超対称模型の現状

後藤 亨 (KEK)

セミナー@益川塾, 29 September 2012

Supersymmetry (SUSY): boson \Leftrightarrow fermion symmetry.

黎明期:

- Miyazawa ('66): baryons & mesons ∈ supermultiplet.
- Volkov & Akulov ('72): supertranslation (nonlinear realization).

Beyond the Standard Model としての SUSY:

• Wess & Zumino ('74): renormalizable quantum field theory (4-dim. N = 1)

以後、"realistic" model building へ。

Minimal Supersymmetric Standard Model (MSSM)の現象論が詳しく調べられている。

SUSY 模型を研究する動機:

- 豊富な新粒子、新現象を予言 ⇒ 面白い。
- 統一理論の可能性
 - ▷ Local SUSY = supergravity: 重力を含む
 - * SUSY algebra \supset spacetime translation (Poincaré group)

⇒ local SUSY transformation \supset 一般座標変換

▷ MSSM \rightarrow GUTと相性がいい。

- (ゲージ) 階層性問題の緩和
 - ▷ Electroweak scale (~ 100 GeV) \Leftrightarrow Planck (GUT) scale (~ 10¹⁶⁻¹⁹ GeV)
 - * "軽い" スピン 0 粒子を対称性で保証
 - ·スピン $1 \rightarrow$ ゲージ対称性
 - ·スピン $1/2 \rightarrow$ カイラル対称性

Hierarchy problem in SM

● Higgs boson mass への量子補正 → 二次発散

→ 不自然!

Supersymmetry stabilizes the hierarchy.

このセミナーでは、minimal supergravity model (mSUGRA) を中心に、模型の構造と、最近の LHC の結果について紹介する。

以下の目次

- Minimal Supersymmetric Standard Model
- Minimal Supergravity scenario
- Constraints from LHC
- Constraints from flavor physics

Minimal Supersymmetric Standard Model (MSSM)

The Standard Model:

- $SU(3) \times SU(2) \times U(1)$ gauge theory.
- 3 families of quarks/leptons (chiral fermions).
- 1 Higgs doublet (complex scalars).
- 19 (+9) parameters.

 $\triangleright \alpha_s, \alpha, G_F, m_Z, m_{u,c,t}, m_{d,s,b}, m_{e,\mu,\tau}, m_h, V_{\mathsf{CKM}}(\lambda, A, \overline{\rho}, \overline{\eta}), \theta_{\mathsf{QCD}}.$ $\triangleright m_{\nu_1,\nu_2,\nu_3}, U_{\mathsf{MNS}}.$

MSSM: field contents

標準模型を超対称化する: superpartners の導入。

- $SU(3) \times SU(2) \times U(1)$ gauge fields: g_{μ} , W_{μ} , B_{μ}
- \Rightarrow vector supermultiplets (g_{μ}, \tilde{g}) , (W_{μ}, \tilde{W}) , (B_{μ}, \tilde{B})
 - $\triangleright \tilde{g}, W, B$: Majorana fermions (gauginos).
- Quarks, leptons: q_L , $(u_R)^c$, $(d_R)^c$, ℓ_L , $(e_R)^c$
- \Rightarrow (left-handed) chiral supermultiplets
 - $Q(q_L, \ \tilde{q}_L), U^c((u_R)^c, \ \tilde{u}_R^*), D^c((d_R)^c, \ \tilde{d}_R^*), L(\ell_L, \ \tilde{\ell}_L), E^c((e_R)^c, \ \tilde{e}_R^*)$
 - $\triangleright \tilde{q}_L, \tilde{u}_R^*, \tilde{d}_R^*, \tilde{\ell}_L, \tilde{e}_R^*$: complax scalars (squarks, sleptons).
 - ▷ 全部3世代。
- Higgs doublet H
- \Rightarrow (left-handed) chiral supermultiplets $H_1(h_1, \tilde{h}_1), H_2(h_2, \tilde{h}_2)$
 - $\triangleright \tilde{h}_1$, \tilde{h}_2 : chiral fermions (higgsinos)

