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1 Introduction
Cosmological Constant Problem:

Higgs Condensation ∼ ( 100GeV )4

QCD Chiral Condensation ∼ ( 100MeV )4 (1)

These seem not contributing to the Cosmological Constant!

=⇒ Massive Gravity: an idea toward resolving it

However, Massive Gravity has its own problems:

• van Dam-Veltman-Zakharov (vDVZ) discontinuity

Its m → 0 limit does not coincides with the Einstein gravity.

• Boulware-Deser ghost

10︸︷︷︸
hµν

− (1 + 3)︸ ︷︷ ︸
N, N i

= 6 = 5︸︷︷︸
massive spin2

+ 1︸︷︷︸
BD ghost

(2)

Let us focus on the BD ghost problem here.
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2 vDVZ discontinuity and Vainshtein mechanism

S =
1

2
T µν dµν,ρσ

p2 +m2
T ρσ (3)

massive case

dmµν,ρσ =
1

2

(
ηµρηνσ + ηµσηνρ −

2

3
ηµνηρσ

)
(4)

where, in fact, ηµν → ηµν + pµpν/m
2.

massless case

d0µν,ρσ =
1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) (5)

light bending becomes 3/4 compared with the massless case!

Vainshtein pointed out that the linear approximation is not valid inside the

radius

RV = (RSm
−4)1/5 (6)
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the potential around the mass is:

RV ≤ r ≤ m−1 the above is true

RS ≤ r ≤ RV almost the same as m = 0 case (7)

3 Fierz-Pauli massive gravity (linearized)

Einstein-Hilbert action

LEH =
√
−gR (8)

L =
[
LEH

]
quadratic part in hµν

+

[
−m2

4
(h2

µν − ah2)

]
︸ ︷︷ ︸
= Lmass

FP (a = 1)

(9)

gµν = ηµν + hµν (10)

In Fierz-Pauli theory with a = 1, there are only 5 modes describing properly

massive spin 2 particle.
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∵) No time derivative apperas for h00, h0i in LEH →LEH is linear inN, Ni.

If a = 1, the mass term Lmass
FP is also clearly linear in N ∼ h00 !

=⇒
• Ni can be solved algebraically and be eliminated.

• N e.o.m. δS
δN = 0 gives 1 constraint on other fields since S is linear in N

so that

10︸︷︷︸
hµν

− 3︸︷︷︸
Ni

−( 1︸︷︷︸
N

+ 1︸︷︷︸
constraint

) = 5 (11)

Nonlinear completion of this theory was proposed by

dGRT: de Rham-Gabadadze-Tolley, Phys. Rev. Lett. 106 (2011)

which is claimed to be free of BD ghost on arbitrary background and to

connect smoothly to Einstein gravity as m → 0 by Vaishtein mechanism.

4 Arkani-Hamed-Georgi-Schwartz : Stückelberg for-

malism
Ann. Phys. 305 (2003) 96; the work preceding to dRGT.

AHGS have rewritten the Fierz-Pauli theory into GC invariant form: GC
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invariance is realized as a Fake Symmetry, or Hidden Local Symmetry.

The simplest case is the ”two site model”, in which case easiest way to

understand is to regard it as ”space-time filling d-brane” in D = d + 1

dimensional target space-time.

Target Space : XM with metric GMN(X)

brane (world sheet) : xµ with metric gµν(x） (12)

Embedding function

XM = Y M(x) (13)

Induced metric on the brane

fµν(x) = ∂µY
M(x) ·GMN

(
Y (x)

)
· ∂νY N(x) (14)

From world volume viewpoint,

Y M(x) : D scalar functions

GMN(Y (x)) : D(D+1)
2 scalar functions

then, ⇒ fµν(x) : GC tensor (15)
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From now on, we take

GMN(X) = ηMN Flat Minkowski target space (16)

LAHGS = LEH + Lmass
AHGS

Lmass
AHGS = −m2

4

√
−ggµνgαβ (HµαHνβ − aHµνHαβ) (17)

where

Hµν = gµν − fµν

= gµν − ∂µY
M · ηMN · ∂νY N (18)

is a GC tensor and the AHGS lagrangian LAHGS is GC invariant. This

is achieved by the introduction of the mapping function Y M(x) which is

analogous to g5M(x) from deconstruction point of view.

Y M(x) = xµ δMµ + ϕM(x) (19)
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ϕM = 0 : “Unitary Gauge” (or, “static gauge” from brane viewpoint)

=⇒ ∂µY
M(x) = δMµ =⇒ fµν(x) = ηµν (20)

This mass term reduces to Lmass
FP at linearized level.

We can see more explicitly the absence of BD-ghost in this AHGS formu-

lation of massive gravity.

