

## Inflationary cosmology after Planck

Takahiro Tanaka (YITP)

# **Big Bang Cosmology**

The universe starts with a fireball.

- Friedmann Universe
   ~Hubble's law
- Nucleosynthesis
   Baryon/Photon~10<sup>-9~-10</sup>
- Cosmic Microwave
   Background



**Beginning of Particle Cosmology** 

### Various motivations for inflation @1980

Large domain of baryon/anti-baryon domain Superhorizon scale correlation Monopole problem K. Sato

{Horizon problem Flatness problem



Inflation solves all problems just by assuming an early phase of exponential expansion of the universe.

 $\begin{cases} \text{Initial singularity avoidance} & \text{A. Starobinsky} \\ L_{grav} = M_{pl}^2 \left( R + R^2 / 6M^2 \right) \end{cases}$ 

+ Initial density perturbation

## **Evolution of scales**



# Various inflation models







Small nucleation rate for inflation

Some region continues to inflate

Difficult to terminate inflation / too large fluctuation

A synchronized clock to control the transition is necessary

## Standard slow roll inflation



## Generation of density perturbation

Quantum fluctuation of inflaton  $\phi$  during inflation:

$$\Box \delta \phi + V'' \delta \phi = 0 \implies \qquad \left[ \partial_t^2 + 3H \partial_t + \frac{k^2}{a^2} \right] \delta \phi_k = 0$$
$$\boxed{\equiv \omega^2}$$

Mukhanov, Viatcheslav(1981) Hawking(1982) Starobinsky(1982) Guth, Pi (1982) Bardeen(1982) Kodama-Sasaki PTP supplement (1984)

Time-dependent harmonic oscillator

 $(k/a)^{3} \delta \phi_{k}^{2} \sim H^{2}$   $(k/a)^{3} \delta \phi_{k}^{2} \sim H^{2}$   $(k/a)^{3} \delta \phi_{k}^{2} \sim H^{2}$ 

### Super-horizon dynamics $-\delta N$ formalism-

• Super-horizon dynamics is locally described by the FRW universe.

Sasaki & Stewart(1996) Friedmann Friedmann Sasaki & TT(1998), Lyth et al.(2005) t = t<sub>F</sub> final *uniform energy density* hypersurface  $N + \delta N$ Ν  $t = t_*$ e-folding number  $N(t_f;t_*,\phi^I(\mathbf{x})) = \int_t^{t_f} H dt$ Initial *flat* hypersurface  $\phi_*^I + \delta \phi_*^I$ Naively, Super horizon  $ds^{2} = -dt^{2} + \underline{a^{2}e^{2\zeta}}\delta_{ii}dx^{i}dx^{j}$  $\zeta(t_f, \mathbf{x}) \approx \delta N(t_f; t_*, \phi^I(\mathbf{x}))$  $2\left(N+\delta N\left(t_{f};t_{*},\phi^{I}\right)\right)$ 

Starobinsky (1985)

Salopek & Bond (1990)

 $\zeta$  is conserved for single field inflation on super horizon scale.

$$\zeta \approx H\delta t = H \frac{\delta \phi}{\dot{\phi}} \approx \frac{H^2}{\dot{\phi}}$$

#### Single field inflation



### **Tensor perturbations**



### Formulas for slow roll inflation

Slow roll parameters

$$\varepsilon = \frac{1}{2} \left( \frac{V'}{V} \right)^2 \qquad \qquad \eta = \frac{V''}{V}$$

 $\Delta_{\zeta}^{2} = \frac{V}{24\pi^{2}\varepsilon} : \text{squared amplitude of curvature perturbation}$   $n_{s} -1 = -6\varepsilon + 2\eta : \text{tilt of the spectrum } \Delta_{\zeta} \propto k^{n_{s}-1}$   $r = \frac{\Delta_{h}^{2}}{\Delta_{\zeta}^{2}} = 16\varepsilon : \text{tensor-to-scalar ratio}$   $n_{t} = -2\varepsilon : \text{tilt of tensor perturbation}$ 

### CMB map by COBE satellite



Amplitude of fluctuation is about 10<sup>-5</sup>.