MSSM: field contents

Chiral supermultiplets (SU(3), SU(2), U(1)):

$$egin{aligned} Q_i(3,\,2,\,rac{1}{6}), & U_i^c(\overline{3},\,1,\,-rac{2}{3}), & D_i^c(\overline{3},\,1,\,rac{1}{3}), & L_i(1,\,2,\,-rac{1}{2}), \ & E_i^c(1,\,1,\,1), & H_1(1,\,2,\,-rac{1}{2}), & H_2(1,\,2,\,rac{1}{2}). \end{aligned}$$

i = 1, 2, 3.

Higgs doublets は2つ必要。

- 湯川相互作用の超対称化(後述)
- Gauge anomaly cancellation
 - ▷ \tilde{h}_1 は ℓ_L と同じ量子数。これだけを追加すると gauge anomaly が生じる。 \tilde{h}_2 で相殺。

MSSM: field contents

大統一理論 (GUT) と相性が良い。

- GUT は
 - $\triangleright Q_e = -Q_p$
 - $\triangleright g_3 > g_2 > g_1$
 - をゲージ対称性と関連づける点で魅力的。

MSSM: interactions

相互作用の超対称化

SUSY gauge interactions

Superpotential (Yukawa couplings & " μ "): holomorphic $W_{\text{MSSM}} = \epsilon_{ab} \left[(Y_E)_{ij} H_1^a L_i^b E_j^c + (Y_D)_{ij} H_1^a Q_i^b D_j^c + (Y_U)_{ij} H_2^b Q_i^a U_j^c - \mu H_1^a H_2^b \right],$

• SUSY: scalar にも chirality. $\Rightarrow h_1^{\dagger}$ で h_2 の代用不可。

MSSM: *R*-parity

Gauge invariance だけだと

 $W_{\mathsf{RPV}} = \epsilon_{ab} \left[\frac{1}{2} \lambda_{ijk} L^a_i L^b_j E^c_k + \lambda'_{ijk} L^a_i Q^b_j D^c_k - \kappa_i L^a_i H^b_2 \right] + \frac{1}{2} \lambda''_{ijk} U^c_i D^c_j D^c_k,$ も可能。これらはバリオン数、レプトン数を破る ⇒ 短寿命で陽子崩壊。

R-parity

- Even: SM particles
- Odd: SUSY particles (\tilde{g} , \tilde{W} , \tilde{B} , $\tilde{q}_{L,R}$, $\tilde{\ell}_{L,R}$, \tilde{h}_i)

で禁止 (L_i と H_1 に異なる量子数を割当)。

⇒ Lightest *R*-odd particle (Lightest SUSY Particle, LSP) は安定。

MSSM: SUSY breaking

超対称性は破れている。これを soft SUSY breaking terms として取り入れる。

• Gaugino masses

$$\mathcal{L}_G = \frac{1}{2} \left[M_1 \tilde{B} \tilde{B} + M_2 \tilde{W}^A \tilde{W}^A + M_3 \tilde{g}^X \tilde{g}^X \right] + \text{H.c.}$$

Scalar masses

$$V_{2} = \tilde{q}_{iLa}^{*} (m_{\tilde{Q}}^{2})_{ij} \tilde{q}_{jL}^{a} + \tilde{\ell}_{iLa}^{*} (m_{\tilde{L}}^{2})_{ij} \tilde{\ell}_{jL}^{a} + \tilde{u}_{iR} (m_{\tilde{u}}^{2})_{ij} \tilde{u}_{jR}^{*} + \tilde{d}_{iR} (m_{\tilde{d}}^{2})_{ij} \tilde{d}_{jR}^{*} + \tilde{e}_{iR} (m_{\tilde{e}}^{2})_{ij} \tilde{e}_{jR}^{*} + m_{H_{1}}^{2} h_{1a}^{*} h_{1}^{a} + m_{H_{2}}^{2} h_{2a}^{*} h_{2}^{a} - \left[m_{3}^{2} \epsilon_{ab} h_{1}^{a} h_{2}^{b} + \text{H.c.} \right],$$