Since there is

Fake Symmetry = Hidden Local Symmetry = GC invariance (21)

Any gauge can be adopted, they are all gauge-equivalent, so we will take

“Rξ-gauge”.

Generally, before fixing gauge,

fµν = ∂µY
MηMN∂νY

N = ηµν + ∂µϕν(x) + ∂νϕµ(x) + ∂µϕ
M · ∂νϕM(x)

so that

Hµν ≡ gµν − fµν

= hµν − ∂µϕν − ∂νϕµ − ∂µϕ
M · ∂νϕM(x) (22)
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with ϕµ ≡ ηµMϕM . Then the AHGS mass term for a = 1 takes the following

form up to quadratic terms:

Lmass
AHGS

∣∣∣
qudratic

= Lmass
FP (hµν)−m2ϕµ(∂νhµν − ∂µh)−

m2

4
(∂µϕν − ∂νϕµ)

2

+ (1− a)m2
[
−(∂µϕ

µ)2 + h ∂µϕ
µ
]

Let us introduce a scalar field π writing

ϕµ(x) ≡
1

m
Aµ(x)−

1

m2
∂µπ(x) (23)

Then the AHGS mass term now takes the form

Lmass
AHGS

∣∣∣
qudratic

= Lmass
FP (hµν)− (mAµ − ∂µπ)(∂νhµν − ∂µh)−

1

4
(∂µAν − ∂νAµ)

2

+ (1− a)

[
−(∂µA

µ)2 + 2
1

m
∂A ·□π − (□π)2

m2
+ h (m∂µA

µ −□π)

]
Note that the dipole ghsot term (□π)2 appears unless a = 1 !

Clearly this system is invariant under the GC and additional U(1) gauge

transgformation independently of a value:

δhµν = ∂µξν + ∂νξµ, δAµ = mξµ + ∂µΛ, δπ = mΛ (24)
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Hereafter we consider only the case of Fierz-Pauli value a = 1. We make

the shift hµν → hµν +
2

D−2ηµνπ in the Einstein-Hilbert term

LEH

∣∣∣
quadr

=
1

4
hµν
[
∂µ∂νh− ∂µhν − ∂νhµ +□hµν + ηµν(∂λh

λ −□h)
]
, (25)

to cancel the mixing of π and hµν and to produce normal kinetic term for

π. We used the notation

hµ = ∂νhµν, h = hµ
µ. (26)

To get rid of the mixing terms of hµν, Aµ, π further, it is convenient to take

the “Rξ-gauge”:

LGF + LFP = −iδB

[
c̄µ
(
hµ − x∂µh− αmAµ +

α

2
Bµ

)]
− iδB

[
c̄
(
∂A−mβ(yh + zπ) +

β

2
B
)]

(27)

where the parameters α, β as well as x, y, z are gauge parameters. Suitable

choice of x, y, z can resolve the mixings.



11

The GC and U(1) gauge trf are lifted to the BRS trf:

δBhµν = δλ
(
∂µcν + ∂νcµ −

2

D − 2
ηµνmc

)
,

δBAµ = δλ(mcµ + ∂µc), δBπ = δλmc,

δBcµ = δλ cρ∂ρcµ, δBc̄µ = iδλBµ, δBBµ = 0,

δBc = δλ cρ∂ρc, δBc̄ = iδλB, δBB = 0, (28)

Propagators:

w ≡ 2(D − 1)/(D − 2).

hµν-sector:

hTT : transverse-traceless (D+1)(D−2)
2 -modes − 1

p2 +m2
,

∂hT : S-transverse (D − 1)-modes − 1

p2 + αm2
,

∂∂h + h : SS and trace (1 + 1)-modes − 1

p2 + αβm2

− 1

p2 + 2βwm2
,

(29)
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Aµ-π-sector:

AT : massive vector (D − 1)-modes − 1

p2 + αm2

∂A : S 1-mode − 1

p2 + αβm2

π : scalar 1-mode − 1

p2 + 2βwm2

(30)

Faddeev-Popov ghost sector:

c̄T, cT : massive 2× (D − 1)-modes − 1

p2 + αm2

∂c̄, ∂c : S (1 + 1)-modes − 1

p2 + αβm2

c̄, c : scalar (1 + 1)-modes − 1

p2 + 2βwm2

(31)

Counting of physical degrees of freedom:

10 + 4 + 1︸ ︷︷ ︸
gµν+Aµ+π

−( 4 + 4︸ ︷︷ ︸
GCghosts:cµ+c̄µ

)− ( 1 + 1︸ ︷︷ ︸
U(1)ghosts:c+c̄

) = 5 ! (32)
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Or, in D-dimensional space-time,

D(D + 1)

2
+ D + 1︸ ︷︷ ︸

gµν+Aµ+π

−( D + D︸ ︷︷ ︸
GCghosts:cµ+c̄µ

)− ( 1 + 1︸ ︷︷ ︸
U(1)ghosts:c+c̄

) =
(D + 1)(D − 2)

2

Note that U(1) gauge invariance was a fake gauge symmetry which was

brought into the system by introducing the Stückelberg scalar π.

