String theory should give a unique vacuum?

Are All the Parameters and Laws That Characterize the Physical Universe Calculable (in Principle) or Are Some Determined By Historical or Quantum Mechanical Accident?

THE LANDSCAPE

Slide by D.Gross, 2005, Madrid

A Landscape in Boundary String Field Theory

Koji Hashimoto (Osaka / RIKEN) w/ Masaki Murata (Czech) arXiv:1211.5949 (published in PTEP)

Condensation of massive stringy states

→ Many new nonperturbative string vacua

1.	Ultimate	e question:	unique	vacuum	? 2	pages
----	----------	-------------	--------	--------	-----	-------

- 2. String field theories for the answer 3 pages
- 3. Massive states and boundary SFT 3 pages
- 4. Many new vacua: interpretation? 3 pages

Ultimate question: unique vacuum?

Gravity Quantum field theory

String theory

String theory action

= Fields: Massless + infinite number of massive modes Interactions: gauge invariance

(Quantum) calculations

Non-perturbative Vacua

At least you need to describe...

Condensation of massive stringy states

- → Many new nonperturbative string vacua
- 1. Ultimate question: unique vacuum?

- 2. String field theories for the answer
- 3. Massive states and boundary SFT
- 4. Many new vacua: interpretation?

String field theories for the answer

Among non-perturbative approaches...

1. Low energy supergravity + non-perturbative effect.

KKLT, Moduli stabilization. KKLMMT, inflation.

Are vacua truly non-perturbative?

2. Matrix models.

IIB matrix model, BFSS Matrix Theory, Matrix string How to solve them? Gravitons? AdS/CFT?

3. String field theories ("SFT").

CSFT (cubic SFT, Witten), HIKKO's SFT. Open/closed.

BSFT. (boundary/background-independent SFT)

Non-perturbative, intuitive, straightforward.

Importance of SFT: Proof of Sen's conjecture

Sen's conjecture [Sen 98]:

Open-string tachyon condensation on unstable D-branes

= Disappearance of the D-branes

Proof: both by BSFT and CSFT.

[Gerasimov Shatashvili 00]

[Kutasov Marino Moore 00]

[Sen Zwiebach 99] [Moeller Taylor 00]

[Schnabl 07]

BSFT tachyon potential

$$U = T_{25}V_{26} e^{-T}(T+1)$$

Importance: Touchstone for any non-perturbative formulation of string theory.

Virtue of the BSFT against CSFT

Consistent truncation system. [Kutasov Marino Moore 00]

$$U = T_{25}V_{26} e^{-T}(T+1)$$

Putting other fields to zero is a consistent solution.

Cf) CSFT: Intrinsically infinite DoFs, level truncation needed.

$$-\frac{1}{2}t^2 + \frac{3^3\sqrt{3}}{2^6}t^3 - \frac{1}{2}u^2 + \frac{1}{2}v^2 + \frac{11\cdot3\sqrt{3}}{2^6}t^2u - \frac{5\cdot3\sqrt{39}}{2^6}t^2v + \frac{19}{2^6\sqrt{3}}tu^2 + \frac{7\cdot83}{2^6\cdot3\sqrt{3}}tv^2 - \frac{11\cdot5\sqrt{13}}{2^5\cdot3\sqrt{3}}tv^2 - \frac$$

Field-theoretically intuitive.

DBI action is a part of BSFT.
$$S = \int d^{26}x \ \sqrt{-\det(\eta_{\mu\nu} + F_{\mu\nu})}$$

Condensation of massive stringy states

- → Many new nonperturbative string vacua
- 1. Ultimate question: unique vacuum?

- 2. String field theories for the answer
- 3. Massive states and boundary SFT
- 4. Many new vacua: interpretation?

Our BSFT potential

Fields (Variables)
$$T, u_k^{\mu} \ (k=1,2,3,\cdots,\ \mu=0,\cdots,25)$$

Tachyons and massive fields

The BSFT potential [Li Witten 93] [Murata KH 12]

$$U = T_{25}V_{26} e^{-T} \left(T + 1 - \sum_{\mu=0}^{25} \sum_{k=1}^{\infty} \beta_k^{\mu} \left(\frac{1}{k + u_k^{\mu}} - \frac{1}{k} \right) \right) \prod_{k=1}^{\infty} \prod_{\mu=0}^{25} e^{k^{-1}u_k^{\mu}} (1 + k^{-1}u_k^{\mu})^{-1}$$
$$\beta_1^{\mu} = \frac{1}{2} u_2^{\mu} - u_1^{\mu}, \quad \beta_{k \ge 2}^{\mu} = \frac{1}{2} k \left(u_{k+1}^{\mu} - u_{k-1}^{\mu} \right) - u_k^{\mu}$$

With vanishing massive fields, it reproduces

$$U = T_{25}V_{26} e^{-T}(T+1)$$

BSFT = set of all 2d theories

$$S_{\text{BSFT}} = Z_{\text{2d}}$$

[Witten 92] [Shatashvili 93]

[Kutasov Marino Moore 00] [Marino 01] [Ghoshal 01] [Niarchos Prezas 01]

$$Z_{\rm 2d} \sim \int \mathcal{D}X \exp \left[-\int d^2\sigma \ \eta^{ab} \partial_a X^{\mu} \partial_b X^{\nu} - S_{\rm int} \right]$$