• Trilinear scalar couplings (holomorphic)

 $V_{3} = \epsilon_{ab} \left[(T_{E})_{ij} h_{1}^{a} \tilde{\ell}_{iL}^{b} \tilde{e}_{jR}^{*} + (T_{D})_{ij} h_{1}^{a} \tilde{q}_{iL}^{b} \tilde{d}_{jR}^{*} + (T_{U})_{ij} h_{2}^{b} \tilde{q}_{iL}^{a} \tilde{u}_{jR}^{*} \right],$ Soft = 2次発散を生じない (Girardello & Grisaru, '82)。

MSSM: SUSY breaking

SUSY breaking mechanism を特定しない場合、

- 105 new parameters. "MSSM-124"
 - ▷ Standard Model はパラメータ19個。
 - ▷ 大半(97個)が squark/slepton mass matrices (SUSY breaking)
 - \Rightarrow flavor/CPV sector.
- ⇒ 最初から大問題。

MSSM + "SUSY breaking parameters の構造の種"で模型を定義する。

Flavor mixing in the MSSM

- quark の質量行列 \leftarrow Electroweak gauge symmetry breaking $(\langle h \rangle)$,
- squark の質量行列 \leftarrow EW symmetry breaking \oplus SUSY breaking.

quark と squark の質量行列は一般には同時対角化できない。

- squark の相互作用に CKM 行列とは一般に異なる混合行列が現れる。
- SUSY breaking に特別な構造(universality, etc.) があれば、混合行列が 一致する場合もある。

SUSY Flavor "Problem"

SUSY breaking のフレイバー構造は既に制限されている。(Ellis & Nanopoulos, '82)

• Lepton sector では $\mu \rightarrow e \gamma$ が強い制限を与える。

SUSY breaking scenarios: minimal supergravity

Spontaneous breaking of global SUSY の問題点

- Vacuum energy > 0 \Rightarrow huge cosmological constant? $\triangleright H = Q^{\dagger}Q \ (Q: \text{ supercharge}) \Longrightarrow Q|0\rangle \neq 0 \Leftrightarrow \langle 0|H|0\rangle > 0.$
- Massless Nambu-Goldstone fermion (goldstino).
- Supertrace relation (tree level): $\sum m^2(boson) \sum m^2(fermion) = 0$.
- \Rightarrow Local SUSY = supergravity (SUGRA) で解決。
 - Supertrace relation は loop で解決する方法も (gauge mediation 等)。

Minimal supergravity

Matter coupled supergravity (Cremmer, Julia, Scherk *et al.*, '79) ⊕ gauge (Cremmer, Ferrara, Girardello & van Proeyen, '83)

Lagrangian La

- Kähler potential $K(\varphi, \varphi^*)$,
- superpotential $W(\varphi)$,
- gauge kinetic function $f_{ab}(\varphi)$,

で記述される。

$$\mathcal{L}_{\mathsf{kin}} = K_{j}^{i} \partial^{\mu} \varphi_{i}^{*} \partial_{\mu} \varphi^{j} - \frac{1}{4} \operatorname{Re} f_{ab}(\varphi) F^{a\mu\nu} F_{\mu\nu}^{b} + \cdots,$$

$$V = e^{G} \left[G^{i} (G^{-1})_{i}^{j} G_{j} - 3 \right] + (\mathsf{gauge}), \qquad G = K + \log |W|^{2},$$

$$G_{i} = \frac{\partial G(\varphi, \varphi^{*})}{\partial \varphi^{i}}, \qquad G_{j}^{i} = \frac{\partial^{2} G(\varphi, \varphi^{*})}{\partial \varphi_{i}^{*} \partial \varphi^{j}} = K_{j}^{i},$$