### CMB map by WMAP satellite



Amplitude of fluctuation is about 10<sup>-5</sup>.

### CMB map by Planck satellite



Amplitude of fluctuation is about 10<sup>-5</sup>.

# Success of inflationary model

#### 



#### Planck(2013)

http://www.sciops.esa.int/index.php?project=PLANCK&page=Planck\_Published\_Papers



#### Constraints on inflation models (WMAP)



#### Constraints on inflation models (after Planck)



Fig. 1. Marginalized joint 68% and 95% CL regions for  $n_s$  and  $r_{0.002}$  from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

# Large tensor from inflation

Large tensor perturbation requires large field inflation

$$r = 16\varepsilon = 8\left(\frac{V'}{V}\right)^2 \approx \frac{8\Delta\phi^2}{N^2} : \text{Lyth bound} \qquad \frac{d\phi}{dN} = \frac{\dot{\phi}}{H} \approx -\frac{V'}{3H^2} \approx -\frac{V'}{V}$$

SUGRA:

Scalar field potential

$$V = e^{K} \left[ K_{\Phi \overline{\Phi}}^{-1} \left| D_{\Phi} W \right|^{2} - 3 \left| W \right|^{2} \right]$$

$$D_{\Phi}W = \frac{\partial W}{\partial \Phi} + \frac{\partial K}{\partial \Phi}W$$
$$K_{\Phi\overline{\Phi}}\partial_{\mu}\Phi\partial^{\mu}\overline{\Phi} \quad \text{:kinetic term}$$

Canonical choice of Kähler potential is  $K = \Phi \overline{\Phi}$ , for which  $K_{\Phi \overline{\Phi}} = 1$ .

A solution is to choose 
$$K = -\frac{1}{2} (\Phi - \overline{\Phi})^2 = \underline{\Phi}\overline{\Phi} - \frac{1}{2} (\Phi^2 + \overline{\Phi}^2)$$
  
kinetic term is canonical

Kawasaki, Yamaguchi and Yanagida (2000)

# Realizing Large field inflation

String:



# **Constraint on non-Gaussianity**

Non-Gaussianity **effects** of non-linear dynamics during and after inflation  $\left\langle \zeta_{\mathbf{k}}\zeta_{\mathbf{k}'}\zeta_{-\mathbf{k}-\mathbf{k}'}\right\rangle \neq 0$ WMAP 9yr  $-3 < f_{NL}^{local} < 77 (95\% CL)$  $-221 < f_{NI}^{equil} < 323 (95\% CL)$  $-445 < f_{NI}^{orthog} < -45 (95\% CL)$  $f_{_{NI}}^{local} = 2.7 \pm 5.8 \,(68\% \, CL)$  $\tau_{_{NL}} < 2800 \, (95\% \, CL)$ **Planck**  $c_{s} \ge 0.02 (95\% CL)$  $f_{NI}^{equil} = -42 \pm 75 \ (68\% CL)$  $f_{NL}^{orthog} = -25 \pm 39 \ (68\% CL)$ 

## **Non-Gaussianity**

In the standard slow roll inflation, non-Gaussianity is extremely suppressed.
 Non-Gaussianity requires non-standard inflation models.
 Non-linear dynamics gives non-linear mapping

$$\zeta_{G} \rightarrow \zeta = \zeta(\zeta_{G}) \quad \text{Komatsu and Spergel (2001)}$$
$$\zeta(\mathbf{x}) = \underline{\zeta_{G}(\mathbf{x})} + \frac{3}{5} \underline{f_{NL}} \zeta_{G}^{2}(\mathbf{x})$$

Gaussian variable Non-linear parameter

$$\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \rangle \equiv \delta^{(3)} (\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) B_{\zeta} (\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3)$$

bispectrum

$$B_{\zeta}(k_1,k_2,k_3) = \frac{6}{5} \frac{f_{NL}}{(2\pi)^{3/2}} \Big[ P_{\zeta}(k_1) P_{\zeta}(k_2) + P_{\zeta}(k_2) P_{\zeta}(k_3) + P_{\zeta}(k_3) P_{\zeta}(k_1) \Big]$$

In general, mapping is non-local.

