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1 Introduction

Cosmological Constant Problem:

Higgs Condensation ~ (100 GeV )*
QCD Chiral Condensation ~ (100 MeV )* (1)

These seem not contributing to the Cosmological Constant!
—> Massive Gravity: an idea toward resolving it
However, Massive Gravity has its own problems:

e van Dam-Veltman-Zakharov (vDVZ) discontinuity

Its m — 0 limit does not coincides with the Einstein gravity.

e Boulware-Deser ghost

JO—(1+3) = 6 = "5,. + (2)
Ry NN massive spin2  BD ghost

Let us focus on the BD ghost problem here.



2 vDVZ discontinuity and Vainshtein mechanism

1 d V.p0O
S — Zur_ZEHPI rpo (3)
2 p2 + m2
massive case
m 1 2
dul/7p0' = 5 nupnua + nuanyp o gnuynpg (4)

where, in fact, 7,, — 1, +pupy/m2.

massless case

1

d?w,pa — 5 (anua -+ NuoTlvp — nuynpa) (5)

light bending becomes 3/4 compared with the massless case!
Vainshtein pointed out that the linear approximation is not valid inside the

radius
Ry = (Rgm™)'/? (6)



the potential around the mass is:

Ry <r< m~! the above 1s true
Rs <r < Ry  almost the same as m = 0 case (7)

3 Fierz-Pauli massive gravity (linearized)

Einstein-Hilbert action

Lry =+v—9gR (8)

m2

,-aw| @

7/

£ = o oy
B quadratic part in hy, \[ 4

'
mass

= Lyp~(a=1)

9uv = Ny + h/w <10>

In Fierz-Pauli theory with @ = 1, there are only 5 modes describing properly

massive spin 2 particle.
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*.') No time derivative apperas for hgg, ho; in Lgg — Lgy is linear in N, N;.

[t a =1, the mass term L5 is also clearly linear in N ~ hgo !
—

e /V; can be solved algebraically and be eliminated.

o NV e.om. g—ﬁ = (0 gives 1 constraint on other fields since S is linear in N
so that
J0,— 3 _—(_1_+ ,1,. ) =25 (11)
Py Ni N constraint

Nonlinear completion of this theory was proposed by

dGRT: de Rham-Gabadadze-Tolley, Phys. Rev. Lett. 106 (2011)

which is claimed to be free of BD ghost on arbitrary background and to
connect smoothly to Einstein gravity as m — 0 by Vaishtein mechanism.

4 Arkani-Hamed-Georgi-Schwartz : Stuckelberg for-

malism

Ann. Phys. 305 (2003) 96; the work preceding to dRGT.
AHGS have rewritten the Fierz-Pauli theory into GC invariant form: GC



invariance is realized as a Fake Symmetry, or Hidden Local Symmetry.

The simplest case is the "two site model”, in which case easiest way to
understand is to regard it as "space-time filling d-brane” in D = d + 1
dimensional target space-time.

Target Space : X with metric  Gn(X)

brane (world sheet) : 2/ with metric g, (20 (12)
Embedding function
XM =vyM(x) (13)
Induced metric on the brane
fu(x) = 0,YM(2) Gyn (YV(x)) - 0,Y " (z) (14)
From world volume viewpoint,
YM(z) D scalar functions
Gun(Y(x)) w scalar functions

then, = f,,(x) : GC tensor (15)



From now on, we take

Gun(X) =nuny Flat Minkowski target space (16)

Lanas = Len + Lancs
2
mass m vV
AHGS =~V —99" 9" (HuoH, 3 — aH, Hap) (17)
where

Hyw = 9w — fuw
= Guv — auYM *"TMN - ayYN (18)

is a GC tensor and the AHGS lagrangian Lapcs is GC invariant. This
is achieved by the introduction of the mapping function ¥*(z) which is
analogous to ¢°(x) from deconstruction point of view.