Minimal supergravity

- Spontaneous SUSY breaking with vanishing cosmological constant.
 - ▷ Supersymmetric cosmological term < 0 ("-3" in V).
 - \Rightarrow cancels positive contributions due to SUSY breaking.
 - * Fine-tuning だが、宇宙項問題を悪化させてはいない。
- Super-Higgs mechanism: goldstino eaten by gravitino.
 - Supergravity multiplet: graviton (spin 2) & gravitino (spin 3/2): gauge field of local supersymmetry.
 - * SUSY unbroken \rightarrow massless gravitino, helicity $\pm 3/2$ only.
 - * SUSY broken \rightarrow massive gravitino $m_{3/2}$, helicity $\pm 3/2 \& \pm 1/2$. helicity $\pm 1/2$ components \Leftarrow goldstino.
 - * Massless goldstino disappear.
- $\sum m^2$ (boson) $-\sum m^2$ (fermion) $\propto m_{3/2}^2 > 0$.
 - ▷ Realistic mass spectrum m(squark) > m(quark) possible.

Minimal supergravity

(Barbieri, Ferrara & Savoy, '82)

Field contents: "visible" sector (MSSM, ϕ) and "hidden" sector (z)

- Simplest Käler potential: $K = \varphi_i^* \varphi^i \to K_i^j = \delta_i^j$.
- $W = W_{\text{hid}}(z) + W_{\text{vis}}(\phi)$.
- SUSY breaking occurs in the "hidden" sector.

 \Downarrow flat limit ($M_{\text{Planck}} \rightarrow \infty$ with $m_{3/2}$ fixed)

- Lagrangian for the "visible" sector: softly broken (global) SUSY with:
 - ▷ universal scalar mass $m_0 = m_{3/2}$.
 - * degenerate squarks \rightarrow flavor problem resolved.
 - ▷ universal trilinear coupling $T_{U,D,E} = A_0 Y_{U,D,E} \propto m_{3/2}$.
 - ▷ minimal gauge kinetic function ($f_{ab} = \delta_{ab}$) では gaugino mass は 出ない (tree level)。
 - * loop correction, or nonminimal f_{ab} .

Electroweak symmetry breaking (EWSB)

Higgs potential (neutral component)

$$\begin{split} V_{\text{Higgs}} &= m_1^2 |h_1|^2 + m_2^2 |h_2|^2 - \left(m_3^2 h_1 h_2 + \text{H.c.}\right) + \frac{g_1^2 + g_2^2}{8} \left(|h_1|^2 - |h_2|^2\right)^2 \\ m_i^2 &= |\mu|^2 + m_{H_i}^2, \qquad i = 1, 2, \end{split}$$

- Quartic coupling ⇐ SUSY gauge interaction.
 ▷ Flat direction |h₁| = |h₂|.
- EWSB conditions:

$$m_1^2 m_2^2 - \left| m_3^2 \right|^2 < 0, \qquad m_1^2 + m_2^2 - 2 \left| m_3^2 \right| > 0.$$

$$\langle h_1 \rangle = v \cos \beta, \qquad \langle h_2 \rangle = v \sin \beta, \qquad m_W^2 = \frac{g_2^2}{2}v^2.$$

 $m_{H_1}^2 = m_{H_2}^2 = m_0^2$ では実現しない。

 \triangleright

Radiative electroweak symmetry breaking

量子補正 ⇒ Lagrangian のパラメータは繰り込み群方程式に従うrunning parameters.

