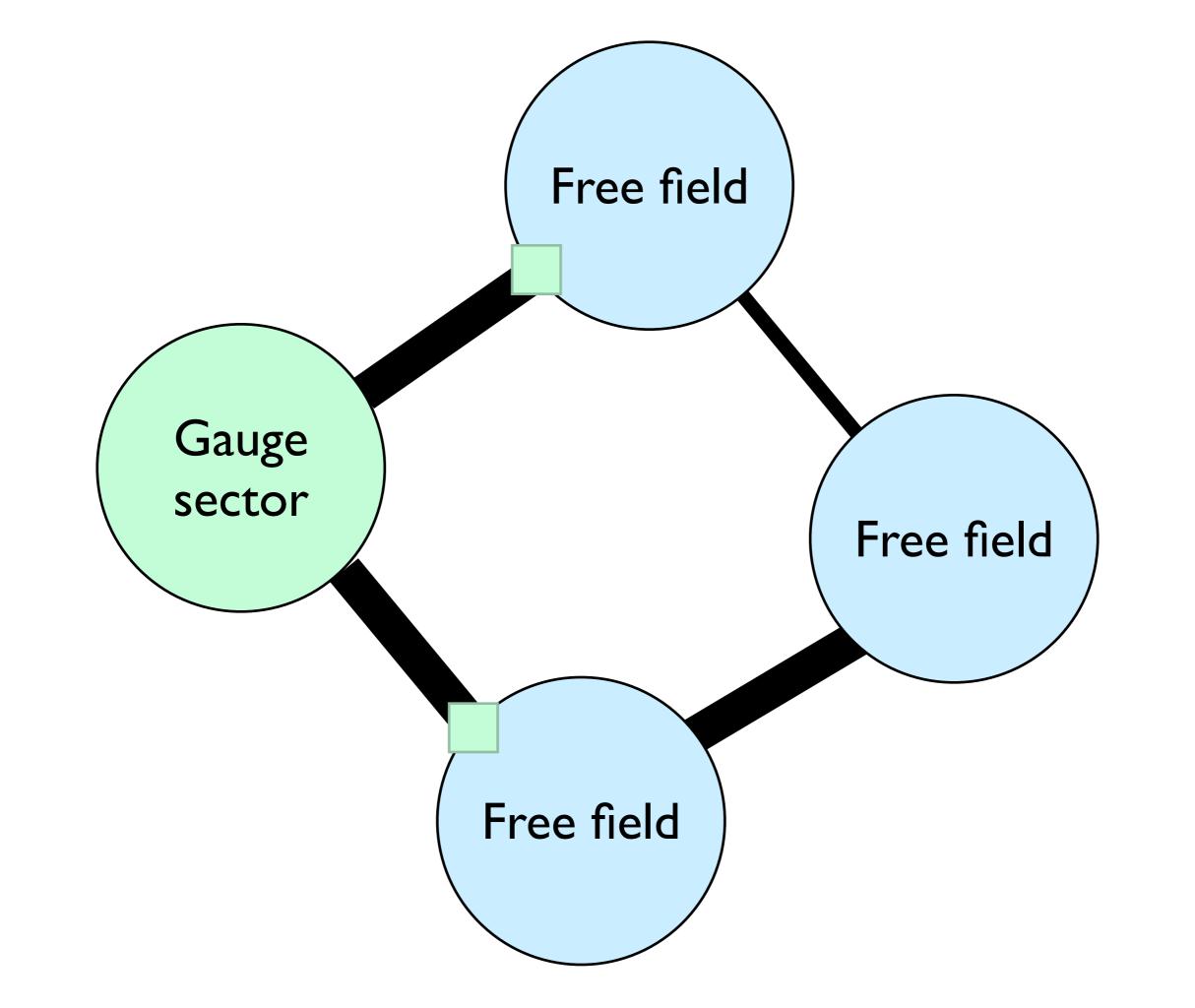
Non Trivial CFT

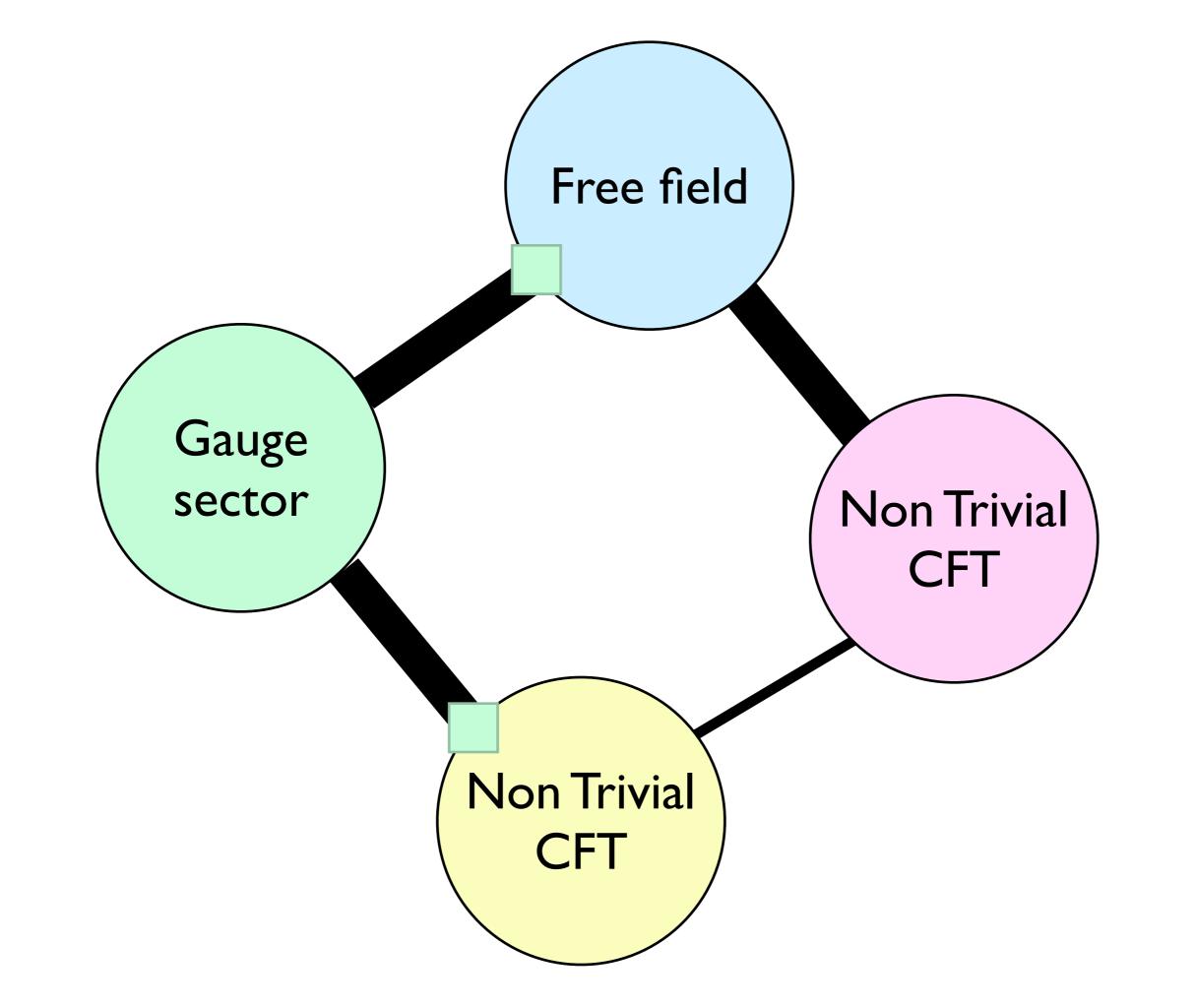
Non Trivial CFT











- A non-conventional QFT problem:
 - Pick a non-trivial CFT with symmetry currents.
 - Couple gauge fields to currents.
 - Add interaction terms
- We then analyze the system.

elementary fermions +gauge fields + interactions

to low energy

a non-trivial CFT +gauge fields + interactions

to low energy

```
Elementary scalars+fermions
+ gauge fields
+interactions
to low energy
```

a non-trivial CFT

Then

```
a non-trivial CFT +gauge fields + interactions
to low energy
```

```
Elementary scalars+fermions
+ gauge fields
+interactions
```

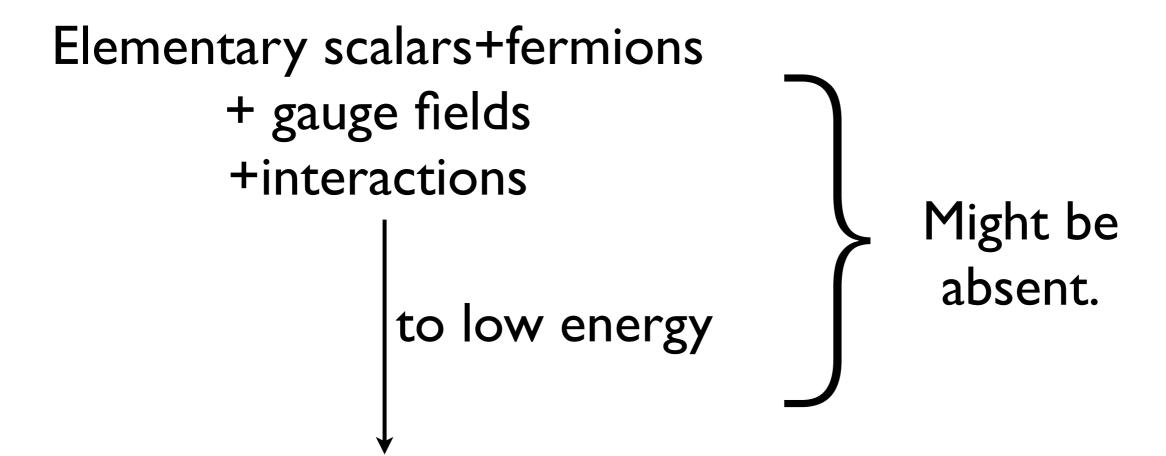
Then

to low energy

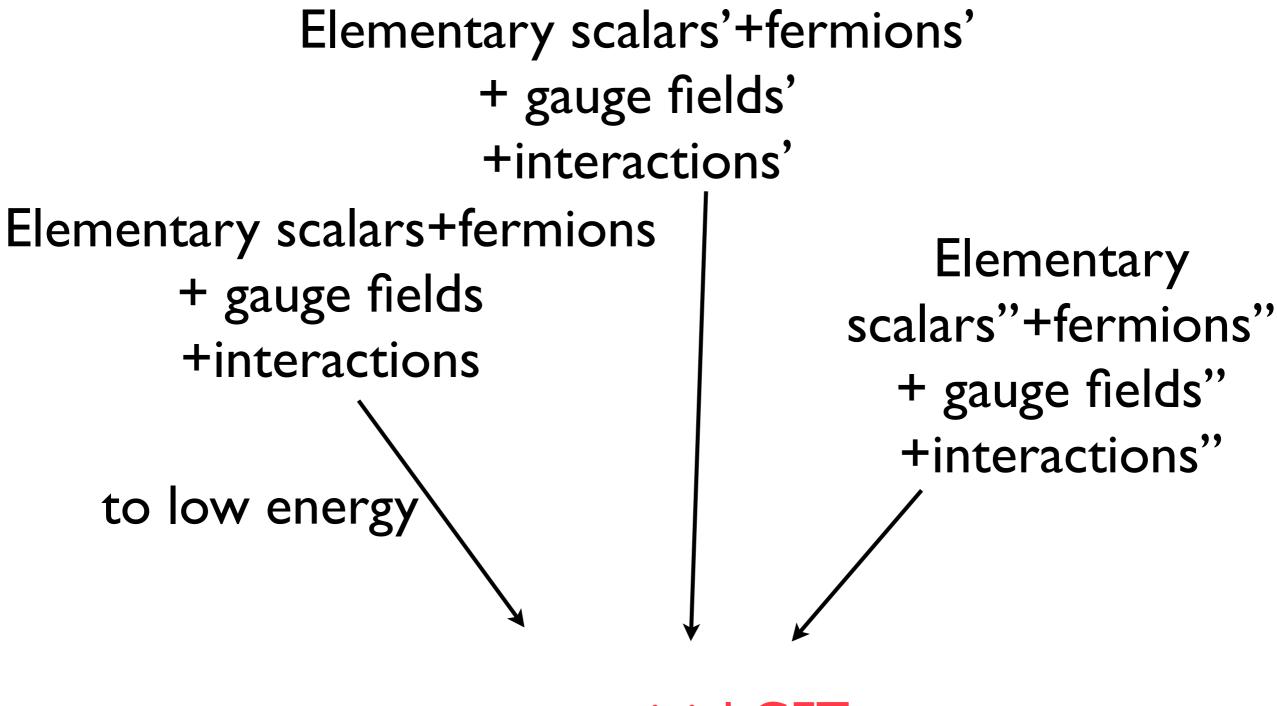
a non-trivial CFT +gauge fields + interactions

to low energy

```
Elementary scalars+fermions
       + gauge fields
       +interactions
                        +gauge fields + interactions
                         to low energy
```



Can be called a non-Lagrangian theory.



It can have multiple dual descriptions and no one description captures all features of it.

6d "non-Lagrangian" theory on N M5-branes

KK reduction

a non-trivial CFT

The only known construction can be a reduction from higher-dimensional theory

- To fully understand dualities involving M5-branes, non-Lagrangian theories can't be avoided.
- The reason is that the 6d theory on N M5-branes on general space is in itself non-Lagrangian.

a non-trivial CFT +gauge fields + interactions

to low energy

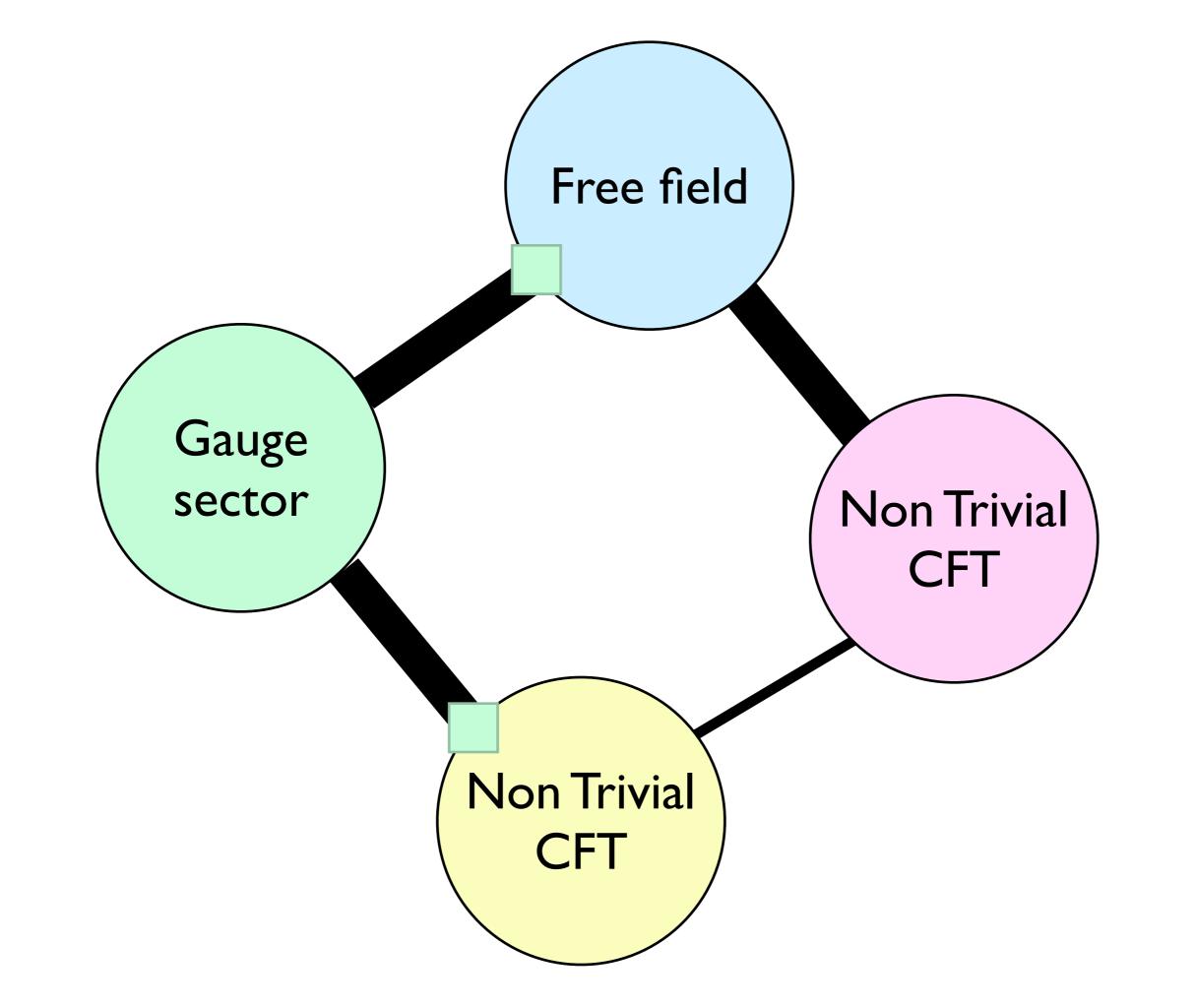
strongly coupled physics

So, let's consider this theory as the starting point.

a non-trivial CFT +gauge fields + interactions

to low energy

strongly coupled physics



The space of QFTs

(my subjective impression)

nontrivial CFT+gauge Free+gauge Free

The space of QFTs

(my subjective impression)

nontrivial CFT+gauge Free+gauge Standard Model Free If you're interested in QFT in general, and if you start your work by writing down a Lagrangian of the form

scalar + fermion + gauge + interactions,

You might be missing a lot! Be mindful!