But it gave subtracting 2 modes c + c̄.

Isn’t this STRANGE ?

The point is that usually

Hµν ⊃ ∂µϕν ⊃ ∂µ∂νπ (33)

so that

H2
µν ⊃ ∂µ∂νπ · ∂µ∂νπ, H2 ⊃ □π ·□π

⇒ H2
µν − aH2 ⊃ (1− a)□π ·□π (34)

That is, When a ̸= 1 there appears Higher Derivative Term so that the
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single field π actually contains (1+1)- modes! (one of them is of negative

metric.)

So the problem is boiled down to confirm that the absence of higher deriva-

tive term for π.
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5 “Ghost-free” massive gravity of de Rham-Gabadadze-

Tolley
PRL 106 (2011)

L = LEH − m2

4

√
−g U(gµν, Hµν) (35)

dRGT have determined their mass term U as follows:

Focussing on the derivative term of π, set Aµ = 0 in

ϕµ(x) =
1

m
Aµ(x)−

1

m2
∂µπ(x) ⇒ ϕM(x) = − 1

m2
∂µπ(x) (36)

and so

Hµν = hµν + 2Πµν − Π ρ
µ Πρν, Πµν ≡ ∂µ∂νπ (37)

They require that
√
−g U(g,H)

∣∣∣
hµν=0

be a total derivative (38)



16

Define a symmetric tensor Kµν such that Kµ
ν = gµρKρν satisfies

Hµ
ν = 2Kµ

ν −Kµ
βK

β
ν

⇒ Kµ
ν = δµν −

√
δµν −Hµ

ν (39)

Then clearly Kµν is Πµν = ∂µ∂νπ on the flat background.

Kµν

∣∣∣
hµν=0

= Πµν (40)

dRGT demands that U be a polynomial inKµν tensor such that it becomes

a total derivative on flat background; i.e., when Kµν → Πµν: Clearly

det(δµν +λΠµ
ν) = 1+λU (1)(Π)+λ2U (2)(Π)+λ3U (3)(Π)+λ4U (4)(Π) (41)

give U (n)(Π) (n = 1, 2, 3, 4) which are total derivatives:

U (1)(Π) = εµνρσε
ανρσΠµ

α = 3! [Π]

U (2)(Π) = εµνρσε
αβρσΠµ

αΠ
ν
β

= 2
(
[Π2]− [Π]2

)
→ Fierz-Pauli

U (3)(Π) = εµνρσε
αβγσΠµ

αΠ
ν
βΠ

ρ
γ

U (4)(Π) = εµνρσε
αβγδΠµ

αΠ
ν
βΠ

ρ
γΠ

σ
δ (42)
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Now the dRGT mass term is given:
√
−gU(g, H) =

√
−g
(
2U (2)(K) + α3U

(3)(K) + α4U
(4)(K)

)
(43)

minimal model

α3 = α4 = 0.

2U (2)(K) = ⟨H2⟩ − ⟨H⟩2︸ ︷︷ ︸
AHGS mass term

+
1

2

(
⟨H3⟩ − ⟨H2⟩⟨H⟩

)
+ · · · (44)

6 Vierbein formalism
Hinterbichler-Rosen, arXiv:1203.5783[hep-th]

dRGT action is equivalent to

L = LEH(gµν = eaµηab e
b
ν) + U(e) (45)

where the mass term is given by

U(e) = det(eaµ + λ baµ)
∣∣∣
λn → arbitrary parameters αn

(46)
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in terms of the induced vierbein

baµ = uaA ∂µY
M(x) · EA

M

(
Y (x)

)
≡ uaA b̂

A
µ (47)

where EA
M(X) is the vierbein in the Taget Space, which we henceforth take

flat one EA
M(X) = δAM . uaA is the Stückelberg field for LL; uaA ∈ SO(3, 1).

uaA can be solved algebraically, since it appears only in the mass term

because LEH is LL invariant:

⇒ ub̂e−1 =

√
ηeT −1b̂Tηb̂e−1 (48)

Plugging this back into the mass term

det(eaµ + λuaA b̂
A
µ ) = det e · det(1ab + λuaA b̂

A
µe

µ
b )

= det e · det(1 + λ

√
ηeT −1b̂Tηb̂e−1)

= det e · det(1 + λe

√
e−1ηeT −1b̂Tηb̂ e−1)

=
√
−g · det(1 + λ

√
g−1f ) (49)
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7 ‘Proof’ of Absence of BD ghost by Hinterbichler-