Local interaction only ~ Super horizon dynamics

$$\zeta(t_{c}) \approx \delta N = N_{a}^{*} \varphi_{*}^{a} + \frac{1}{2} N_{ab}^{*} \varphi_{*}^{a} \varphi_{*}^{b} + \cdots \qquad N_{a}(t) = \frac{\partial N(t_{c}, \phi)}{\partial \phi^{a}} \Big|_{\phi^{a} - \phi^{a}(t)}$$
"\*" indicates a time just after initial horizon crossing
$$\langle \zeta(\mathbf{x}_{1})\zeta(\mathbf{x}_{2})\zeta(\mathbf{x}_{3}) \rangle = N_{a}^{*} N_{b}^{*} N_{c}^{*} \left\langle \varphi_{*}^{a}(\mathbf{x}_{1})\varphi_{*}^{b}(\mathbf{x}_{2})\varphi_{*}^{c}(\mathbf{x}_{3}) \right\rangle \qquad N_{ab}(t) = \frac{\partial^{2} N(t_{c}, \phi)}{\partial \phi^{a} \partial \phi^{b}} \Big|_{\phi^{a} - \phi^{a}(t)}$$
Early generation of non-Gaussianity
$$\Rightarrow \text{ suppressed by slow-roll parameters. (Seery \& Lidsey (2005))}$$
Exception is fast roll inflation.
$$+ \frac{1}{2} N_{a}^{*} N_{b}^{*} N_{cd}^{*} \left[ \left\langle \varphi_{*}^{a}(\mathbf{x}_{1}) \varphi_{*}^{b}(\mathbf{x}_{2}) \varphi_{*}^{c}(\mathbf{x}_{3}) \varphi_{*}^{d}(\mathbf{x}_{3}) \right\rangle + \text{perm} \right]$$
log (physical scale)
$$\int \text{ Super horizon part of non-Gaussianity is produced}$$
1) before horizon crossing
2) during super horizon evolution
3) at the end of or after inflation
2) or 3) are local
$$\int \frac{\delta}{5} f_{NL} \approx \frac{N_{*}^{a} N_{b}^{*} N_{ab}^{*}}{\left(N_{*}^{a} N_{b}^{*}\right)^{2}}$$

### Non-Gaussianity produced at the end of or after inflation

#### Curvaton

Modulated reheating Modulated waterfall (Lyth & Wands (2002))

(Dvali, Gruzinov & Zaldarriaga (2004)) (Bernardeau, Kofman and Uzan (2004), Lyth (2004))



### Non-local Non-Gaussianity from noncanonical kinetic term

Typical example is DBI inflation

Moving D3-brane in a higherdimensional background Alishhiha, Silverstein, Tong (2008)

Strong coupling large N CFT AdS/CFT



 $r = 16\varepsilon c_s$  suppressed

#### Curvaton bi-spectrum

#### **DBI** bi-spectrum



# **Constraint on non-Gaussianity**

Non-Gaussianity **effects** of non-linear dynamics during and after inflation  $\left\langle \zeta_{\mathbf{k}}\zeta_{\mathbf{k}'}\zeta_{-\mathbf{k}-\mathbf{k}'}\right\rangle \neq 0$ WMAP 9yr  $-3 < f_{NL}^{local} < 77 (95\% CL)$  $-221 < f_{NI}^{equil} < 323 (95\% CL)$  $-445 < f_{NI}^{orthog} < -45 (95\% CL)$  $f_{_{NI}}^{local} = 2.7 \pm 5.8 \,(68\% \, CL)$  $\tau_{_{NL}} < 2800 \, (95\% \, CL)$ **Planck**  $c_{s} \ge 0.02 (95\% CL)$  $f_{NI}^{equil} = -42 \pm 75 \ (68\% CL)$  $f_{NL}^{orthog} = -25 \pm 39 \ (68\% CL)$ 