Non-Lagrangian sector を何故考えるか?

• Non-Lagrangian sector の一つの例

● Non-Lagrangian sector を使った系の解析

How to study them?

- No general framework yet available.
- N=2&I supersymmetric ones are tractable, thanks to supersymmetry.
- Many N=2 examples are now known.

1996 Minahan-Nemeschansky's E_n theory

2007 Argyres-Seiberg duality

2007 Argyres-Wittig's examples

2009 Gaiotto's T_N theory

My work on SO version

2010 Chacaltana-Distler's examples

2013 My work with friends ...

19	96	Minahan-Nemeschansky's E _n theory
20	07	Argyres-Seiberg duality
20	07	Argyres-Wittig's examples
20		Gaiotto's T _N theory My work on SO version
20	010	Chacaltana-Distler's examples
20)13	My work with friends

 As an example, let me discuss Minahan-Nemeschansky's theory.

• A bit of preparation is necessary.

• We'll start from *N*=2 SQCD:

N=2 supersymmetric $SU(N_c)$ with N_f flavors

As N=1 supersymmetric gauge theory,

 $SU(N_c)$ vector multiplet W_{α}

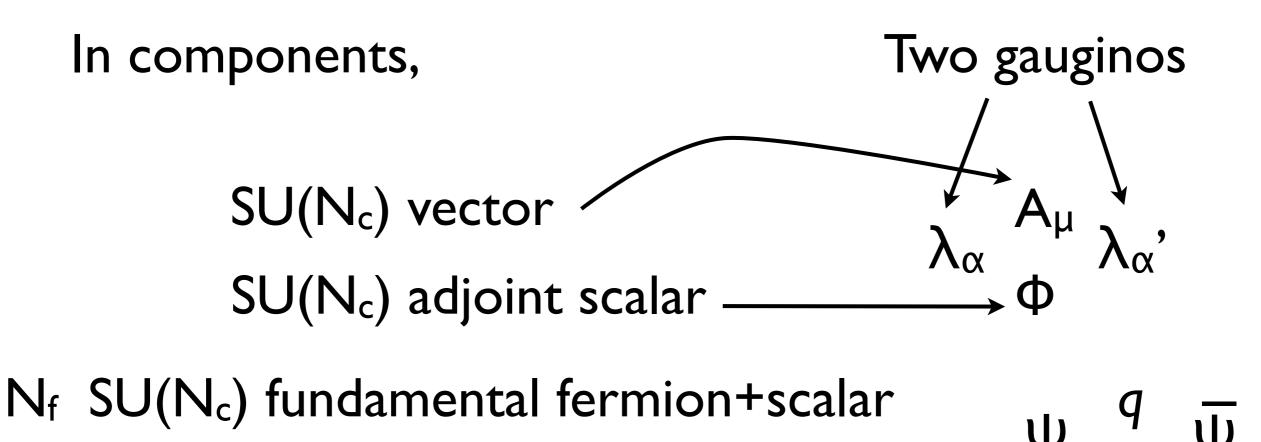
SU(N_c) adjoint chiral Ф

 N_f SU(N_c) fundamental chiral

 N_f SU(N_c) antifundamental chiral \tilde{q}

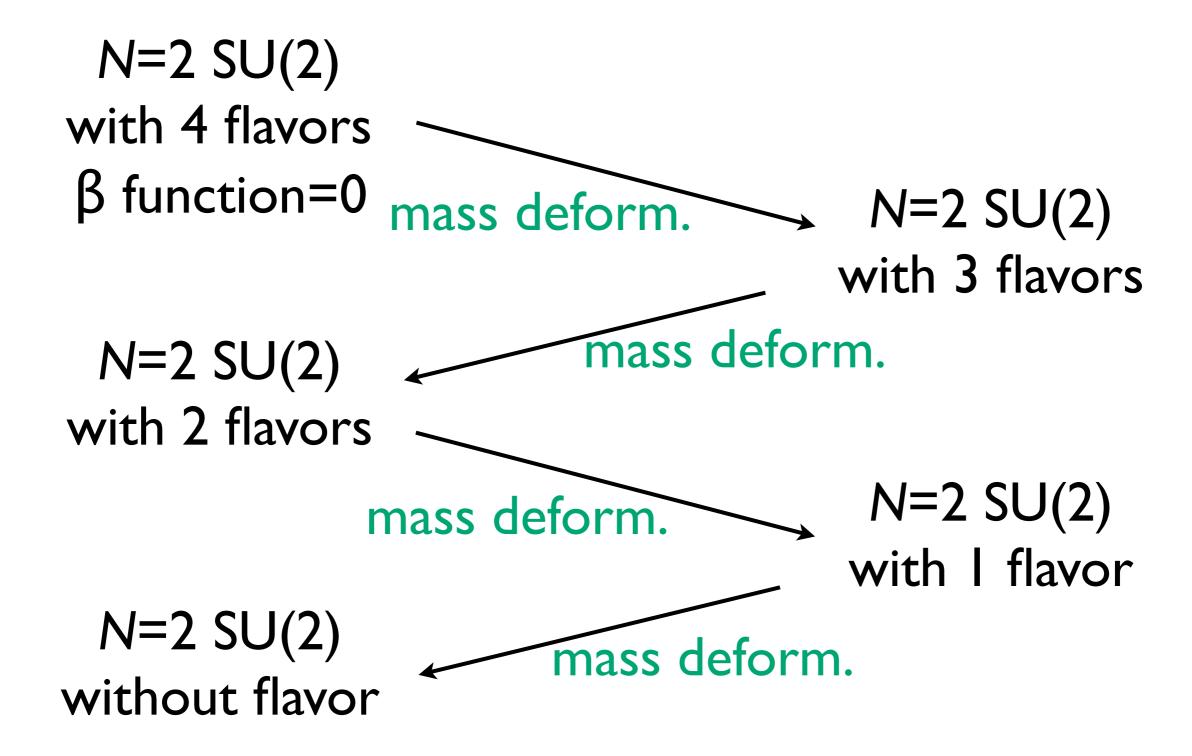
I-loop β function = $2N_c - N_f$

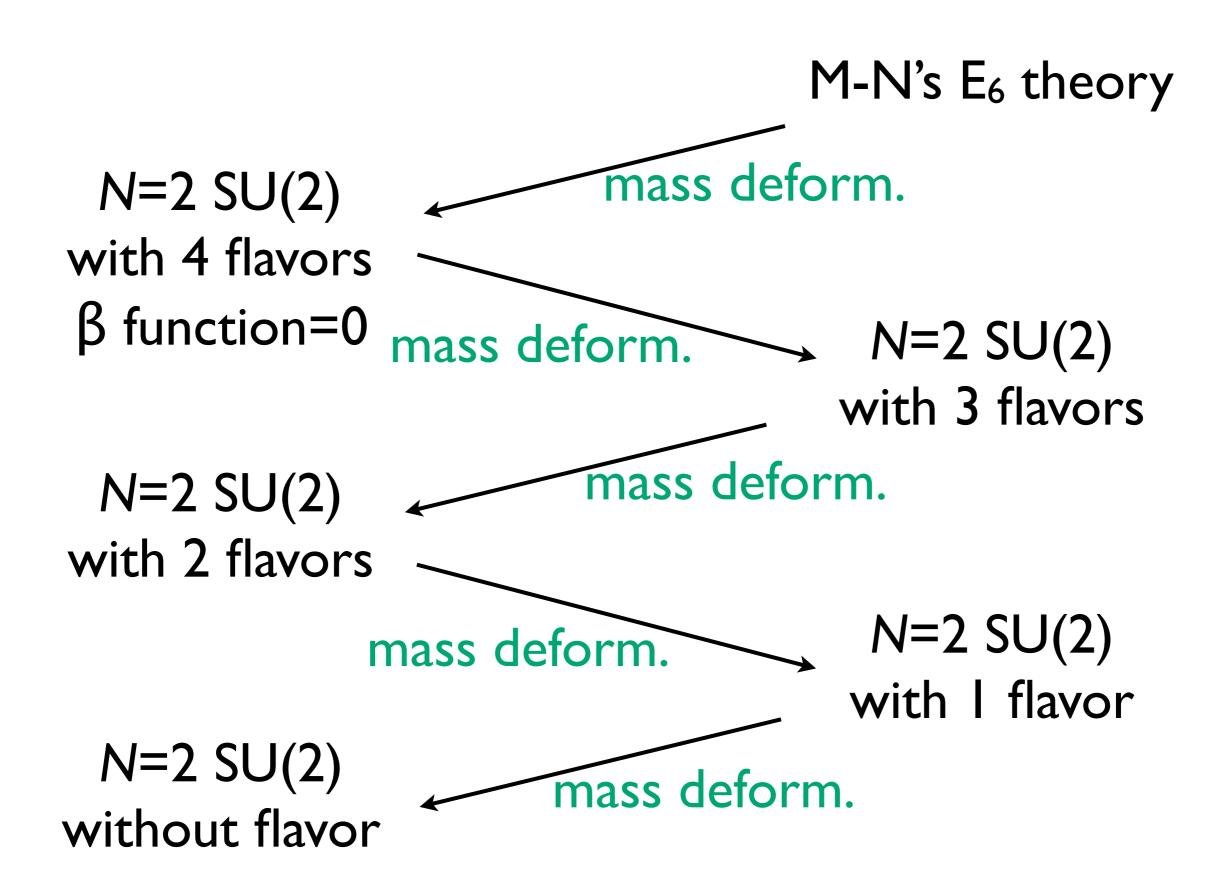
N=2 supersymmetric $SU(N_c)$ with N_f flavors



$$W = q\Phi \tilde{q}$$
 I-loop β function = $2N_c - N_f$

N_f SU(N_c) antifundamental fermion+scalar





M-N's E₆ theory

is N=2 supersymmetric.

has E₆ flavor symmetry.

has no Lagrangian description with E₆ symmetry.

M-N's E₆ theory

is N=2 supersymmetric.

has E₆ flavor symmetry.

has no Lagrangian description with E₆ symmetry.

proof:

any N=2 susy gauge theory is an N=1 susy gauge theory with superpotential $W=q\Phi\tilde{q}$.

Its flavor symmetry can be explicitly found; it can only be SU, SO or Sp.

- How do you know such a thing exists?
- If you accept that string theory exists as a consistent quantum theory, you can use type-E₆ 7-brane of F-theory probed by a D3-brane.
- If you prefer purely field theoretical approach, you can proceed as follows.
- It takes some efforts, so please be patient.

Construction of M-N E₆ theory

The I-loop beta function of

N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q}

vanishes, and the coupling constant

$$\tau=4\pi i/g^2+\theta/2\pi$$

is exactly marginal.

Q. What happens if you send $g \rightarrow \infty$?

The I-loop beta function of

N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q}

vanishes, and the coupling constant

$$\tau = 4\pi i/g^2 + \theta/2\pi$$

is exactly marginal.

- Q. What happens if you send $g \rightarrow \infty$?
- A. Depends on θ .

The I-loop beta function of

N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q}

vanishes, and the coupling constant

$$\tau=4\pi i/g^2+\theta/2\pi$$

is exactly marginal.

- Q. What happens if you send $g \rightarrow \infty$?
- A. Depends on θ .

General θ is complicated, so let's just consider CP invariant cases θ =0, π

You can study what happens in the extremely strong coupling limit

$$g \rightarrow \infty$$

because the Seiberg-Witten curve contains the info of all the masses and all the multiplicities of all SUSY particles in the system.

When $\theta=0$:

Study what happens to the Seiberg-Witten curve when $g \rightarrow \infty$.

It happens that

the Seiberg-Witten curve at the coupling g

is equal to

the Seiberg-Witten curve at the coupling g'=1/g

When $\theta=0$:

So, it is quite likely that

N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q} at coupling g

is equal to

N=2 SU(N_c) with $2N_c$ flavors q', \tilde{q}' at coupling g'=1/g

Study what happens to the Seiberg-Witten curve when $g \rightarrow \infty$.

It happens that

the Seiberg-Witten curve at the coupling g

is not equal to

the Seiberg-Witten curve at the coupling g'=1/g when $N_c > 2$.

Rather, it happens that

the Seiberg-Witten curve of N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q} at coupling g

is equal to

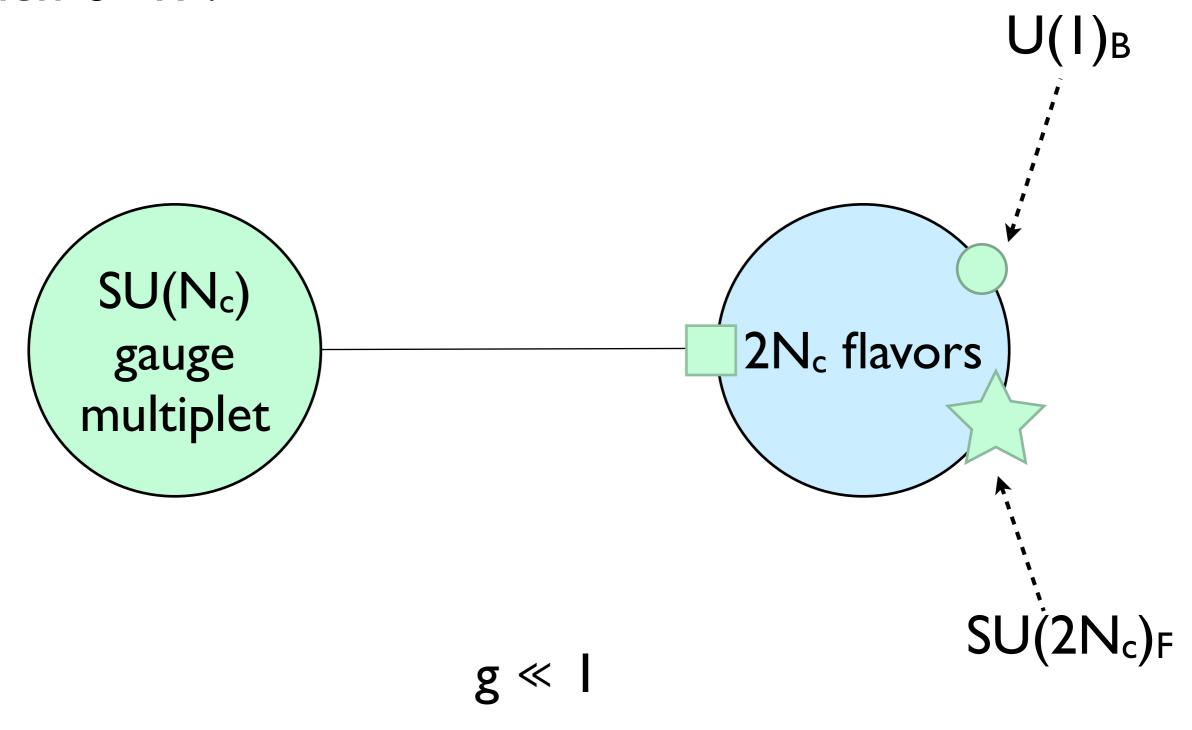
the Seiberg-Witten curve of SU(2) gauge theory at coupling g'=1/g, coupled to one flavor plus something.