Rosen
in Unitary Gauge in vierbein formalism{

uaA = δaA for LL

Y M(x) = xµ δMµ for GC
=⇒ b a

µ = δ a
µ (50)

Then the mass term

U(e) = det
(
e a
µ + λδ a

µ

)
(51)

Define the standard form of the vierbein:

ê a
µ =

(
µ=0 N N ieai
µ=i 0 eai

)
⇐= fix 3 d.o.f. out of 6 for LL (52)
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then the general vierbein can be parametrized as

eaµ = ê b
µ · Λ(p) a

b︸ ︷︷ ︸
Lorentz boost 3

= ê b
µ ·

(
γ ≡

√
1 + p2 pa

pb δab +
1

γ+1pbp
a

)

=

µ=0 Nγ +N ieaipa Npa +N iebi

(
δab +

1
γ+1pbp

a
)

µ=i eaipa ebi

(
δab +

1
γ+1pbp

a
)  (53)

Even in this general form, the lapse N and shift N i appear only linearly in

e0µ=0 and eaµ=0 alone.

The mass term is clearly at most linear in e∗µ=0 so that

U(e) = NCm(e,p) +N iCm
i (e,p) +H(e,p) (54)

On the other hand, the canonical form for the LEH part is: (a: only space)

∫
d4x

πi
aė

a
i −N C(e, π)−N iCi(e, π)−

1

2
λab Pab(e, π)︸ ︷︷ ︸
spacial LL generator

 (55)
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So the canonical form for the total system is:∫
d4x

[
πi
aė

a
i −H(e,p)− 1

2
λabPab(e, π)

−N
(
C(e, π) + Cm(e,p)

)
−N i

(
Ci(e, π) + Cm

i (e,p)
)]

(56)

δ

δN i
= 0 ⇒ Ci(e, π) + Cm

i (e,p) = 0 ⇒ pa = pa(e, π)

Now the counting of degrees of freedom becomes:

spacial vierbein eai and its conjugate momentum πi
a: 3

2 × 2

spacial LL constraint Pab + secondary constraint: −3× 2

N constraint + its secondary constraint: −1× 2

thus,

2× (32 − 3− 1) = 2× 5 = # of canonical variables of massive spin 2!
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8 What we want to show
Instead of the unitary gauge, we want to use

b̂Aµ = δAµ +

(
1

m
∂µAν(x)−

1

m2
∂µ∂νπ(x)

)
ηνA (57)

with which GC and LL and U(1) gauge symmetry are manifest. Then we

have only to show that the higher time derivatives do not appear for the

scalar π(x) on arbitrary background field ⟨eaµ⟩ ≡ ēaµ.

But, this program has turned out to be misleading! Actually we see that

higher time derivative terms appear when the background metric has non-

vanishing shift
⟨
N i
⟩
̸= 0.

What we have to show is: when we define the Stückelberg ‘vector’ field ϕµ

by

b̂Aµ = δAµ + ∂µϕν(x)η
νA (58)

or, by

fµν = ηµν + ∂µϕν + ∂νϕµ + ∂µϕ
aηab∂νϕ

b (59)
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then, they have a singular quadratic kinetic term on any background:

U =
1

2
ϕ̇µAµνϕ̇ν + · · · ⇒ detA = 0 (60)

The mass term can be rewritten in the form

det(eaµ + λb̂aµ) (61)

Then, the index µ of b̂Aµ is anti-symmetrized by the epsilon tensor, and so

is for the index a. This structure claerly lead the F 2
µν structure for ϕµ on

the flat background case. But, when the background metric is general, such

structure is no longer clear.

The difficulty is that the vierbein contains non-dynamical 6 components

corresponding to the LL freedom, which, if solved, become non-trivial func-

tions of ∂µϕν when the background is non-flat. The analysis of that structure

is veru complicated.

The elimination of the 6 auxiliary components in the vierbein is equivalent

to use directly the original mass term of dRGT:
√
−g det(1 + λ

√
g−1f ) (62)
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The source of the difficulty is that, on a general background ⟨gµν⟩ ≡ ḡµν, the

expansion of the square root of the matrix
√
g−1f is very difficult. For some

examples we can show that the kinetic term of ϕµ is singular. For example:

for the background

ds2 = −dt2 + δij(dx
i + 2lidt)(dxj + 2ljdt) (63)

the time derivative terms of the Stückelberg field are calculated to be

U =
1

2
√
1− l2

[
(ϕ̇1 − lϕ̇0)

2

1− l2
+ ϕ̇2

2 + ϕ̇2
3

]
(64)

where we rotated the direction of the shift li into li = lδi1.

But we cannot see why such degeneracy of the kinetic term appear.

For

So, we cannot yet prove the absence of BD ghost for arbitrary background.