YM(z) = 2" 5/‘1” + oM () (19)



dM =0 : “Unitary Gauge” (or, “static gauge” from brane viewpoint)

= 0,YY(2) = (5% —  fw(z) =1, (20)

This mass term reduces to Ly5* at linearized level.

We can see more explicitly the absence of BD-ghost in this AHGS formu-
lation of massive gravity.

Since there is
Fake Symmetry = Hidden Local Symmetry = GC invariance (21)

Any gauge can be adopted, they are all gauge-equivalent, so we will take
“Re-gauge” .
Generally, before fixing gauge,

f,uu — auYMnMNauYN — 77/w + a,u¢u<£) + 8V¢u<x> -+ a,uqu ’ ayng(x)
so that

H,uy = g;w o f,ul/
— h,uu — a,ugbu — auqb,u - a,ung ’ aung(x) <22>
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with ¢, = n,0/¢™. Then the AHGS mass term for a = 1 takes the following

form up to quadratic terms:
2

1mass mass 1% m
AHGS| = Lpp (hyw) — m* ¢ (0" hyy — 0,h) — T((MU — 0,¢,,)°
+ (1 — a)ym? [—(9,¢")* + h 8,¢"]

Let us introduce a scalar field 7 writing
1

1
5ul2) = — Aul2) = —0,m(x) 23
Then the AHGS mass term now takes the form

mass 1 ass 1% 1
AHGS qudratic — LFP (hu ) _ (mAM - au77><a hW o @Lh) - E(auAv o aVAM)Q
1 2
+(1—a) [—@AM)? +2—0A - O — (%) + h (md, A" — Or)

Note that the dipole ghsot term (Cm)? appears unless @ = 1!
Clearly this system is invariant under the GC and additional U(1) gauge
transgformation independently of a value:

Shyy = 0,6, + 0,64, 0A, =mEy+ 0\, Sm=mA  (24)
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Hereafter we consider only the case of Fierz-Pauli value a = 1. We make
the shift h,,, — hy, + %Thwﬂ' in the Einstein-Hilbert term

|
Low| =" {aﬂayh — Quhy, — Oyhyy + Ol + 1, (O3R* — OB |, (25)

quadr

to cancel the mixing of m and h,, and to produce normal kinetic term for
. We used the notation

hy, =8 hy,, h=h" (26)

1

To get rid of the mixing terms of h,,,, A,, 7 further, it is convenient to take
the “Re-gauge”:

Lar + Lyp = —10p [é“ (hu — x0,h — amA,, + %Buﬂ
i [c(aA — mBlyh + ) + gB)] (27)

where the parameters a, 3 as well as x, y, z are gauge parameters. Suitable
choice of x,y, z can resolve the mixings.



11

The GC and U(1) gauge trf are lifted to the BRS trf:

2
Ol = 0N (6’Mcy + 0yc, — mnwmc),

oA, = dN(mc, + 0,c),  dpm = dAme,
5BCM =0\ cpé?pcﬂ, 5Béu = 10\ BM? (5]3BIu =0,

opc = 0 c’O,c, OpC = 10)\B, opB =0, (28)
Propagators:
w=2D—-1)/(D—2).
h,~sector:
_ 1
htr : transverse-traceless (DH)Q(D 2 _modes — 5 5
p +1m
Ohy : S-transverse (D — 1)-modes —= 5
00h + h : SS and trace (1 + 1)-modes —
P+ apm’

P2+ 28wm?’
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Aﬂ—ﬂ—sector:

1
At @ massive vector (D — 1)-modes ——; 5
p°+ cl)zm
0A . S 1- d — 30
tnode p2+ciﬁm2 < )
7 scalar 1I-mode —— 5
p? + 28wm
Faddeev-Popov ghost sector:
1
C ; ve 2 X (D — 1)-modes —
CT, CT : massive ( )-modes = ?mz
oc, Oc: S (1+1)-mod _ 31
¢, Oc ( )-modes o Oiﬁm? (31)
C ; lar (1 + 1)-mod —
¢, c: scalar (14 1)-modes Y

Counting of physical degrees of freedom:

W+4+1—(4 + 4 )—(d + 1,)=5 | (32)
G+ Ayt GOghostsic,+cy  U(1)ghosts:c4e
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Or, in D-dimensional space-time,

<2 >+D+1—(\D + D )—(1 + L):< )2( |
\ gW;ZWL?T ” GCghosts:c,+¢, U(1)ghosts:c+¢

Note that U(1) gauge invariance was a fake gauge symmetry which was
brought into the system by introducing the Stiickelberg scalar 7.