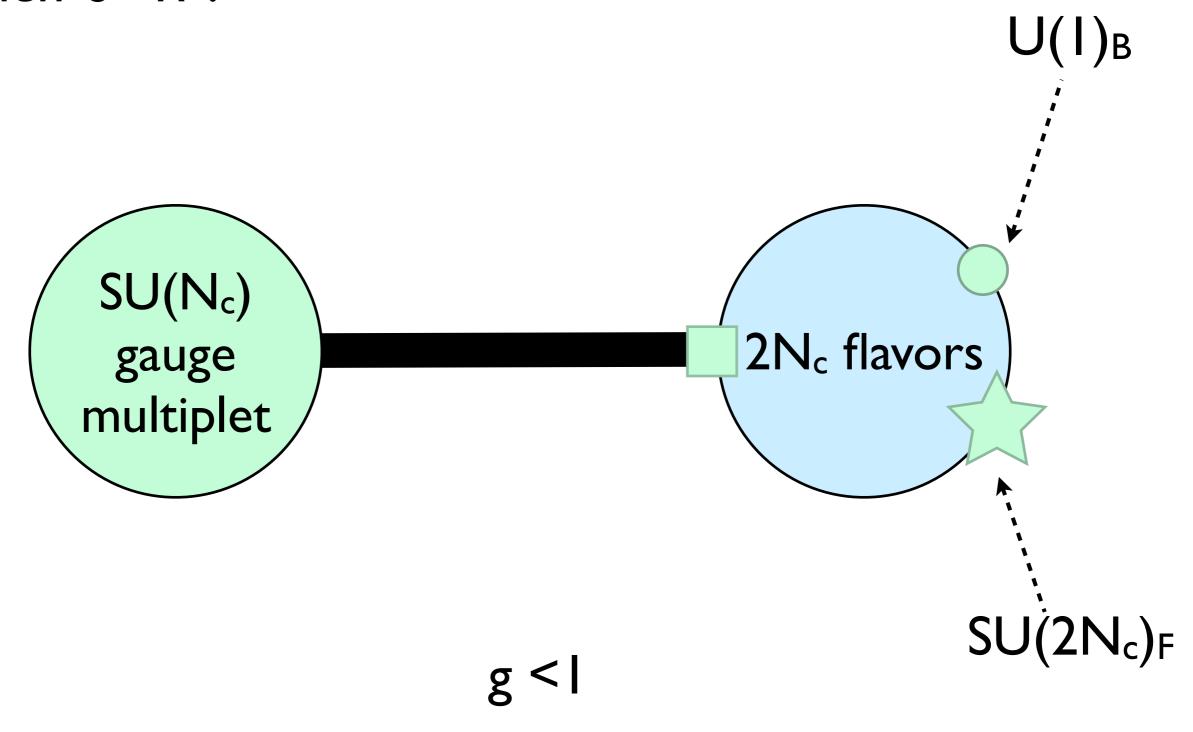
It is then likely that

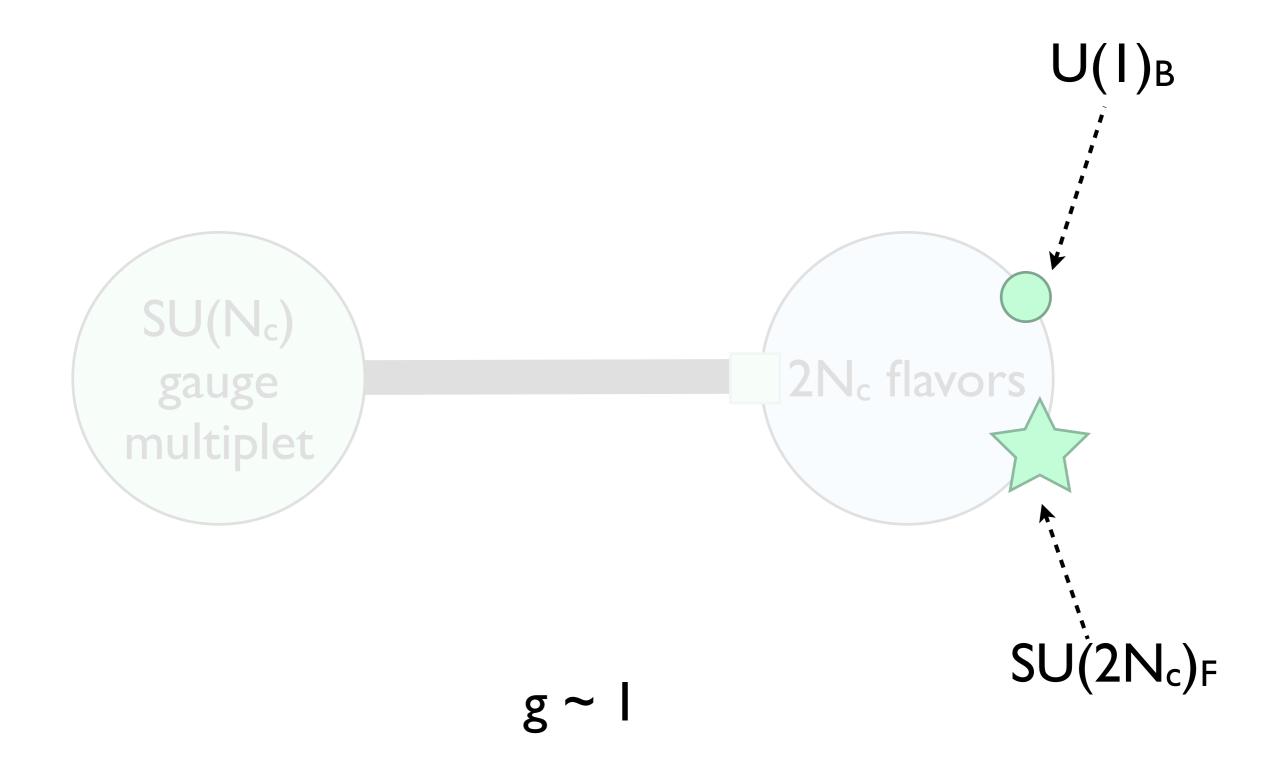
N=2 SU(N_c) with $2N_c$ flavors q, \tilde{q} at coupling g

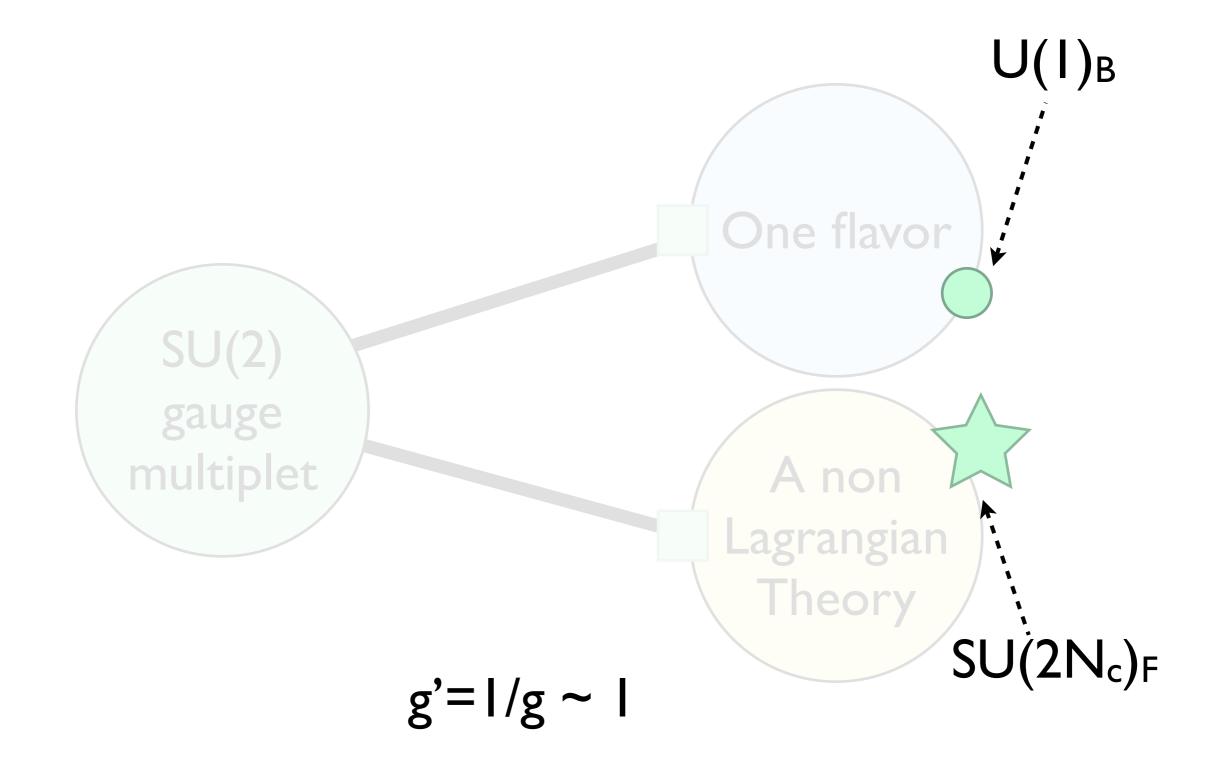
is equal to

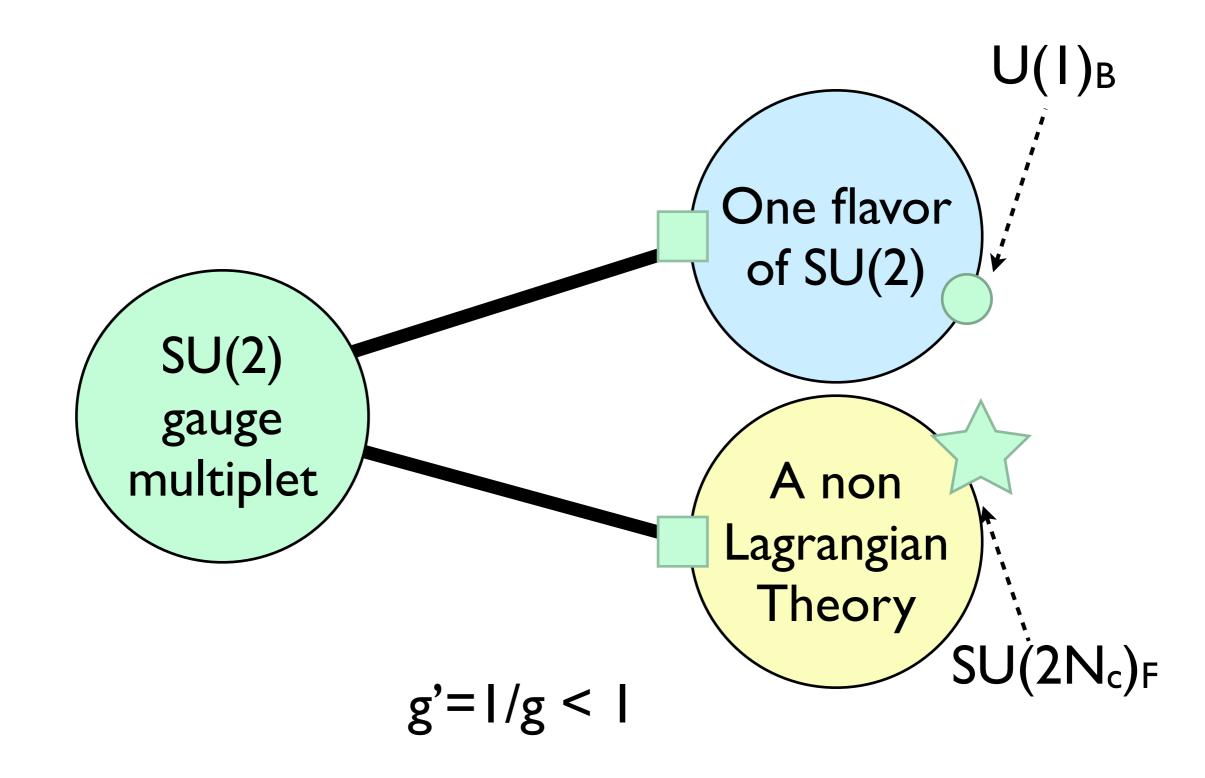
N=2 SU(2) gauge theory at coupling g'=1/g, coupled to one flavor plus something.

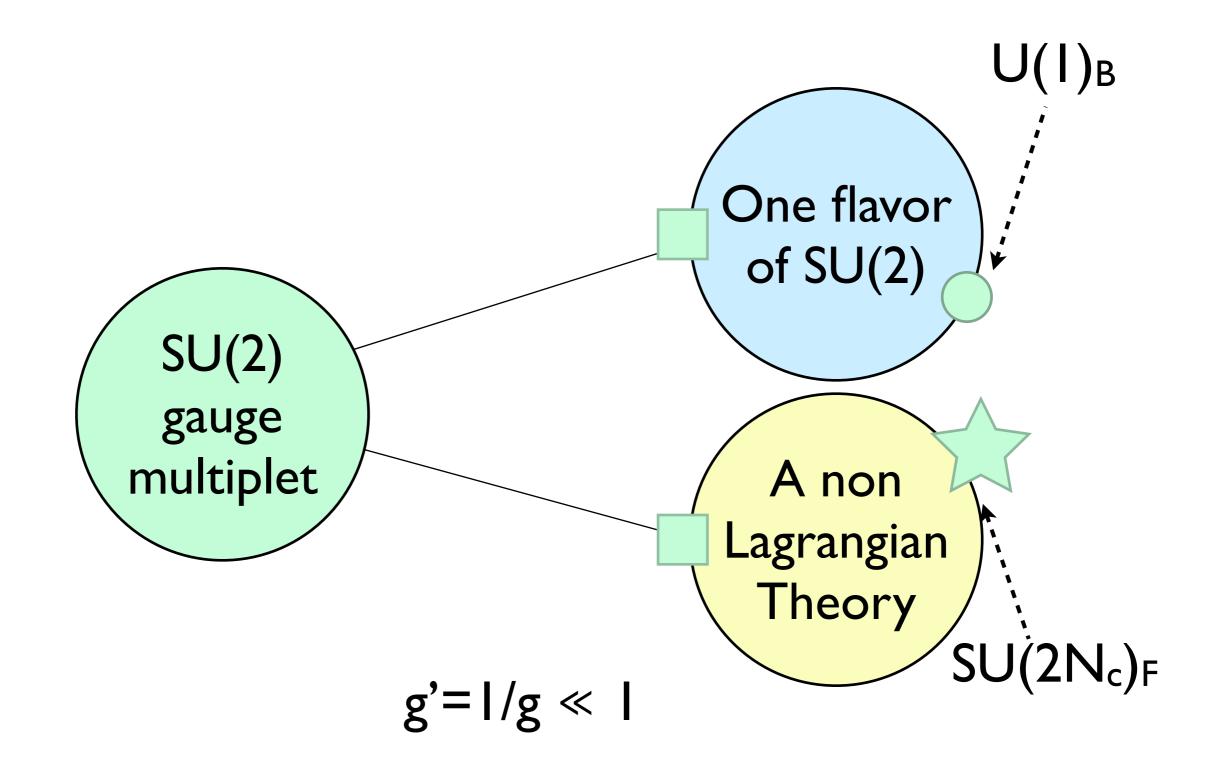


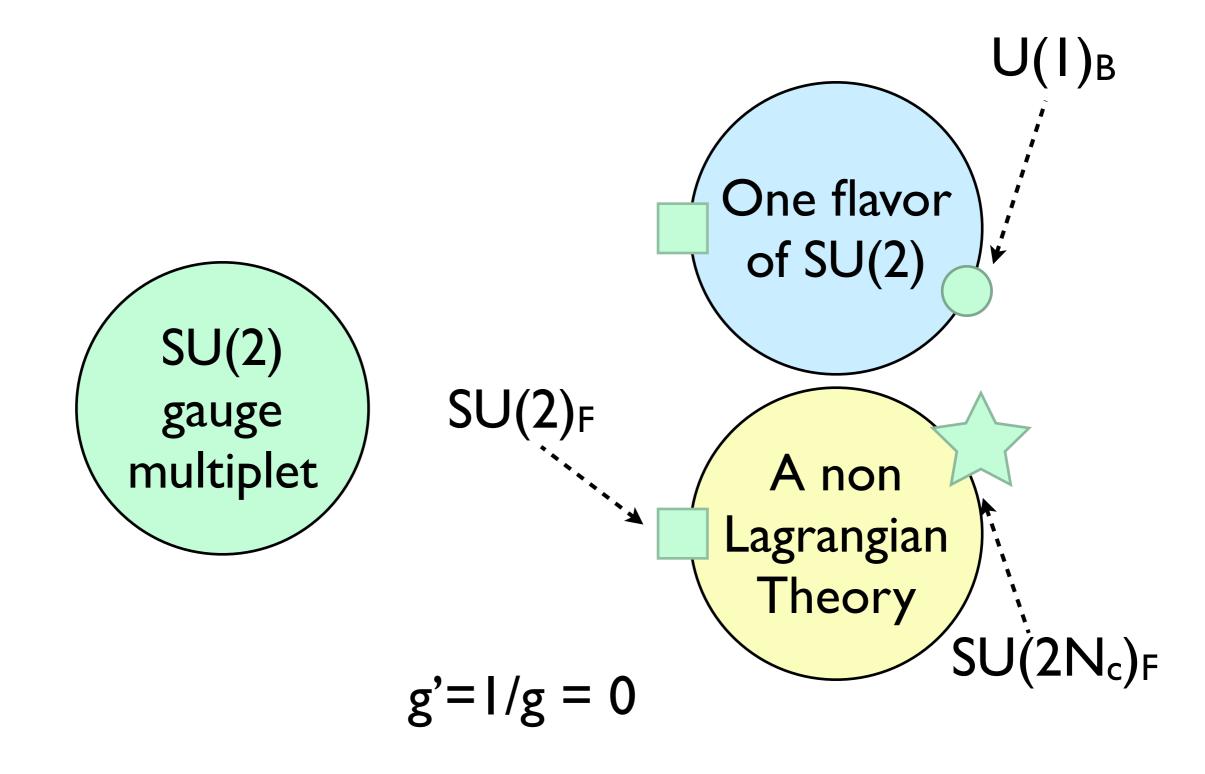




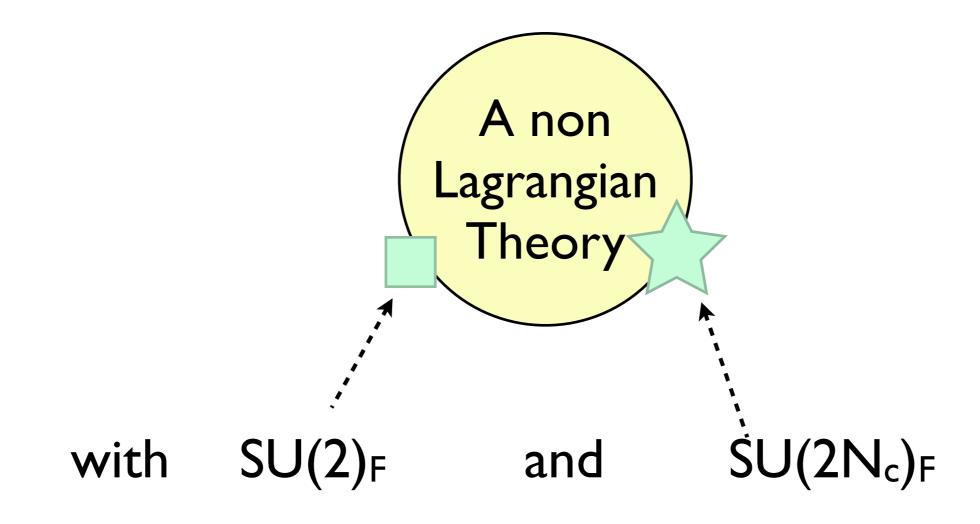






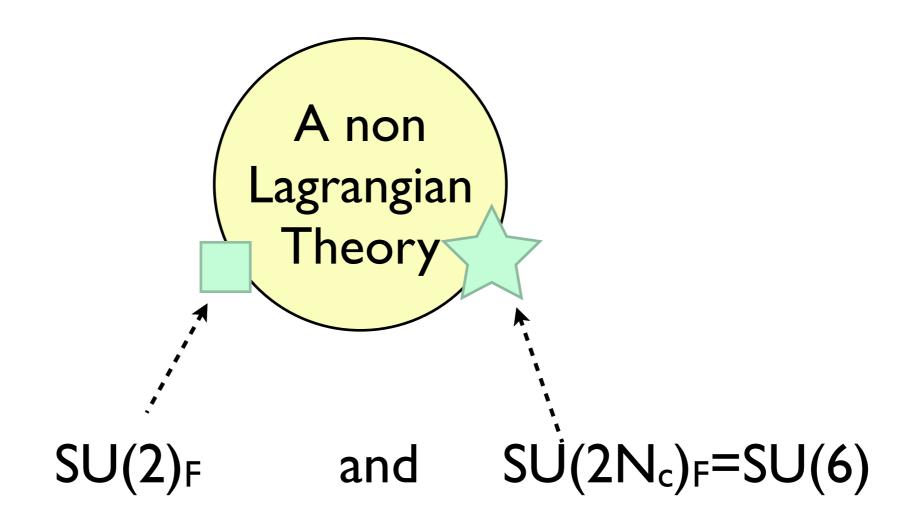


We isolated



flavor symmetry.