- "Universal" soft SUSY breaking (← SUGRA): Planck スケール (GUT スケール) 付近の値。
- 現象論に必要なのはEWスケール付近 (O(100) GeV O(1) TeV) の値。

⇒ Top Yukawa coupling の効果が重要 (Alvarez-Gaumé, Polchinski & Wise, '83, Inoue, Kakuto & Takeshita, '84)。

RGEs (3rd gen.):

$$(4\pi)^{2} \mu \frac{d}{d\mu} m_{Q}^{2} = 2y_{t}^{2} \left(m_{Q}^{2} + m_{U}^{2} + m_{H_{2}}^{2} \right) - \frac{32}{3} g_{3}^{2} |M_{3}|^{2} + \cdots,$$

$$(4\pi)^{2} \mu \frac{d}{d\mu} m_{U}^{2} = 4y_{t}^{2} \left(m_{Q}^{2} + m_{U}^{2} + m_{H_{2}}^{2} \right) - \frac{32}{3} g_{3}^{2} |M_{3}|^{2} + \cdots,$$

$$(4\pi)^{2} \mu \frac{d}{d\mu} m_{H_{2}}^{2} = 6y_{t}^{2} \left(m_{Q}^{2} + m_{U}^{2} + m_{H_{2}}^{2} \right) + \cdots,$$

RG running of sparticle masses

 \Rightarrow considered as a realistic scenario.

mSUGRA scenario

- MSSM with *R*-parity.
- SUGRA-induced (gravity-mediated) SUSY breaking.
 - ▷ SUSY breaking parameters at GUT scale:
 - * universal scalar mass m_0 ,
 - * universal trilinear coupling A_0 .
 - \Rightarrow flavor problem under control.
 - * universal (unified) gaugino mass $m_{1/2}$,
 - ▷ EW scale input parameters: $\tan \beta = \langle h_2 \rangle / \langle h_1 \rangle$, $\operatorname{sgn}(\mu)$.
- Radiative EWSB.

基本要素は80年代前半に出揃っていた。

その後の発展: 定量的精密化

- Loop correction to Higgs boson mass (1-loop: Okada, Yamaguchi & Yanagida, '91) → 2-loop.
- 2-loop RGE (Jack, Jones, Martin, Vaughn & Yamada, '94).

MSSM particles

- *R*-even
 - \triangleright Quarks: u, c, t; d, s, b.
 - \triangleright Leptons: $e, \mu, \tau; \nu_e, \nu_\mu, \nu_\tau$.
 - \triangleright Gauge bosons: g, W^{\pm}, Z, γ .
 - ▷ Higgs bosons: h^0 , H^0 , A^0 , H^{\pm} (< 2-Higgs doublet model).

 \bullet *R*-odd

- \triangleright Squarks: \tilde{u}_L , \tilde{u}_R , \tilde{c}_L , \tilde{c}_R , \tilde{t}_L , \tilde{t}_R ; \tilde{d}_L , \tilde{d}_R , \tilde{d}_L , \tilde{d}_R , \tilde{b}_L , \tilde{b}_R .
- \triangleright Sleptons: \tilde{e}_L , \tilde{e}_R , $\tilde{\mu}_L$, $\tilde{\mu}_R$, $\tilde{\tau}_L$, $\tilde{\tau}_R$; $\tilde{\nu}_{eL}$, $\tilde{\nu}_{\mu L}$, $\tilde{\nu}_{\tau L}$.
 - * 一般に世代、Left-Right の混合有り。
- \triangleright Gluino: \tilde{g} .
- ▷ Chargino = mixture of charged gauginos & higgsinos: $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$ (Dirac).
- ▷ Neutralino = mixture of neutral gauginos & higgsinos: $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ (Majorana).

MSSM particles

LSP: stable, neutral. \Rightarrow Lightest neutralino or sneutrino.

mSUGRA では、 $m(\tilde{\nu}) > m(\tilde{\tau})$ になりやすい (RG running \oplus Left-Right mixing)。

 \Rightarrow 大半の場合 neutralino LSP $\tilde{\chi}_1^0$.