1303.5083で議論されているが、何を書い ているのかわからん、かなりひどい論文





#### Wavelet statistics:

Upper tail probabilities = the fraction of the simulations that present a value of a given statistic equal to or greater than the one obtained for the data



#### Hemispherical asymmetry

| Mask                             | Variance | Skewness | Kurtosis |
|----------------------------------|----------|----------|----------|
| U73, $f_{sky} = 73\%$            | 0.017    | 0.189    | 0.419    |
| CL58, $f_{sky} = 58\%$           | 0.003    | 0.170    | 0.363    |
| CL37, $f_{sky} = 37\%$           | 0.030    | 0.314    | 0.266    |
| Ecliptic North, $f_{sky} = 36\%$ | 0.001    | 0.553    | 0.413    |
| Ecliptic South, $f_{sky} = 37\%$ | 0.483    | 0.077    | 0.556    |
| Galactic North, $f_{sky} = 37\%$ | 0.001    | 0.788    | 0.177    |
| Galactic South, $f_{sky} = 36\%$ | 0.592    | 0.145    | 0.428    |

number of pixels over the full sky is  $12xN_{side}^2$ 

Lower tail probabilities for  $N_{side} = 2048$ Small number means that the data is statistically very unlikely.

| Mask                             | C-R   | NILC     | SEVEM | SMICA |  |
|----------------------------------|-------|----------|-------|-------|--|
|                                  |       | Variance |       |       |  |
| U73, $f_{sky} = 78\%$            | 0.019 | 0.017    | 0.014 | 0.019 |  |
| CL58, $f_{sky} = 58\%$           | 0.004 | 0.003    | 0.003 | 0.003 |  |
| $CL37, f_{sky} = 37\%$           | 0.028 | 0.017    | 0.018 | 0.016 |  |
| Ecliptic North, $f_{sky} = 39\%$ | 0.001 | 0.001    | 0.001 | 0.002 |  |
| Ecliptic South, $f_{sky} = 39\%$ | 0.464 | 0.479    | 0.454 | 0.490 |  |
|                                  |       | Skewness |       |       |  |
| U73, $f_{sky} = 78\%$            | 0.016 | 0.015    | 0.023 | 0.012 |  |
| CL58, $f_{sky} = 58\%$           | 0.208 | 0.139    | 0.162 | 0.147 |  |
| CL37, $f_{sky} = 37\%$           | 0.517 | 0.467    | 0.503 | 0.469 |  |
| Ecliptic North, $f_{sky} = 39\%$ | 0.502 | 0.526    | 0.526 | 0.521 |  |
| Ecliptic South, $f_{sky} = 39\%$ | 0.004 | 0.006    | 0.008 | 0.004 |  |

Lower tail probabilities for  $N_{\rm side} = 16$ 





#### Cold/hot Spots



## Further steps from observations

Constraints on tensor perturbations from future observations:

r < 0.13 : WMAP
r < 0.05 : Planck (polarization data is not released yet. Coming in 2014)
r < 0.01 : QUIET, PolarBeaR, BICEP2, SPTpol, EBEX, Spider...

*r* < 0.001 : LiteBIRD, EPIC, PIXIE, COrE, B-Pol

# Summary

- Tensor perturbations and non-Gaussianities in CMB are still key issues for understanding inflationary cosmology.
- Observations of the next generation will reduce the precision of tensor perturbation by factor 1/10 or more.
- Various inflation models make different prediction about tensor amplitude and amplitude/shapes of non-Gaussianities.
- Once they are detected, they become powerful tools to distinguish different models of inflation.