When $N_c = 3$

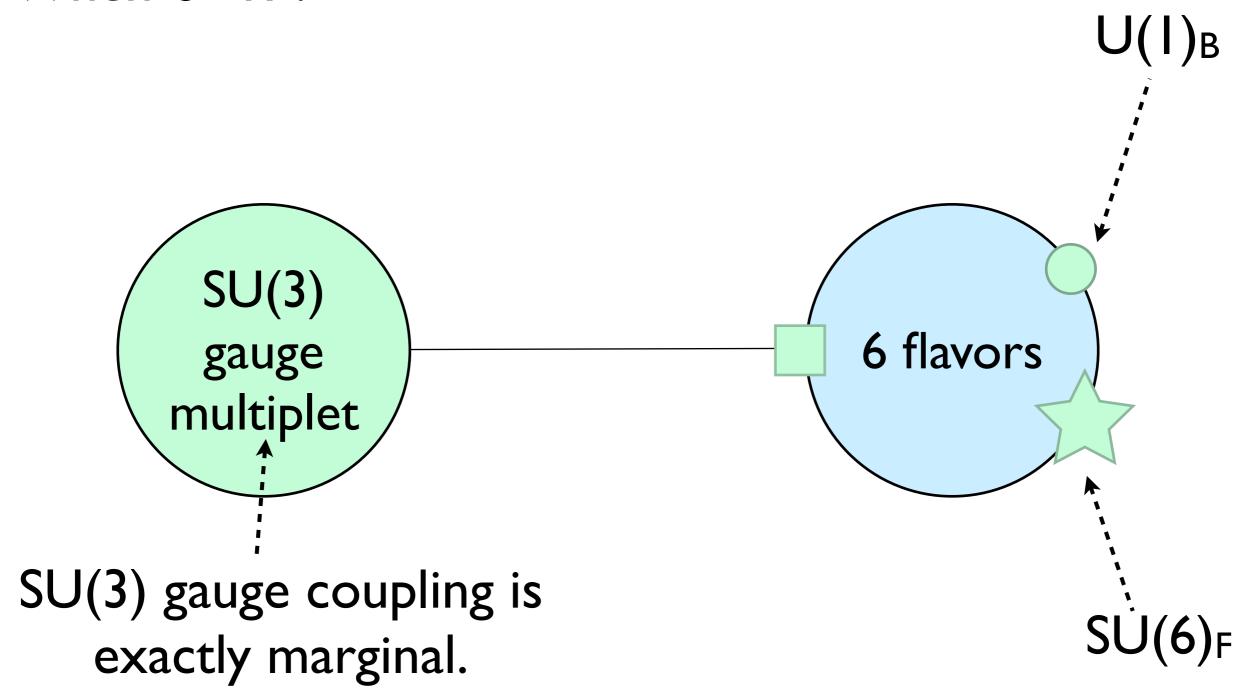


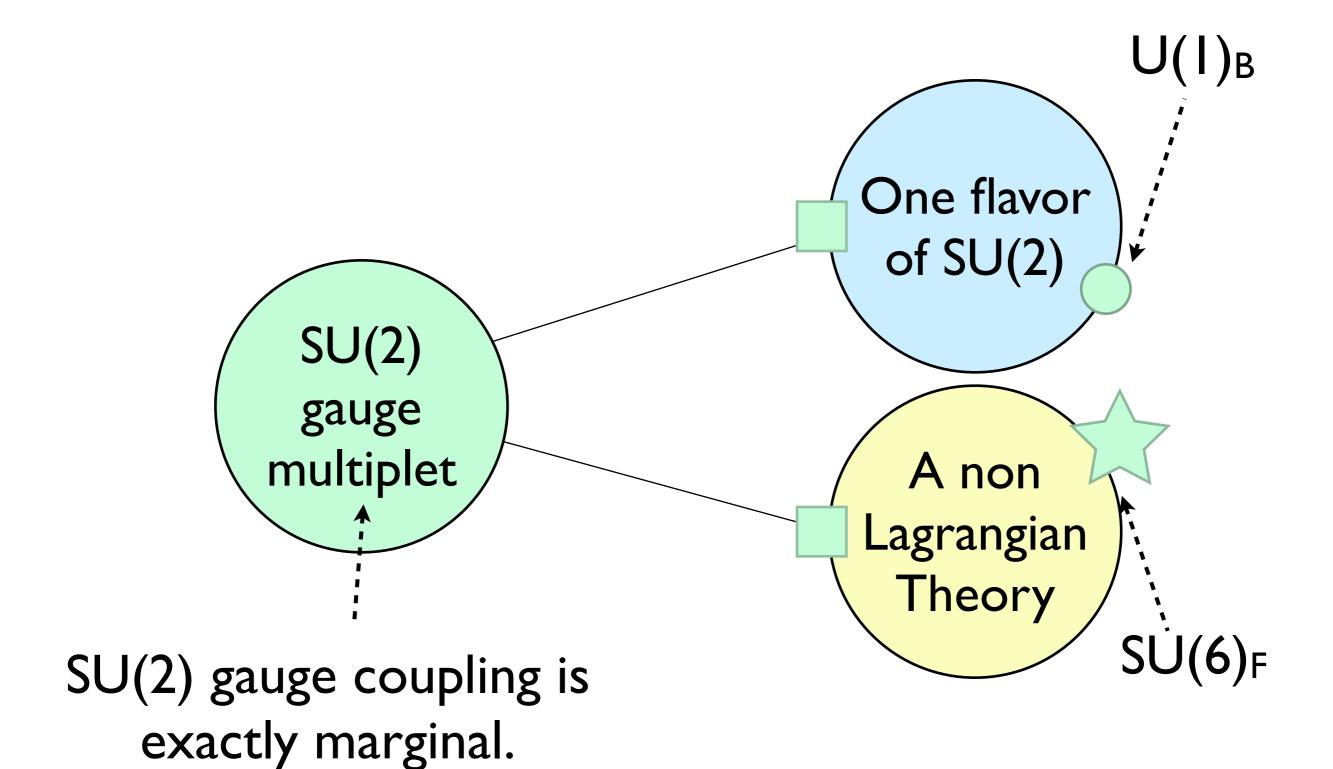
combines to E₆.

This is the Minahan-Nemeschansky theory.

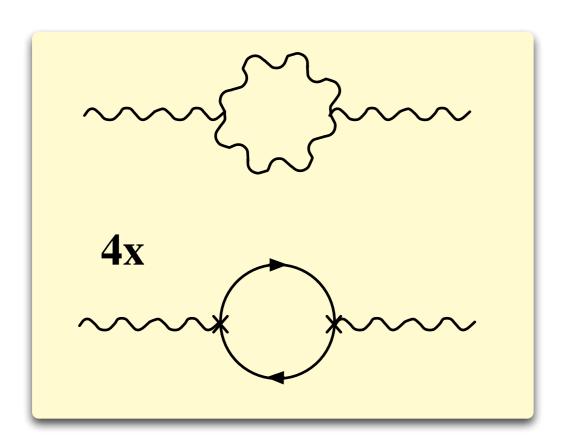
On current 2-pt functions

When $\theta = \pi$:

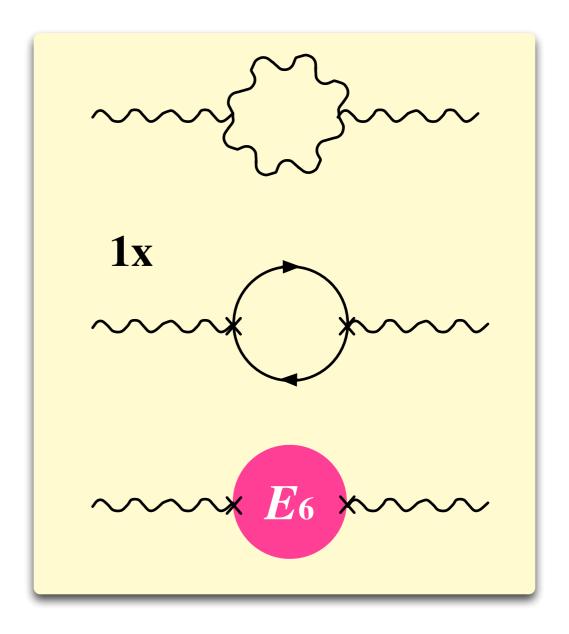


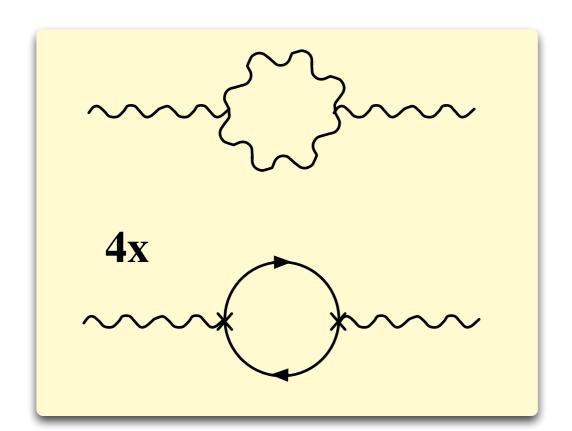


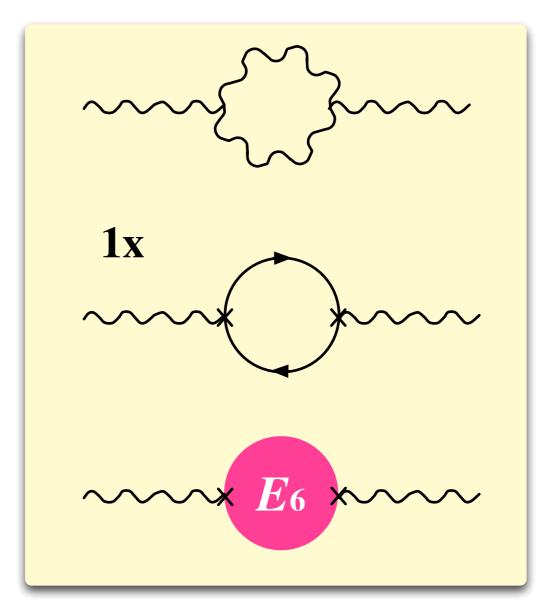
I-loop β func. of SU(2) with 4 flavors is zero.



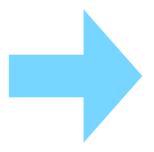
I-loop β func. of SU(2) with I flavor plus MN theory is zero.





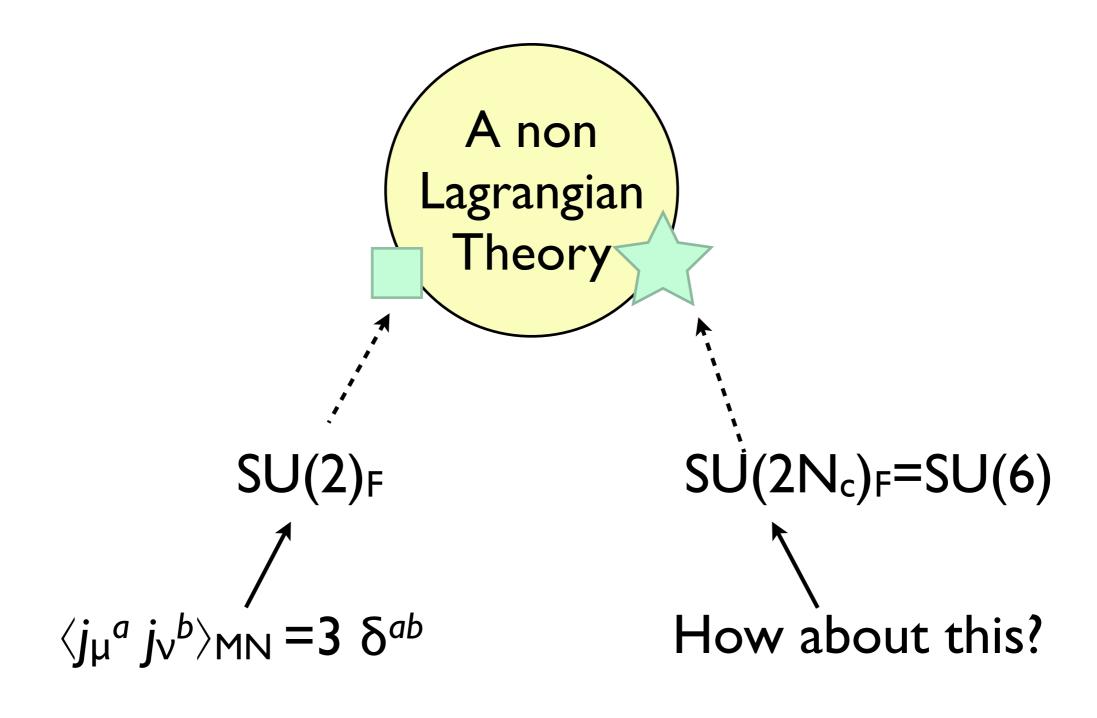


$$\langle j_{\mu}{}^{a} j_{\nu}{}^{b} \rangle_{\text{doublet}} = \sim \sim \langle j_{\mu}{}^{a} j_{\nu}{}^{b} \rangle_{\text{MN}} = \sim \sim \langle E_{6} \rangle_{\text{MN}}$$