But it gave subtracting 2 modes ¢ + c.
Isn't this STRANGE 7
The point is that usually

H,, D 0,0, D 0,0,7 (33)
so that

HEW D 9,0,m- 0", H*>0Or -Onr
= H,,—aH*>(1—a)0r-Or (34)

That is, When a # 1 there appears Higher Derivative Term so that the
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single field 7 actually contains (141)- modes! (one of them is of negative
metric. )

So the problem is boiled down to confirm that the absence of higher deriva-
tive term for 7.
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5 “Ghost-free” massive gravity of de Rham-Gabadadze-

Tolley
PRL 106 (2011)

2
m
L = [:EH — I\/ —9g U(Quw H,LW> <35>

dRGT have determined their mass term U as follows:
Focussing on the derivative term of m, set A, = 0 in

1 |

1
ou(z) = EAM@S) — W@MT(:E) = ng(:c) =3 () (36)
and so
Hy, = hy,, + 211, — HMppr, I, =9,0,m (37)

They require that

VvV—gU(g, H) . be a total derivative (38)
,uV:O
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Define a symmetric tensor /{,, such that K#, = gt K ,, satisfies

H", = 2K", — K"K,

— K" =§" — /", — H, (39)

Then clearly K, is I, = 9,0, m on the flat background.
K,, =11,, 40
0 0 v ( )

dRGT demands that U be a polynomial in K, tensor such that it becomes
a total derivative on flat background; i.e., when K,, — II,,: Clearly
det(6" + NIT*)) = 14+ XUW(IT) + N2UPD(I1) + N3UBI) + NUW(IT) (41)
give U™(II) (n = 1,2, 3,4) which are total derivatives:
) = €upec™ I, = 3]
)= 5Wp05aﬁpgnuanyﬁ
=2 ([II7) = [I*) — Fierz-Pauli
UB(IT) = 6MVpJ€O‘BWH“aH”6Hp,Y
) = Eppee™ T T TIY 117 (42)

= =
ERE

=1
=
=



Now the dRGT mass term is given:

V=Ulg, H) = =3 (202(K) + a0 (K) + a,U (K

minimal model

0432044:0.

2UPN(K) = (H?) — (H)® +

7

AHGS r?lrass term

6 Vierbein formalism

1
2

Hinterbichler-Rosen, arXiv:1203.5783[hep-th]

dRGT action is equivalent to

L = Leu(gu = €mave,) + Ule)

where the mass term is given by

Ule) = det(e, + A b))

A — arbitrary parameters oy,

((H?) = (H)(H)) + -

17

(44)

(45)

(46)
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in terms of the induced vierbein
b =y 0,Y M (2) - By (Y(2)) = u'y b)) (47)

where E4(X) is the vierbein in the Taget Space, which we henceforth take
flat one F4L(X) = 84, u®, is the Stiickelberg field for LL; u®, € SO(3,1).

u®, can be solved algebraically, since it appears only in the mass term
because Lgy 18 LL invariant:

= ube ! = \/neT_lngge_l (48)
Plugging this back into the mass term
det(e}, + Auf l;f}) = dete - det(1y + A uf} Z;ﬁeg)

= dete - det(1 + A \/neT—ll;TnZ;e—l)

= dete - det(1 + Ae \/6_1n€T—11;T77[; e )
= /—g-det(1 + A\/g~f) (49)
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7 ‘Proof’ of Absence of BD ghost by Hinterbichler-
Rosen

in Unitary Gauge in vierbein formalism

“ =0 for LL
famoa I (50)
YM(z) =ar sy for GC

Then the mass term

Ule) = det (e, + X" (51)