The interaction includes all 2d nonlinear boundary couplings

Ex) The DBI action can be calculated by

$$S_{\rm int} \sim \oint d\tau \; \partial_{\tau} X^{\mu} A_{\mu}[X] = -\frac{1}{2} \oint d\tau \; \partial_{\tau} X^{\mu} F_{\mu\nu} X^{\nu}$$

Solutions of Eq. of motion of BSFT

- = Conformal fixed points on worldsheet
- = Consistent background in string theory

Exact treatment of Massive stringy excitations

Free 2d theory: exactly calculable, consistent truncation

$$O = c(\theta)V(\theta), \quad V(\theta) = \frac{a}{2\pi} + \frac{1}{4\pi\alpha'} : X_{\mu}(\theta) \int_{0}^{2\pi} d\theta' \, u^{\mu\nu}(\theta - \theta') X_{\nu}(\theta') :$$

Non-local mode expansion $u_k^{\mu\nu}=u_{-k}^{\nu\mu}=\int_0^{2\pi}d\theta\,u^{\mu\nu}(\theta)e^{-ik\theta}$

$$\frac{\partial}{\partial u_{k}^{\mu\nu}} \ln Z = -\frac{1}{8\pi^{2}\alpha'} \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' e^{ik(\theta-\theta')} \langle : X_{\mu}(\theta) X_{\nu}(\theta') : \rangle_{\lambda} = \frac{1}{2} A_{k,\nu\mu}$$

$$\prod_{A_{0,\mu\nu}} = -(u_{0}^{-1})_{\mu\nu}, \quad A_{k,\mu\nu} = \frac{1}{|k|} \eta_{\mu\nu} - \left(\frac{1}{|k|\eta + u_{k}}\right)_{\mu\nu} \quad \text{for } k \neq 0$$

$$Z = \mathcal{N} \det(u_{0})^{-1/2} e^{-a} \prod_{k=1}^{\infty} e^{k^{-1} \operatorname{tr}(\eta \cdot u_{k})} \det(1 + k^{-1}\eta \cdot u_{k})^{-1}$$

$$\prod_{SBSFT} = \left(\beta_{i}[\lambda] \frac{\partial}{\partial \lambda_{i}} + 1\right) Z$$

$$= T_{25} V_{26} e^{-T} \left(T + 1 - \sum_{\nu=0}^{25} \sum_{k=1}^{\infty} \beta_{k}^{\mu} \left(\frac{1}{k + u_{k}^{\mu}} - \frac{1}{k}\right)\right) \prod_{k=1}^{\infty} \prod_{\nu=0}^{25} e^{k^{-1} u_{k}^{\mu}} (1 + k^{-1} u_{k}^{\mu})^{-1}$$

Condensation of massive stringy states

- → Many new nonperturbative string vacua
- 1. Ultimate question: unique vacuum?

- 2. String field theories for the answer
- 3. Massive states and boundary SFT
- 4. Many new vacua: interpretation?

Solving the potential, easy

$$\beta_1^{\mu} = \frac{1}{2}u_2^{\mu} - u_1^{\mu}, \quad \beta_{k\geq 2}^{\mu} = \frac{1}{2}k\left(u_{k+1}^{\mu} - u_{k-1}^{\mu}\right) - u_k^{\mu}$$

$$U = T_{25}V_{26} e^{-T} \left(T + 1 - \sum_{\mu=0}^{25} \sum_{k=1}^{\infty} \beta_k^{\mu} \left(\frac{1}{k + u_k^{\mu}} - \frac{1}{k} \right) \right) \prod_{k=1}^{\infty} \prod_{\mu=0}^{25} e^{k^{-1} u_k^{\mu}} (1 + k^{-1} u_k^{\mu})^{-1}$$

First, solve the tachyon equation of motion $\frac{\partial U}{\partial T}=0$

$$\diamondsuit$$

Sol.1
$$T = \infty$$
 with u_k^{μ} arbitrary

(Sen's vacuum)

Sol.1
$$T = \infty$$
 with u_k^{μ} arbitrary (Sen's vacuum Sol.2 $T = \sum_{k=1}^{25} \sum_{k=1}^{\infty} \beta_k^{\mu} \left(\frac{1}{k + u_k^{\mu}} - \frac{1}{k} \right)$ (New vacua)

$$U = T_{25}V_{26} e^{-\sum_{\mu=0}^{25} f(u^{\mu})}$$

$$f(u) = \sum_{k=1}^{\infty} \left(\beta_k \left(\frac{1}{k + u_k} - \frac{1}{k} \right) - k^{-1} u_k + \log(1 + k^{-1} u_k) \right)$$

Extremizaion of f(u) gives new nonperturbative vacua

Strange behavior of the numerical results

- Range: between the D-brane tension and zero energy
- Uniform distribution

Interpreting them as closed strings?!

Are they... multiple D-branes?

--- In bosonic string theory, there is no D-brane charge, so D-brane bound states do not necessarily give integers.

Are they... closed string excitations at the no-D-brane vacuum?

Evidence 1. Closed string vertex insertion

Nonlocal boundary interactions

[Baumgartle Sachs Schatashvili 04]

Evidence 2. Almost uniform distribution of energy values.

Evidence 3. Huge degeneracy, looks like a closed string spectrum.

Solution with different μ combination. Uniformity of f giving, say, $f_2 = 2 f_1$ etc.

Condensation of massive stringy states

→ Many new nonperturbative string vacua

1. Ultimate question: unique vacuum?

- 2. String field theories for the answer
- 3. Massive states and boundary SFT
- 4. Many new vacua: interpretation?