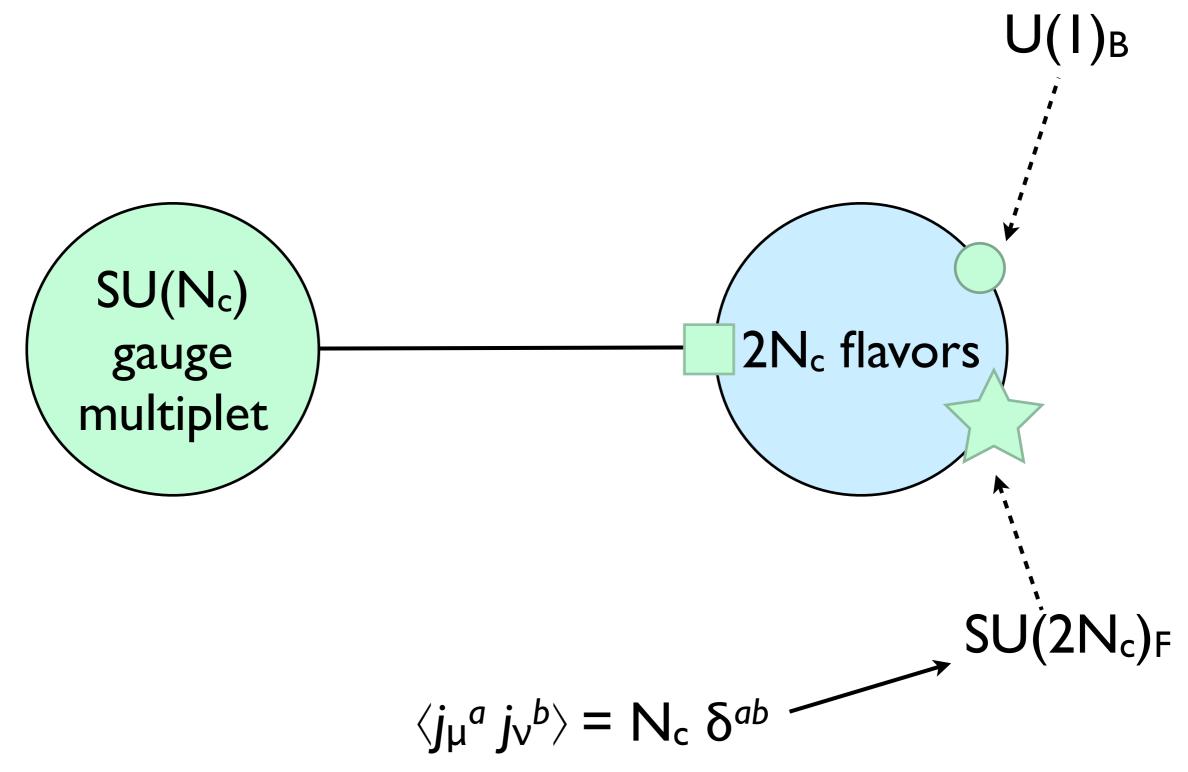


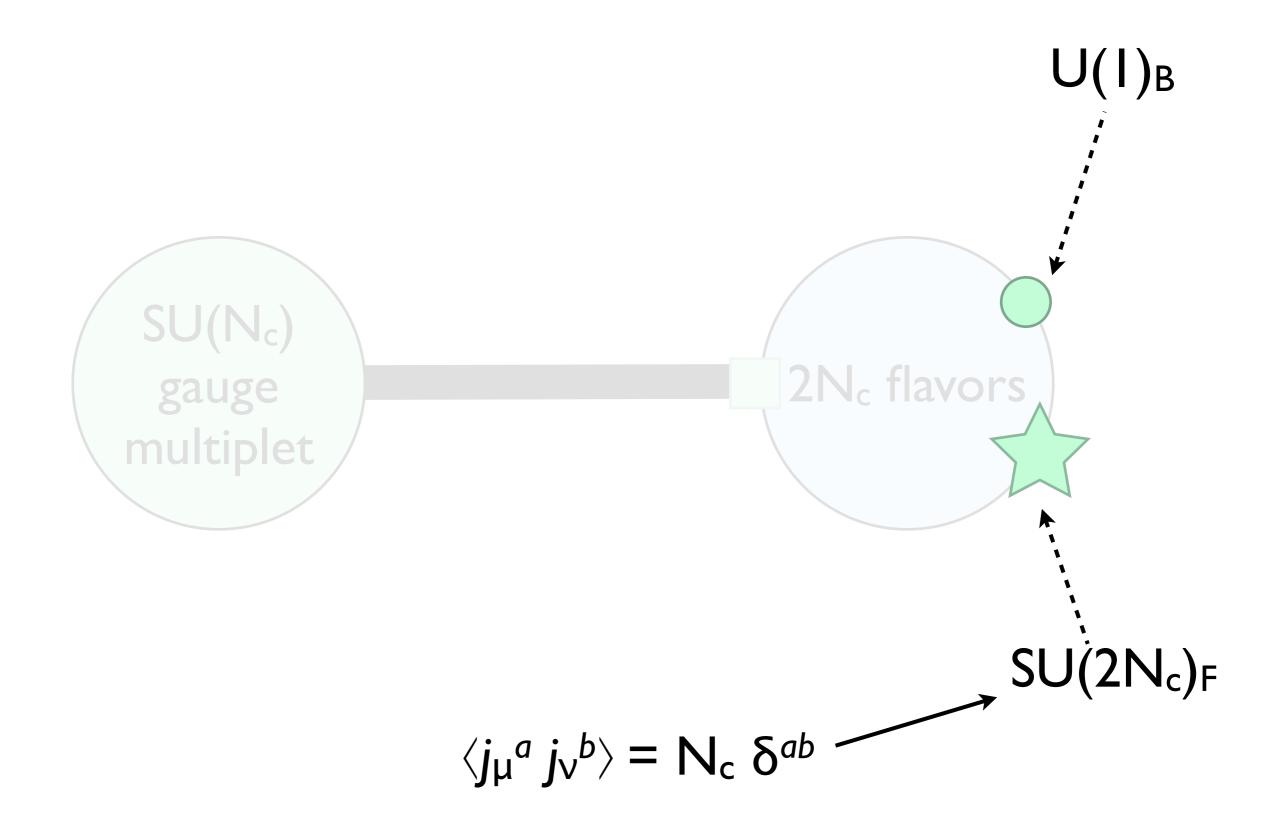
$$\langle j_{\mu}{}^{a} j_{\nu}{}^{b}\rangle_{MN} = 3\langle j_{\mu}{}^{a} j_{\nu}{}^{b}\rangle_{doublet}$$

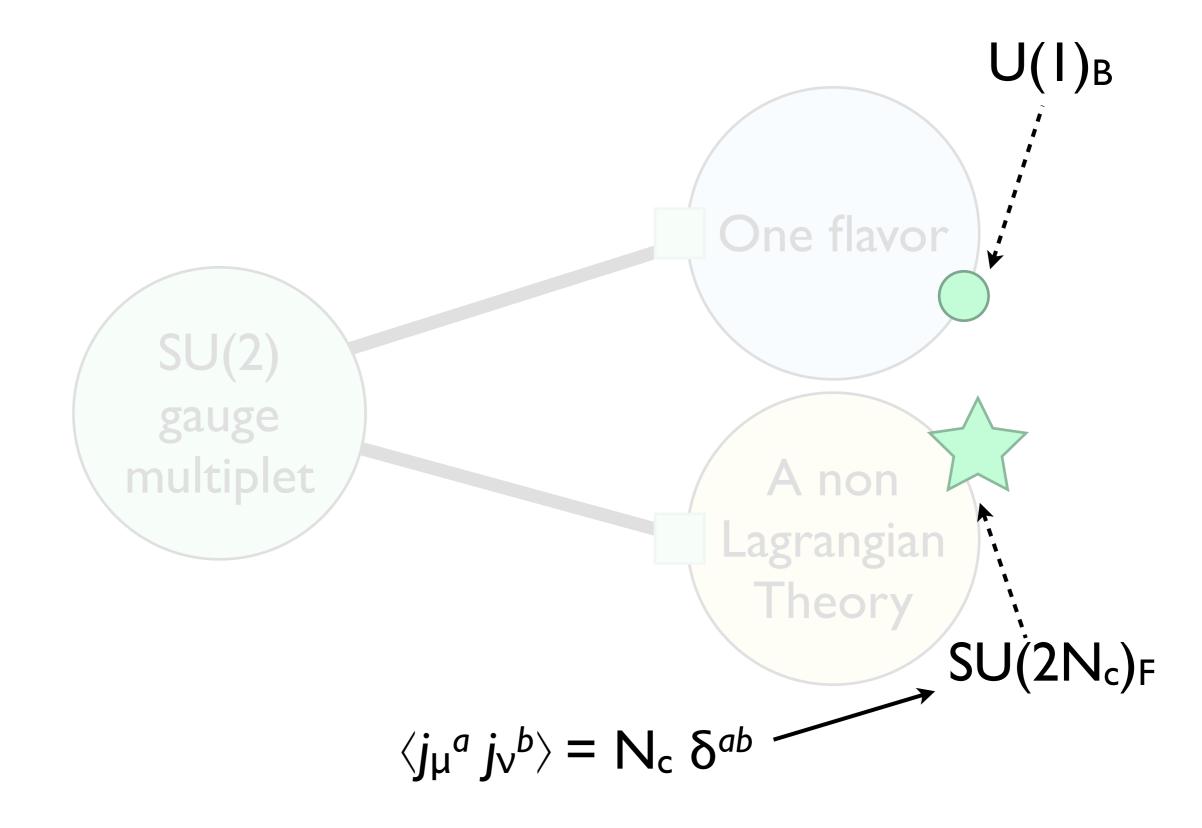
= 3 δ^{ab}

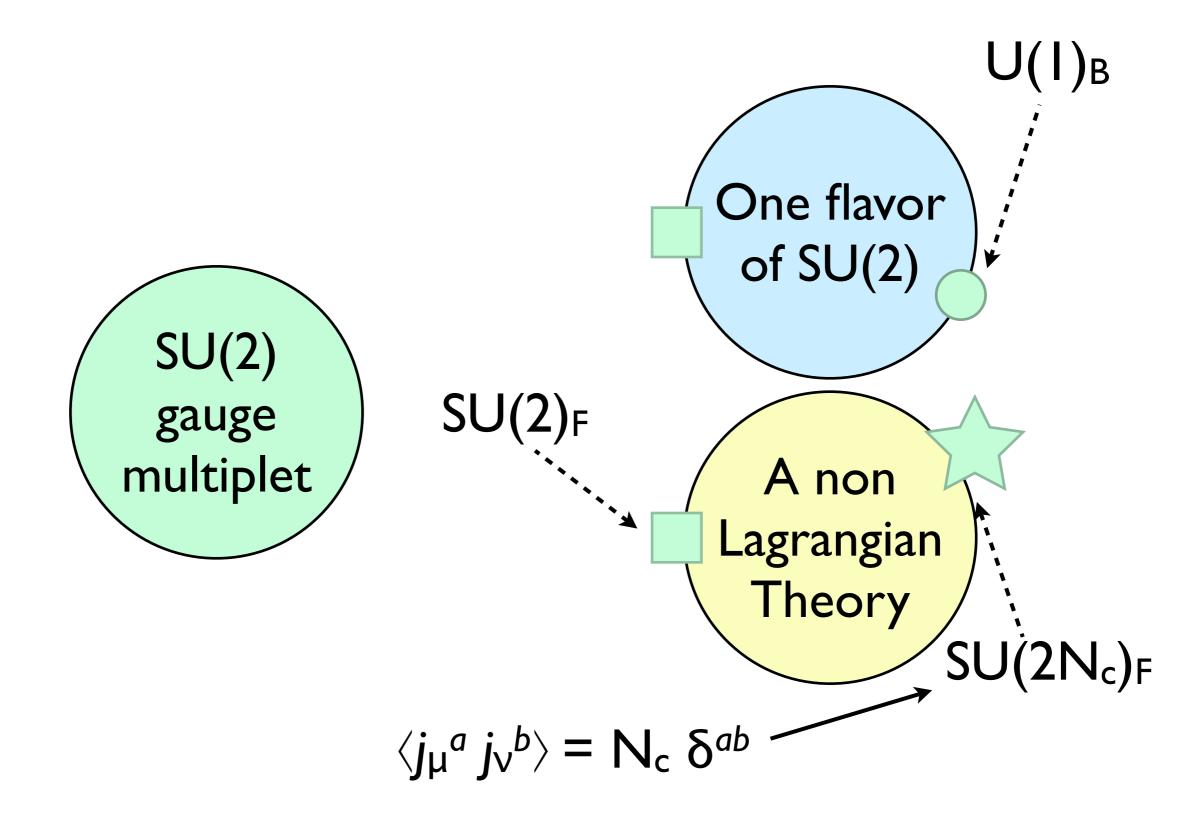


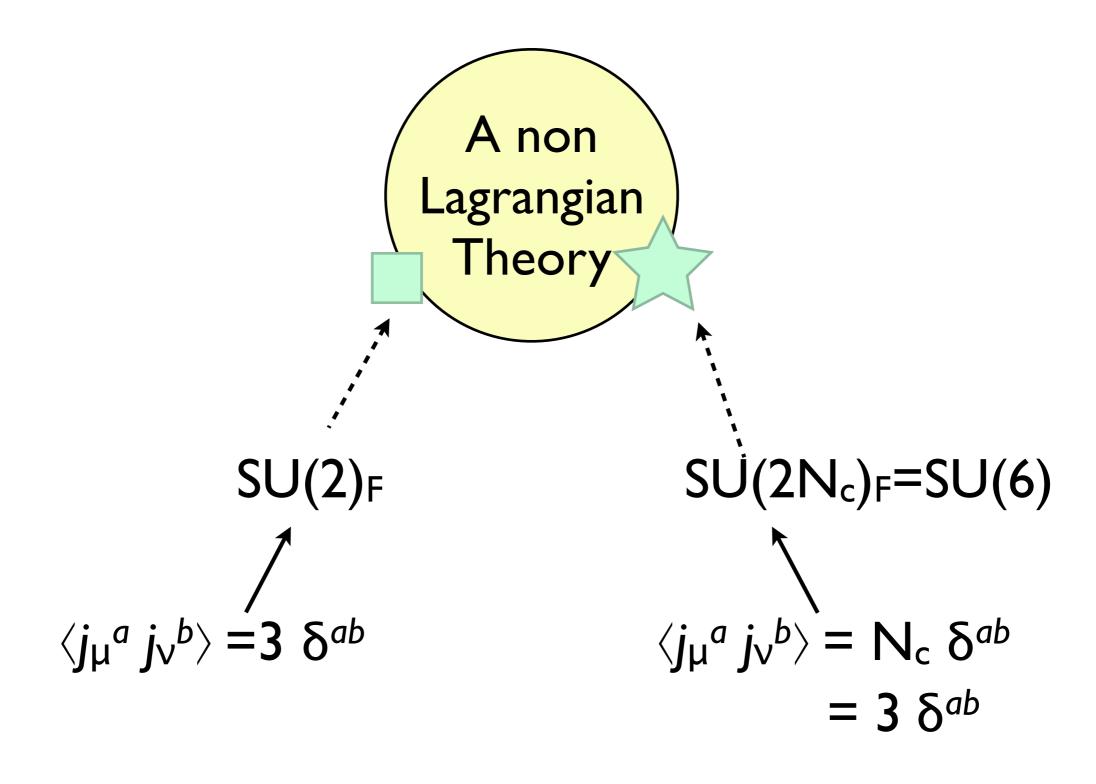
When $\theta = \pi$:

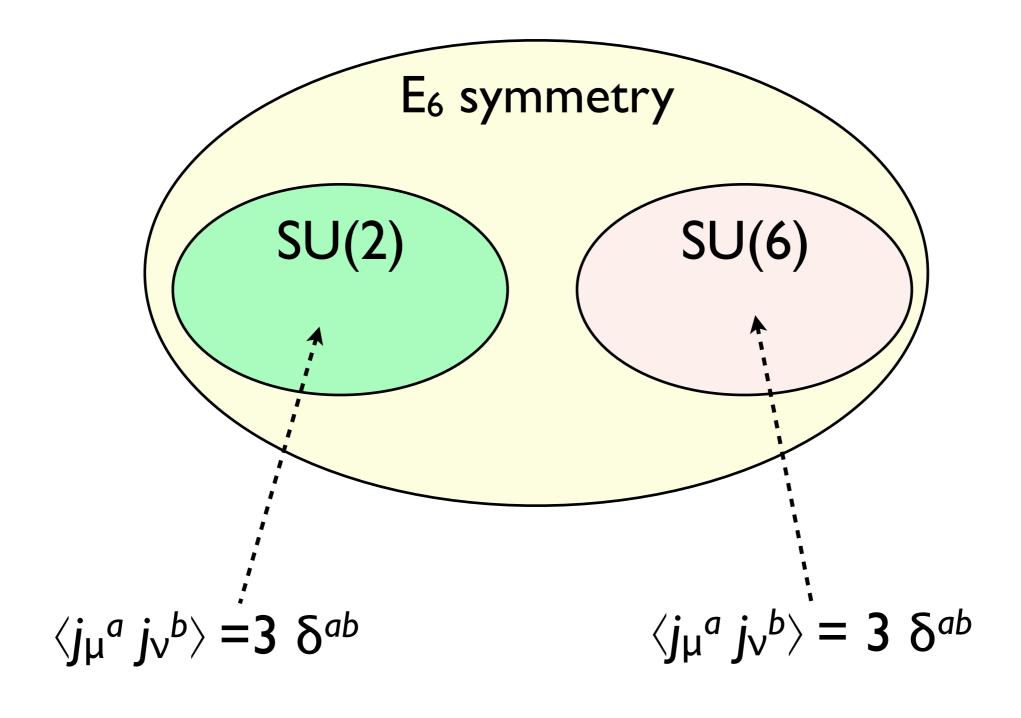








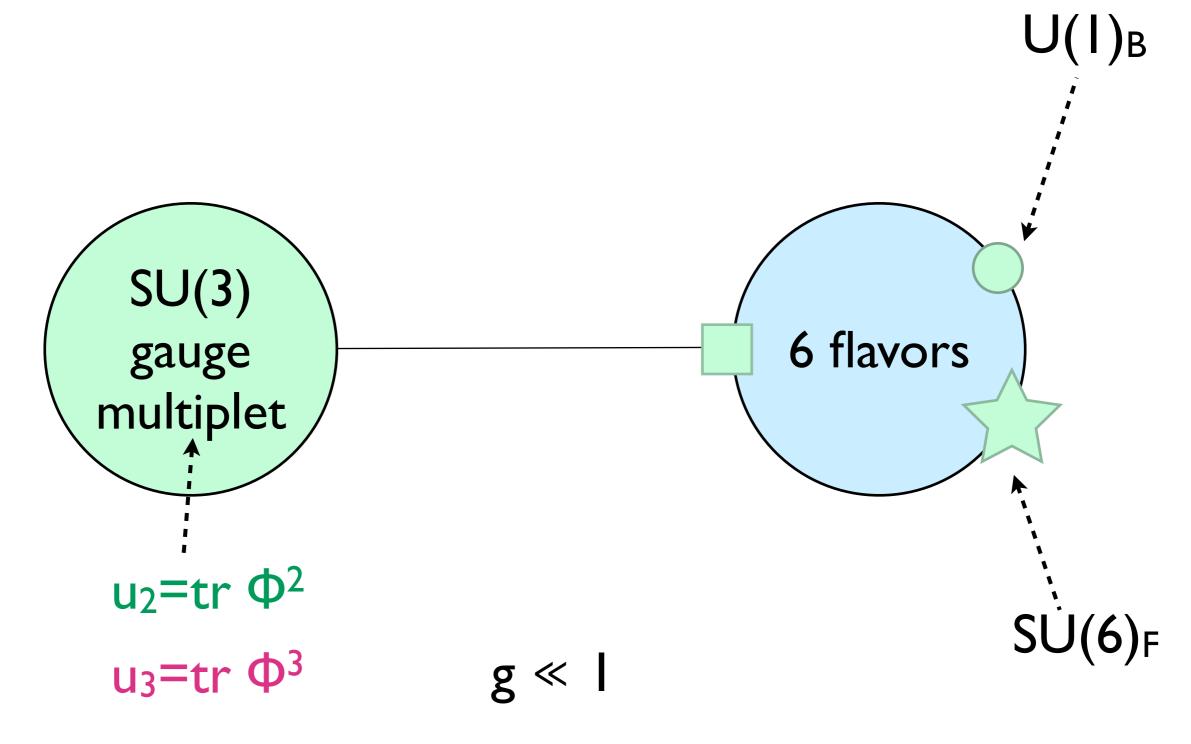


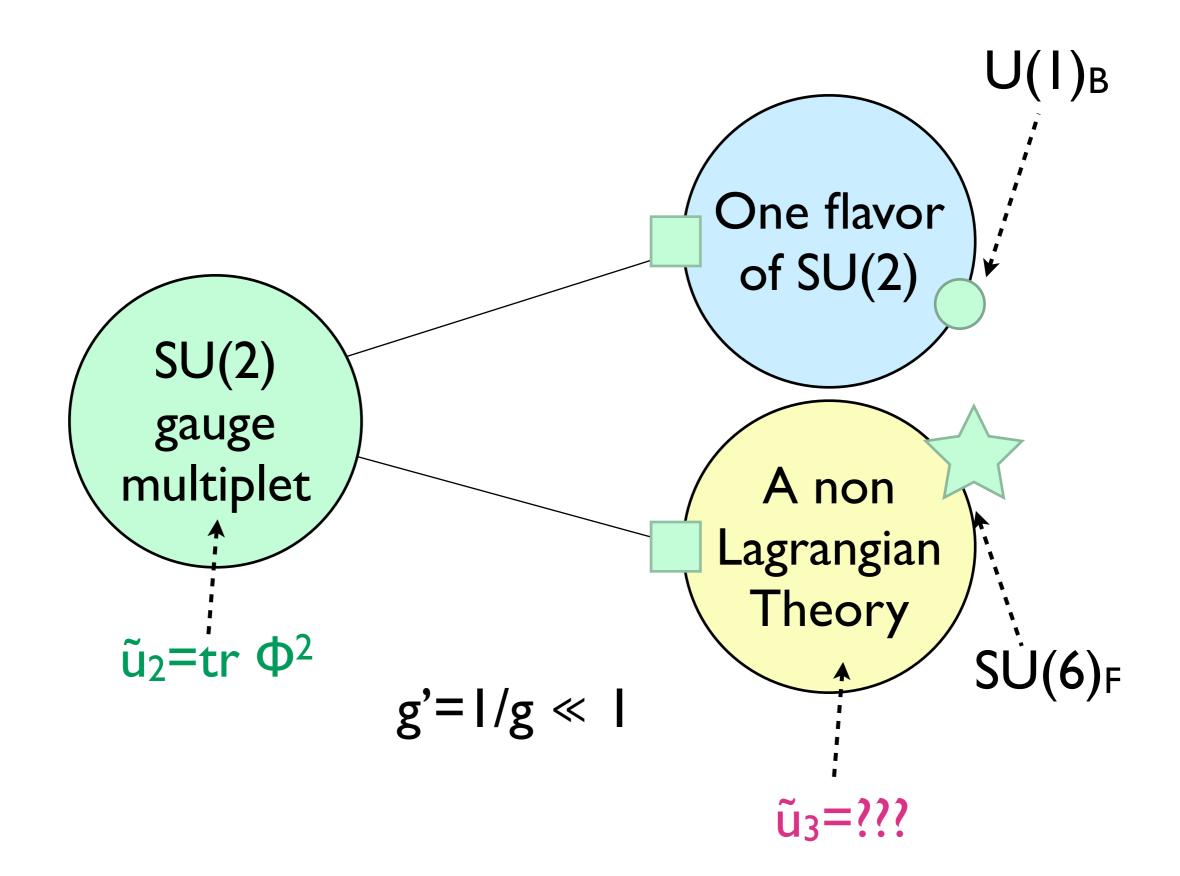


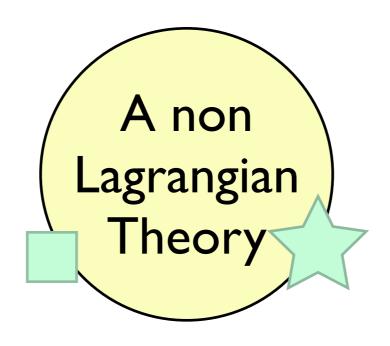
Compatible!

On chiral operators

When $\theta = \pi$:

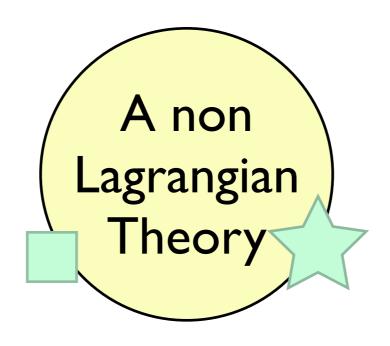






has a tr $\Phi^{?}$ -like operator u of dimension 3.

All BPS operators can be determined this way.



For example, it has 78 operators of dimension 2 transforming as the adjoint of E_6

M-N's E₆ theory

mass deform.

$$N=2$$
 SU(2) with 4 flavors

Higgsing
$$\langle u \rangle \neq 0$$

$$u= \text{tr } \Phi^2$$

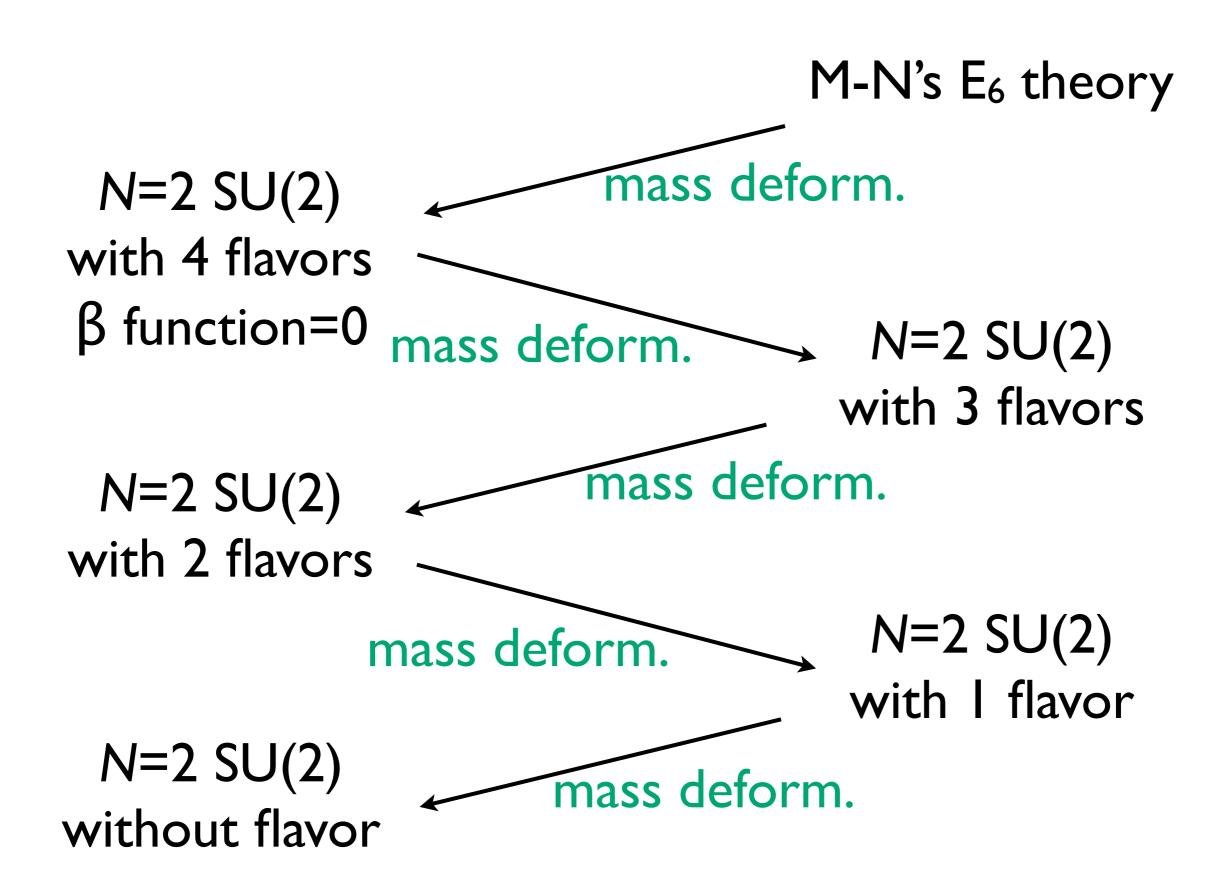
N=2 U(I) with massive charged fields

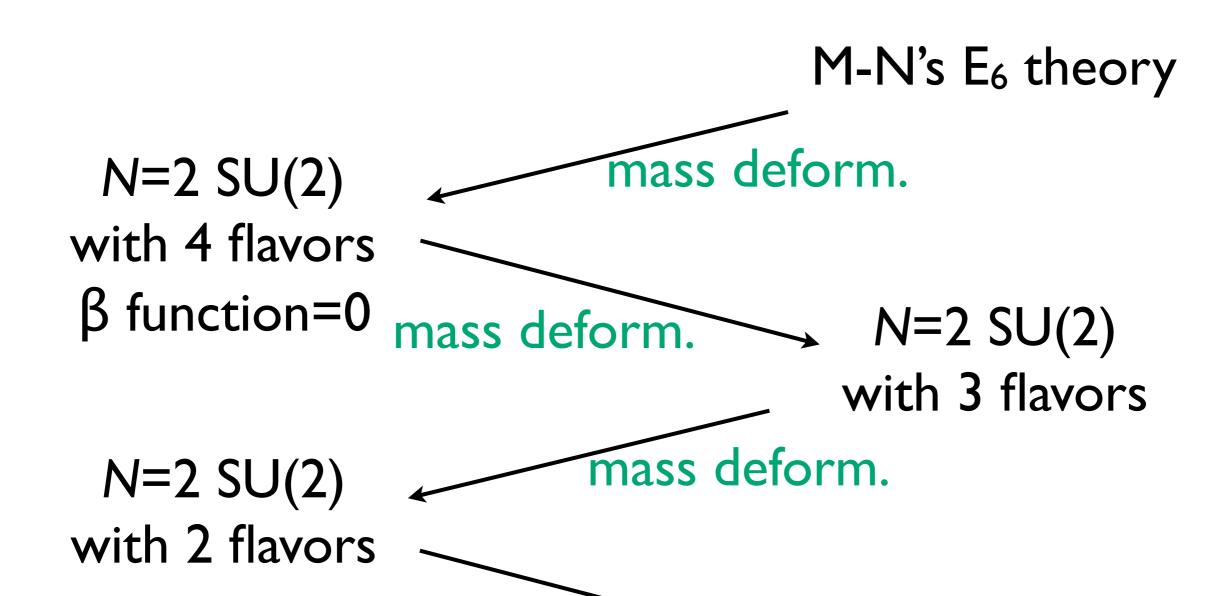
M-N's E₆ theory
$$\frac{\langle u \rangle \neq 0}{\langle u \rangle \neq 0} \qquad N=2 \text{ U(I)}$$
with massive charged fields

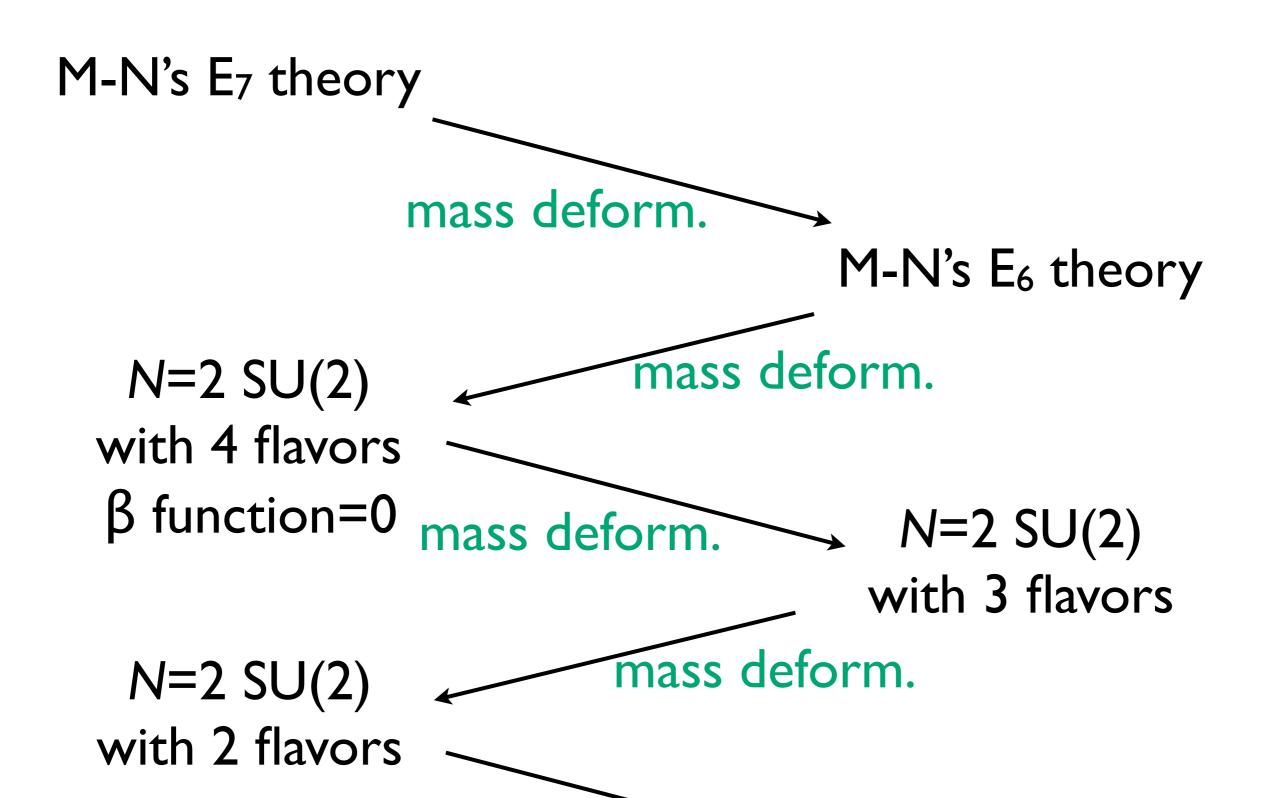
N=2 SU(2) with 4 flavors

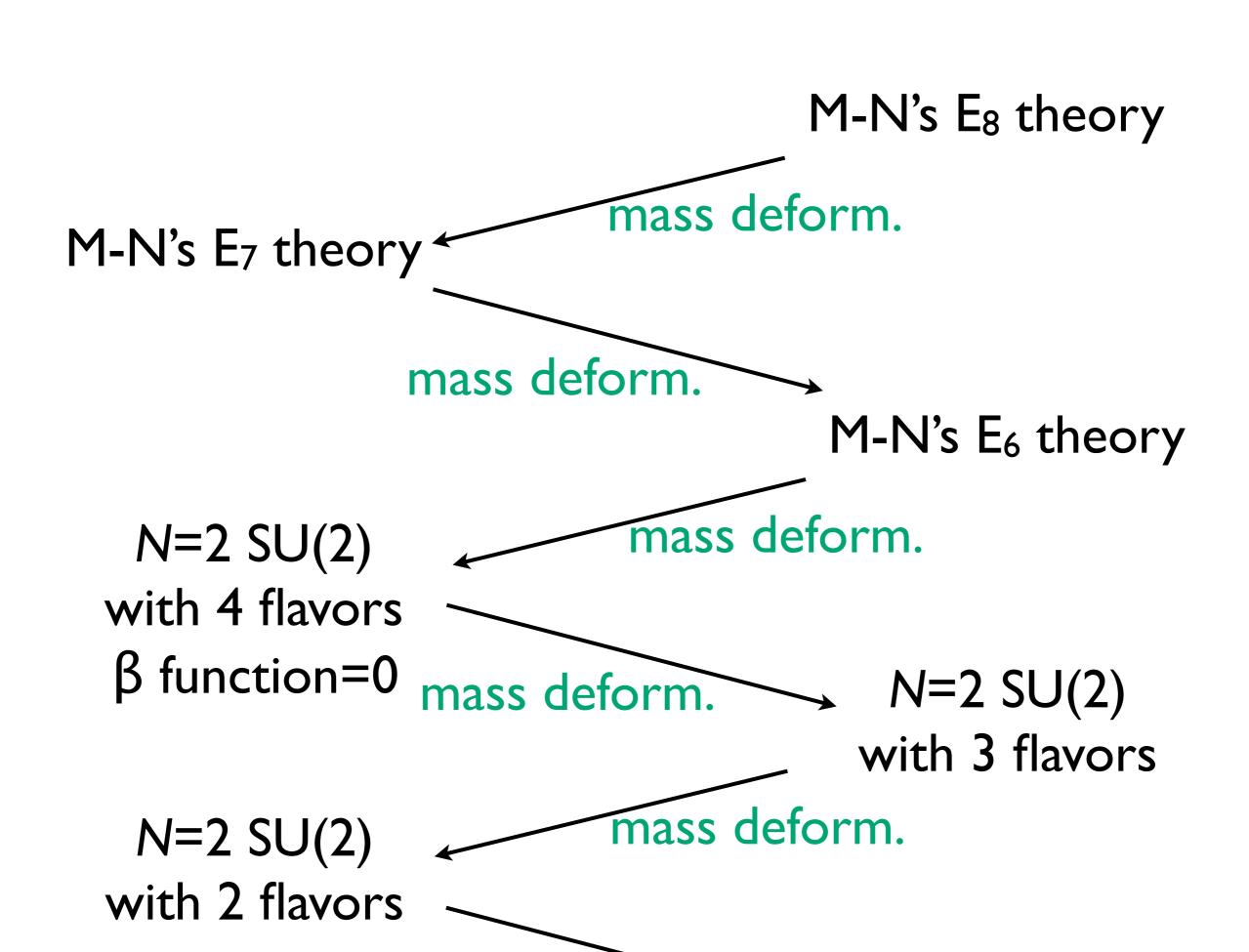
Higgsing $\langle u \rangle \neq 0$ $U = \text{tr } \Phi^2$ V = 2 U(1) $U = \text{tr } \Phi^2$ with massive charged fields

mass deform.