Define the standard form of the vierbein:

—of N N'e
e, = uO( €Z><: fix 3 d.o.f. out of 6 for L.~ (52)

=1 0 6?
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then the general vierbein can be parametrized as

= /1 2 a
e =e’  Ap)” éb-<7 P P )

Py 0 + 5 1Psp"

Lorentz boost 3

u=0( Ny + N'efp, Np®+ N'e] (5“ + PP )
) - (53)
p=i €; Py € (5b ﬁpbp )

Even in this general form, the lapse N and shift N* appear only linearly in

0
u=0
The mass term is clearly at most linear in ej,_ so that

Ule) = NC™(e,p) + N'C"(e,p) + H(e, p) (54)

a
€,—o and ej,_, alone.

On the other hand, the canonical form for the Lgy part is: (a: only space)

/d4x m e’ — NCle,m) — N'Cile, ) —% A Pole, ) (55)

spacial LL generator |




21

So the canonical form for the total system is:
/d4:c [Wéég‘ — H(e,p) — %)\“bpab(e, )
—N (C(e,m) 4+ C™(e, p)) — N’ (Ci(e,m) + C*(e,p)) (56)
0

SNi
Now the counting of degrees of freedom becomes:

0 = Ci(ev 7T) + sz(eap) =0 = pa — pa<67 7T>

spacial vierbein e? and its conjugate momentum 7’: 3% x 2
spacial LL constraint P, + secondary constraint: —3 x 2
N constraint + its secondary constraint: —1 x 2

thus,

2x (32 =3—1)=2x5 = # of canonical variables of massive spin 2!
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8  What we want to show

Instead of the unitary gauge, we want to use

00z ) (57)

~ 1
A_ sA

b,u — 5,& + (EaMAV<QZ'> — W
with which GC and LL and U(1) gauge symmetry are manifest. Then we
have only to show that the higher time derivatives do not appear for the

scalar () on arbitrary background field {e},) = €.

But, this program has turned out to be misleading! Actually we see that
higher time derivative terms appear when the background metric has non-
vanishing shift <N Z> = (.

What we have to show is: when we define the Stiickelberg ‘vector’ field ¢,
by

AN

bﬁ — 5;1 + @Lgby(x)n”A (58)
or, by

f/w — N + a,u¢V + au¢,u -+ a,u¢a77abau¢b (59)
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then, they have a singular quadratic kinetic term on any background:

U = %éuAﬂyqby +--- = det A=0 (60)

The mass term can be rewritten in the form
det (e + \b) (61)

Then, the index u of I;f is anti-symmetrized by the epsilon tensor, and so
is for the index a. This structure claerly lead the F 3y structure for ¢, on
the flat background case. But, when the background metric is general, such
structure is no longer clear.

The difficulty is that the vierbein contains non-dynamical 6 components
corresponding to the LL freedom, which, if solved, become non-trivial func-
tions of d,,¢, when the background is non-flat. The analysis of that structure
is veru complicated.

The elimination of the 6 auxiliary components in the vierbein is equivalent
to use directly the original mass term of dRGT"

V=gdet(1+\/g 1) (62)
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The source of the difficulty is that, on a general background (g,,,) = g, the
expansion of the square root of the matrix v/¢g~1 f is very difficult. For some
examples we can show that the kinetic term of ¢, is singular. For example:

for the background
ds® = —dt* + 6;;(dx’ + 20'dt)(dx’ + 21 dt) (63)
the time derivative terms of the Stiickelberg field are calculated to be
_ 1 (61 — lohy)?
21 =12 | 1-=10
where we rotated the direction of the shift I into I* = 15!,
But we cannot see why such degeneracy of the kinetic term appear.

For
S0, we cannot yet prove the absence of BD ghost for arbitrary background.

U + ¢ + &5 (64)