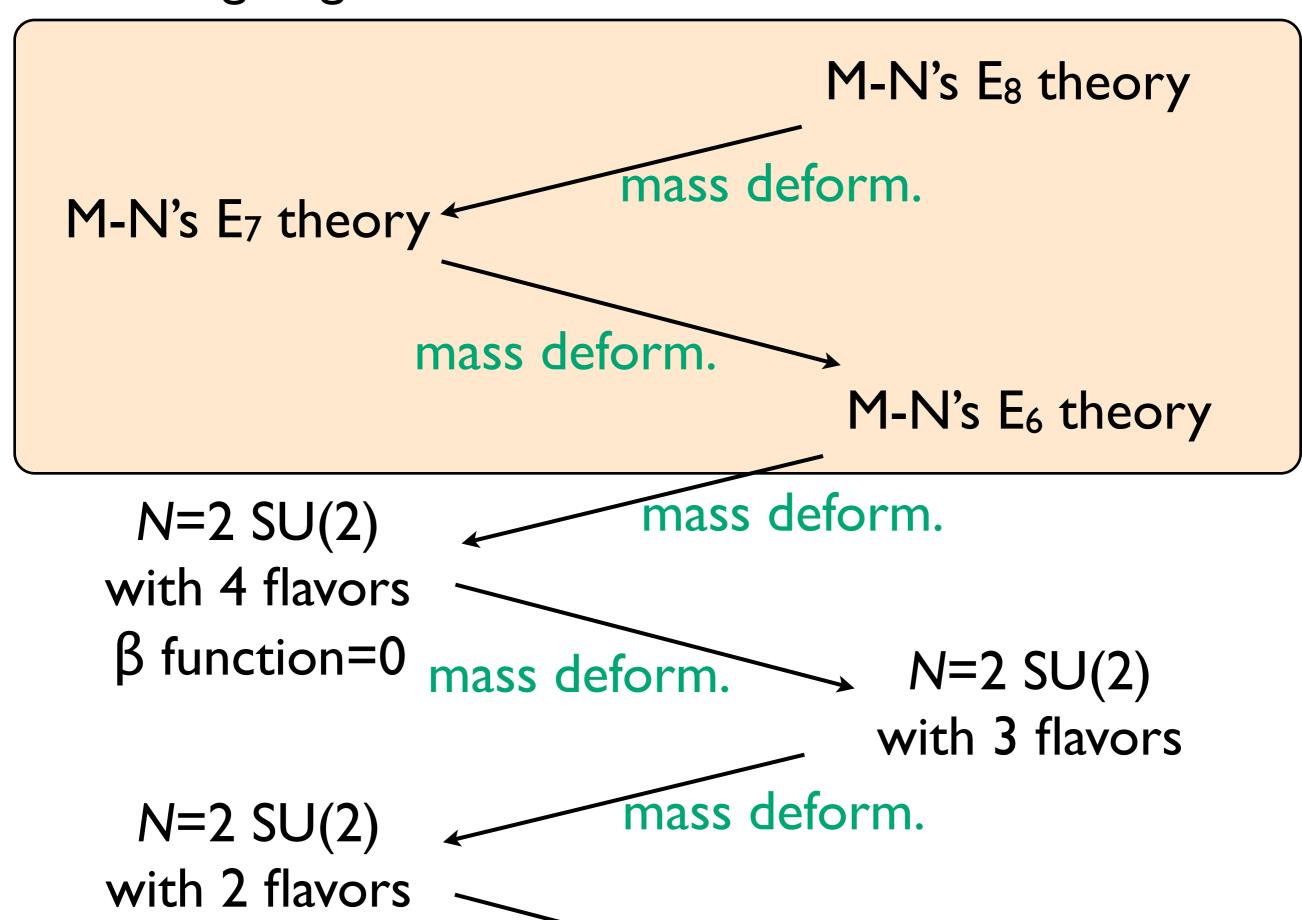


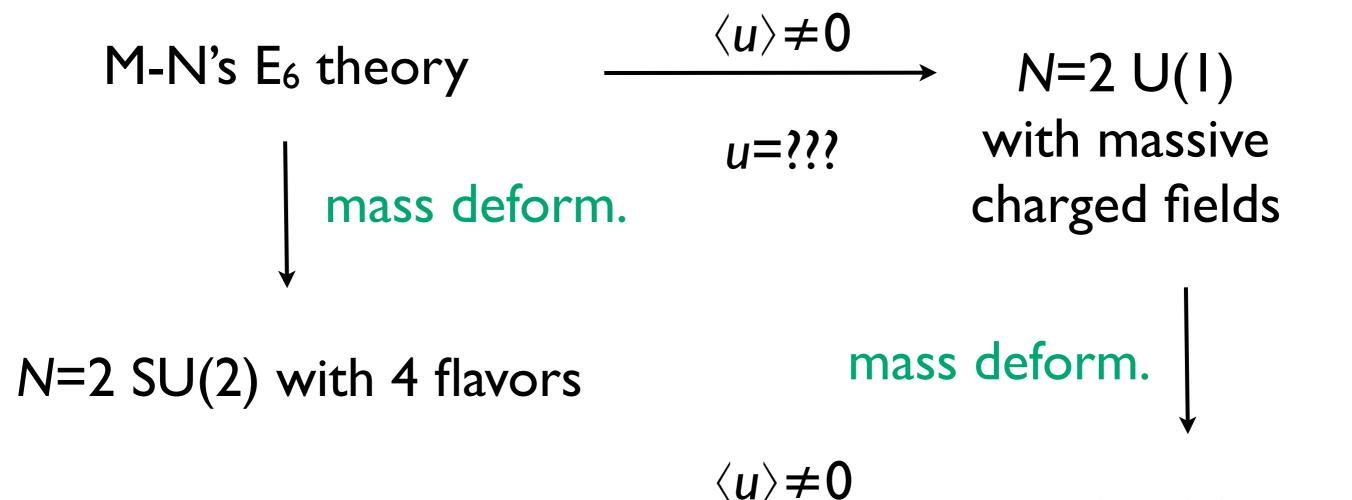


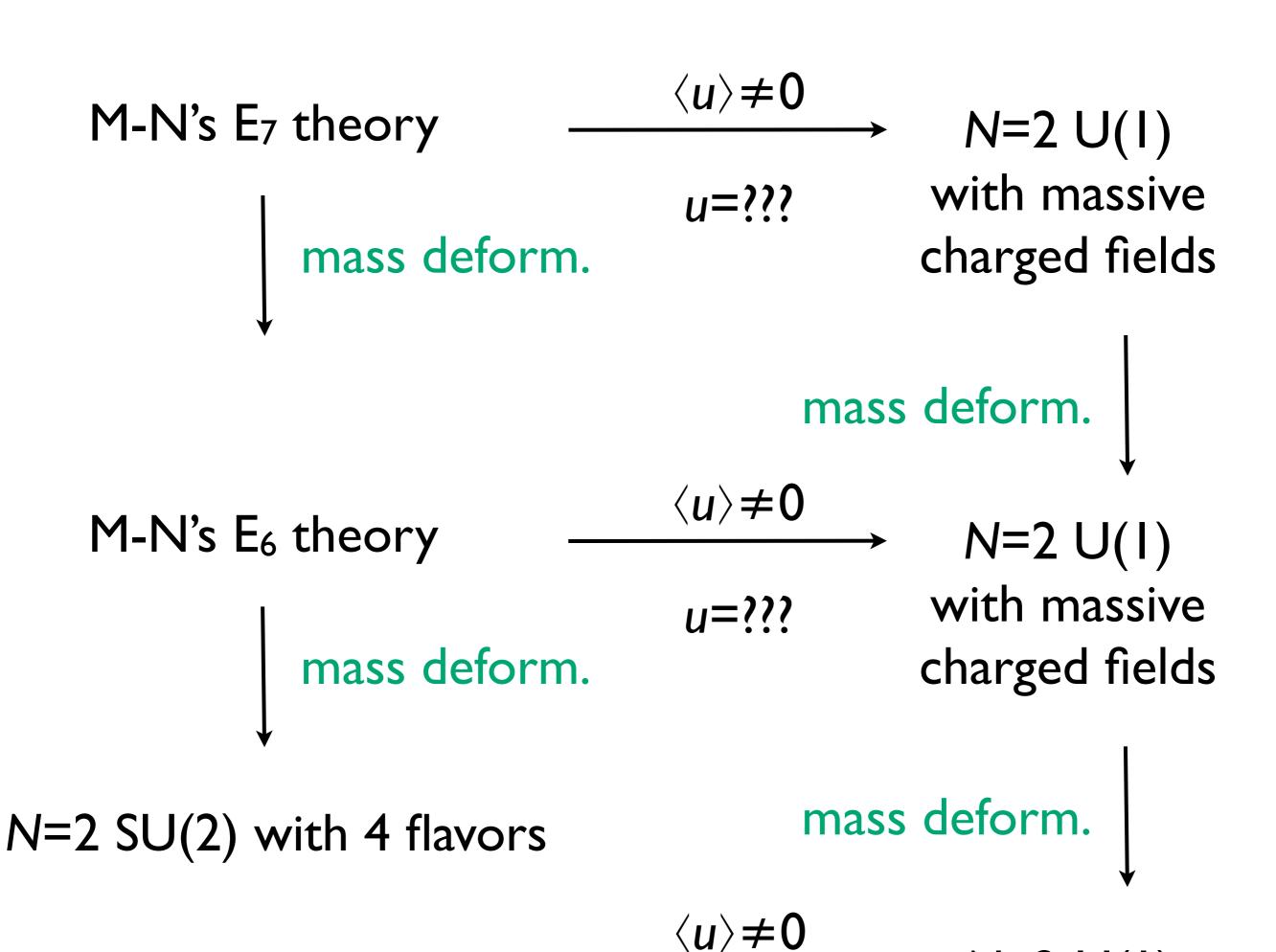


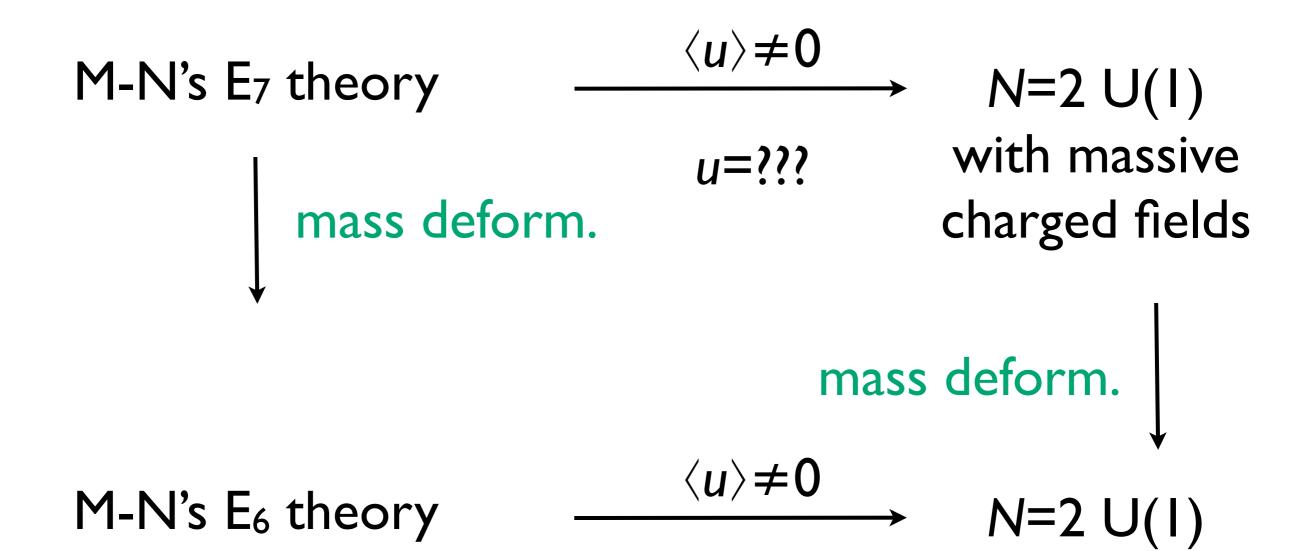


Non-Lagrangian!









M-N's E₈ theory
$$\dfrac{\langle u \rangle \neq 0}{u=???}$$
 with massive charged fields $u=???$ with massive charged fields $u=???$ $u=???$ with massive charged fields $u=???$ $u=???$ $u=???$ $u=???$ $u=???$ $u=???$ $u=???$ $u=???$ $u=1$ $u=$

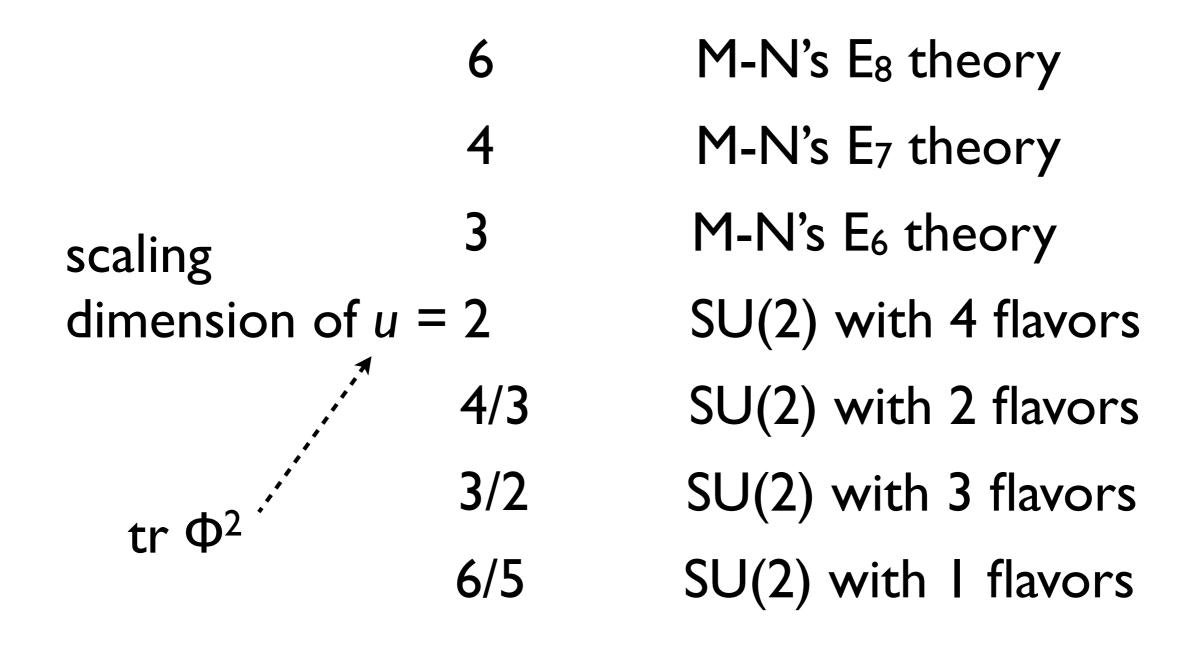
M-N's E_n theory

is N=2 supersymmetric.

has E_n flavor symmetry.

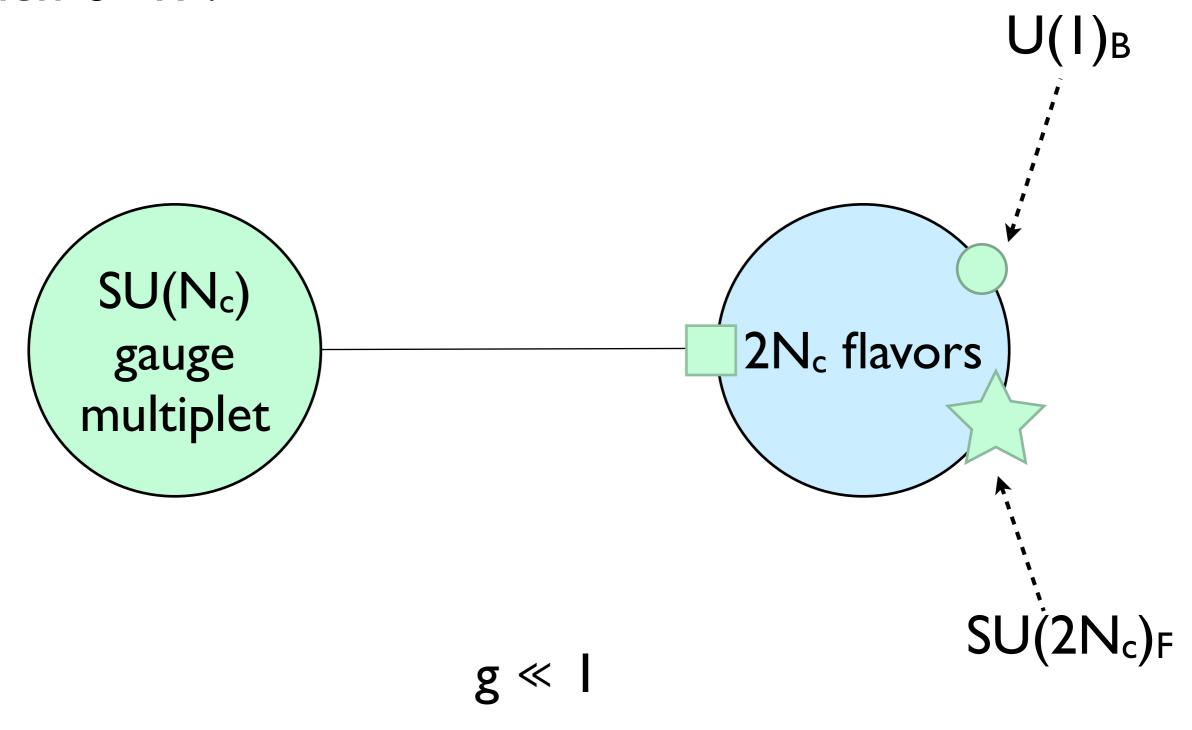
has an operator u which can be given a vev so that the theory becomes U(I) + massive

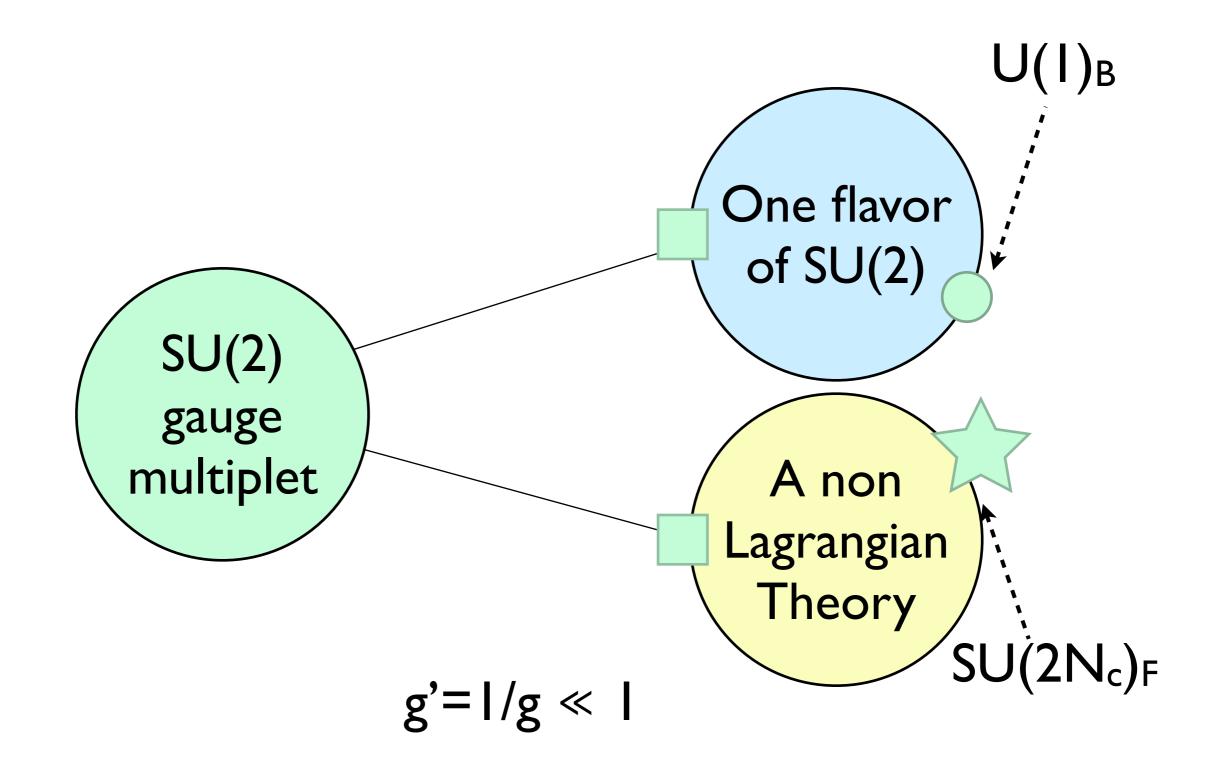
is just a natural cousin of SU(2) with flavors



Non-Lagrangians are "everywhere"

When $\theta = \pi$:





$$g \rightarrow \infty$$

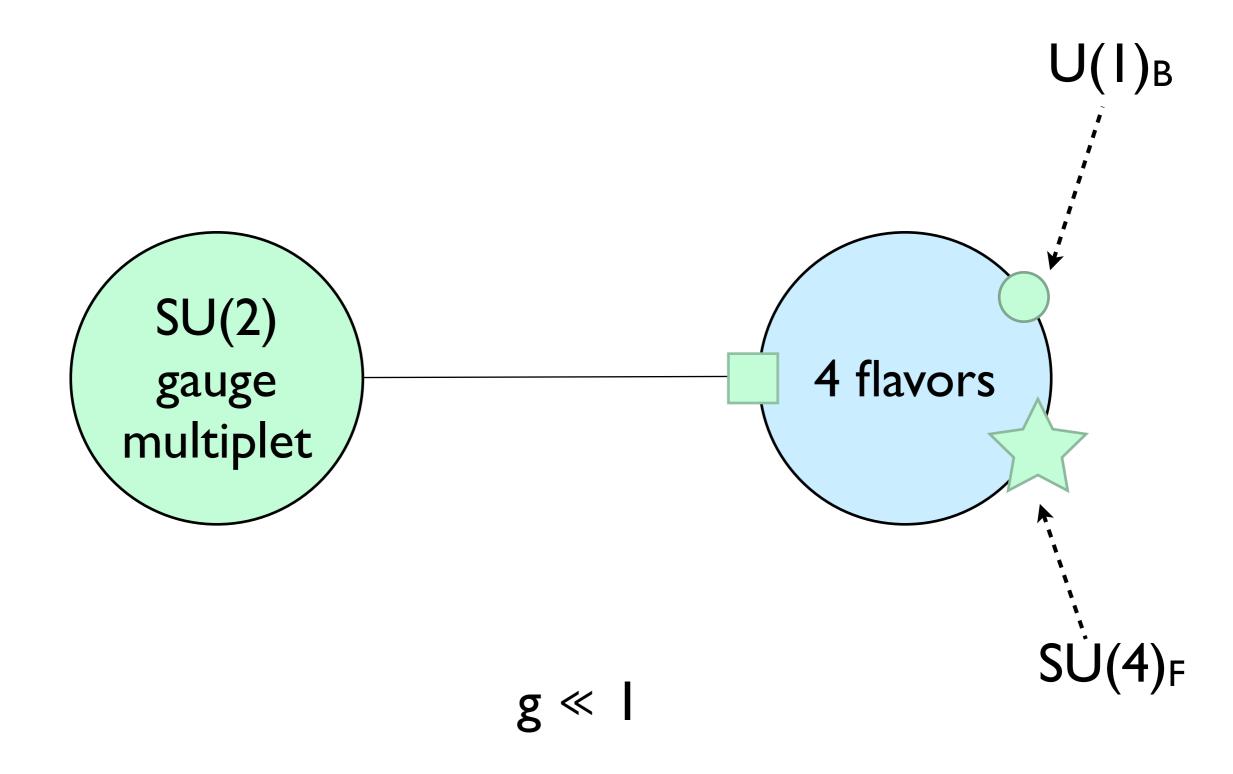
 $\theta = 0$

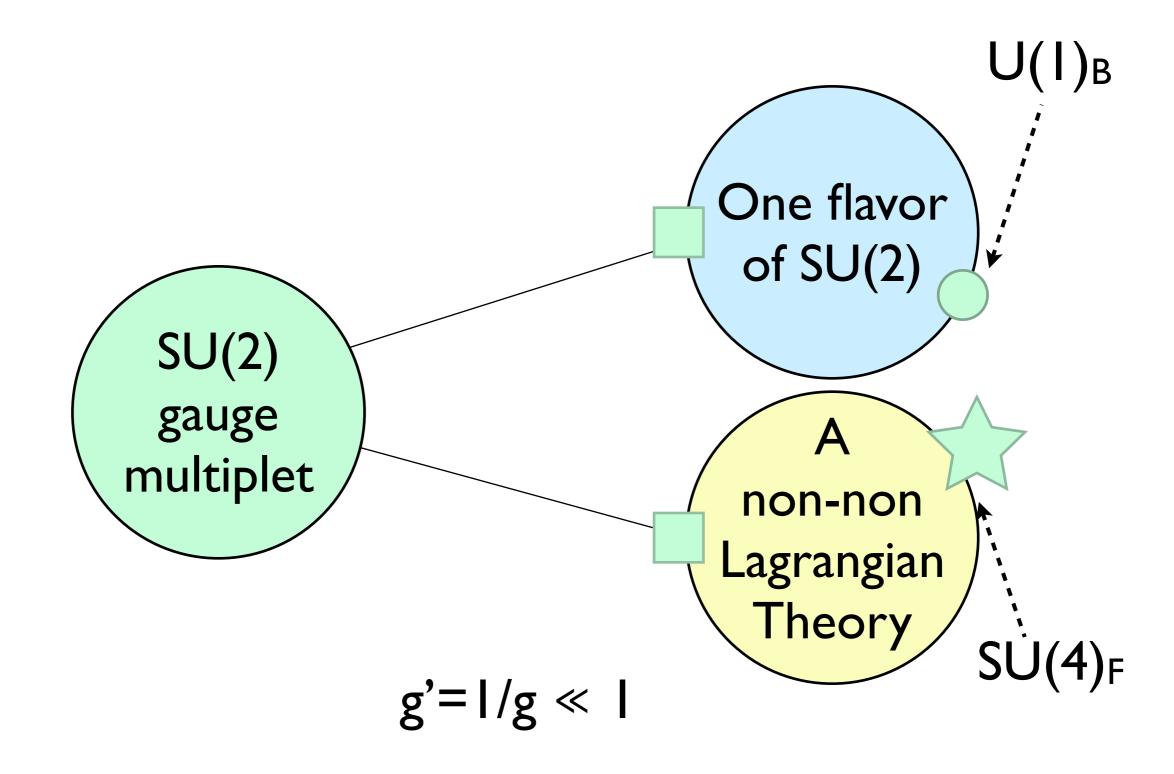
$$N=2$$
 SU(N_c) with $2N_c$ flavors $g\rightarrow 0$

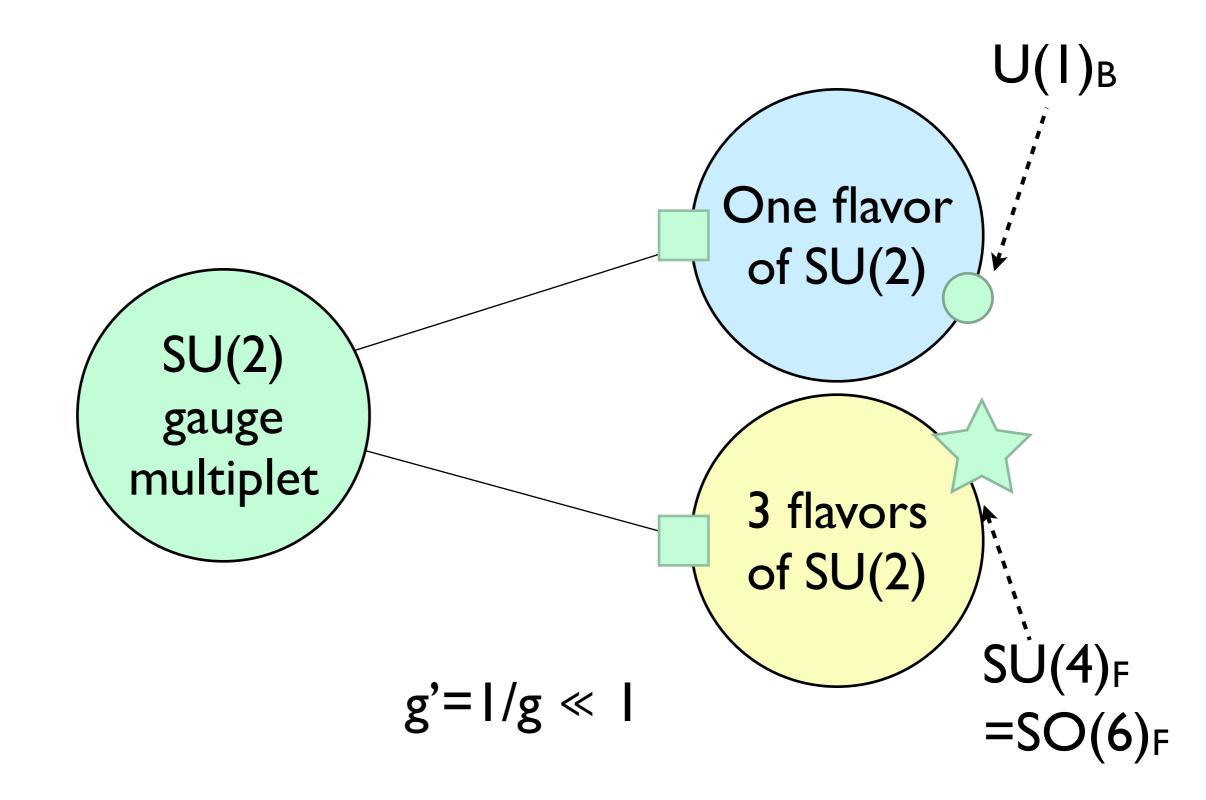
$$N=2$$
 SU(N_c)
with 2N_c flavors
 $g'=1/g\rightarrow 0$

$$N=2$$
 SU(N_c) with $2N_c$ flavors $g\rightarrow 0$

$$N=2$$
 SU(2) with I flavors
+ non-Lagrangian matter
 $g''=1/g\rightarrow 0$



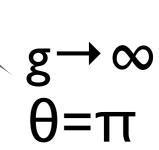




$$g \rightarrow \infty$$

 $\theta = 0$

$$N=2$$
 SU(2) with 4 flavors $g\rightarrow 0$



$$N=2$$
 SU(2)
with 4 flavors
 $g'=1/g\rightarrow 0$

$$N=2$$
 SU(2) with 4 flavors $g\rightarrow 0$

$$N=2$$
 SU(2)
with 4 flavors
 $g''=1/g\rightarrow 0$

$$N=2$$
 SU(2)
with 4 flavors
 $g'=1/g\rightarrow 0$

$$N=2$$
 SU(2) with 4 flavors $g\rightarrow 0$

Known as the triality since 1994!

$$N=2$$
 SU(2)
with 4 flavors
 $g''=1/g\rightarrow 0$

$$N=2$$
 SU(N_c) with $2N_c$ flavors $g'=1/g \rightarrow 0$

$$N=2$$
 SU(N_c) with $2N_c$ flavors $g\rightarrow 0$

Natural generalization needs non-Lagrangian theories!

N=2 SU(2) with I flavor
+ non-Lagrangian matter
$$g''=1/g\rightarrow 0$$

Non-Lagrangian sector を何故考えるか?

● Non-Lagrangian sector の一つの例

Non-Lagrangian sector を使った系の解析

SUSY breaking with non-Lagrangian sector

丸吉一暢、立川裕二、顔文斌、米倉和也

[1308.0064]

- SUSY breaking model by Izawa-Yanagida-Intriligator-Thomas used a SUSY SU(2)=Sp(I) gauge theory.
- Sp(n) generalization was soon found.
- No SU(n) generalization was found ...
- You need a non-Lagrangian sector !

IYIT model の復習

● N=I SU(2) ゲージ理論、matter 超場は

$$Q_{aiu}$$
 a=1,2; i=1,2; u=1,2

- aをゲージの脚と思う。
- 強結合になる。

● N=I SU(2) ゲージ理論、matter 超場は

$$Q_{aiu}$$
 a=1,2; i=1,2; u=1,2

- $M_{(ij)} = Q_{aiu} Q_{bjv} \epsilon^{ab} \epsilon^{uv}$
- N_(uv) = Q_{aiu} Q_{bjv} ε^{ab} ε^{ij} がゲージ不変
- 添え字を上げて Mɨ, Nu という行列と思うと便利。
- 古典的には tr M² = tr N²

● N=I SU(2) ゲージ理論、matter 超場は

$$Q_{aiu}$$
 $a=1,2$; $i=1,2$; $u=1,2$

- $M_{(ij)} = Q_{aiu} Q_{bjv} \epsilon^{ab} \epsilon^{uv}$
- N_(uv) = Q_{aiu} Q_{bjv} ε^{ab} ε^{ij} がゲージ不変
- 添え字を上げて Mi, Nu という行列と思うと便利。
- 量子的には tr M² = tr N² + Λ⁴

- 添え字を上げて Mi, Nu という行列と思うと便利。
- 量子的には tr M² = tr N² + Λ⁴
- IYIT のアイデア:
 - ゲージ singlet Si ,Tu を足す
 - Superpotential W= tr SM + tr TN
 - S,T で変分: M=N=0。
 - 上の等式と矛盾→ SUSY が破れる。

- 我々のやったこと:
- Q_{iau} に SU(2) を結合させるのが IYIT。
- Q_{iau} を M.-N. の E₆ 理論に置き換え、
 SU(2) を SU(3) に置き換える。何故?

● IYIT で重要だったこと:

• Q_{aiu} で a=1,2; i=1,2; u=1,2

• M_i^j , N_u^v \tilde{C} tr $M^2 = \text{tr } N^2$

- M.N. の E₆ 理論には「µ」というオペレータで E₆ の adjoint で変換。
- E₆を部分群 SU(3)xSU(3)xSU(3) で分解
- μ:78 個 → 27+27+8+8+8
 - ullet Q_{aiu} , Q'^{aiu} , $L_a{}^b$, $M_i{}^j$, $N_u{}^v$
 - $tr L^2 = tr M^2 = tr N^2$
 - a=1,2,3; i=1,2,3; u=1,2,3

- M.N.の E₆ 理論には
 - ullet Q_{aiu} , Q'^{aiu} , L_a^b , M_i^j , N_u^v
 - $\operatorname{tr} L^2 = \operatorname{tr} M^2 = \operatorname{tr} N^2$
 - a=1,2,3; i=1,2,3; u=1,2,3
- 添え字 a に N=1 SU(3) ベクトル超場を 結合させる。
 - $\operatorname{tr} M^2 = \operatorname{tr} N^2 + \Lambda^6$ に変形。

- M.N.の E₆ 理論には M; 、Nu^v
 - $tr M^2 = tr N^2$
- 添え字 a に N=1 SU(3) ベクトル超場。
 - $\operatorname{tr} M^2 = \operatorname{tr} N^2 + \Lambda^6$ に変形。
- ゲージ singlet Si ,Tu を足す
- Superpotential W= tr SM + tr TN
 - S,T で変分: M=N=0。
 - 上の等式と矛盾→ SUSY が破れる。

Summary

- 超対称場の理論の双対性を考えていると、ゲージ場、フェルミオン場、スカラー場の組み合わせでは足りない。
- ヘンテコな強結合 (non-Lagrangian) CFT も必要。
- それを使って解析も出来なくはない。