Constraints from LHC

CERN Large Hadron Collider: proton-proton collider at $\sqrt{s} = 7 \text{ TeV}$ (2010-2011), $\sqrt{s} = 8 \text{ TeV}$ (2012).

Experiments:

- SUSY/Higgs search: ATLAS, CMS.
- *B* physics: LHCb.

Main target: colored SUSY particles = squark \tilde{q} , gluino \tilde{g} .

Production: $q g \to \tilde{q} \tilde{g}$, $g g \to \tilde{q} \tilde{q}^*$, $g g \to \tilde{g} \tilde{g}$.

• R-parity \rightarrow sparticles are produced in pairs.

Decay: $\tilde{q} \to q \, \tilde{\chi}_1^0$, $\tilde{g} \to q \, \bar{q} \, \tilde{\chi}_1^0$.

- LSP (lightest neutralino $\tilde{\chi}_1^0$) は見えない。 \Rightarrow missing momentum. ▷ Missing transverse energy (\mathcal{E}_T) を測る。
- high-energy quark \rightarrow hadronic "jet".

Typical signal: excess in jets $+ \not\!\!\!E_T + 0$ lepton (μ or e).

 \Rightarrow No excess found.

mSUGRA interpretation: $m(\tilde{g}) > 1 \text{ TeV}, m(\tilde{q}) > 1.5 \text{ TeV}.$

(ATLAS-CONF-2012-109)

mSUGRA interpretation

mSUGRA interpretation: $m(\tilde{g}) > 1 \text{ TeV}, m(\tilde{q}) > 1.5 \text{ TeV}.$

		ATLAS SUSY	Searches* - 95% CL Lower Limits (Status: S	USY 2012)	
S	MSUGRA/CMSSM : 0 lep + J's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q = g mass		
che	MSUGRA/CMSSM : 1 lep + J's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV $q = g \text{ mass}$	$Ldt = (1.00 - 5.8) \text{ fb}^{-1}$	
ear	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV g mass $(m(\hat{q}) < 2 \text{ TeV}, \text{ light } \chi_1^{\gamma})$		
e Se	Pheno model : 0 lep + J's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV Q MASS $(m(\hat{g}) < 2 \text{ TeV}, \text{ light } \chi_1)$	IS = 7,8 IEV	
sive	Gluino med. χ (g \rightarrow q $\overline{q}\chi$) : 1 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041]	900 GeV g mass $(m(\chi_1) < 200 \text{ GeV}, m(\chi^2) = \frac{1}{2}(m(\chi_1) + 200 \text{ GeV})$	+ <i>m</i> (g)) ΛΤΙΛς	
shire	GMSB: 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	1.24 TeV g mass $(\tan\beta < 15)$	Broliminan	
Inc	GIVISB: $1-2^{T} + 0 - 1$ lep + $JS + E$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-112]	$\frac{1.20 \text{ TeV}}{\sim} g \text{ mass } (\tan\beta > 20)$	Freiminary	
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV g mass $(m(\chi_1) > 50 \text{ GeV})$		
	$g \rightarrow bb\chi_{1}^{\prime}$ (virtual b) ~ 0 lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV g mass $(m(\chi_1) < 300 \text{ GeV})$		
ks bé	$\tilde{g} \rightarrow bb\chi$ (virtual b) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	1.02 TeV g mass $(m(\chi) < 400 \text{ GeV})$		
lar	$\tilde{g} \rightarrow \tilde{b} b \chi_1 \text{ (real b) : } 0 \text{ lep } + 3 \text{ b-J's } + E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	1.00 TeV g mass $(m(\chi_1) = 60 \text{ GeV})$		
sqi	$g \rightarrow tt \chi_{10}(virtual t)$: 1 lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	710 GeV g mass $(m(\chi_1) < 150 \text{ GeV})$		
n. m	$g \rightarrow tt \chi_1^{-}$ (virtual t) : 2 lep (SS) + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	850 GeV g mass $(m(\chi_1) < 300 \text{ GeV})$		
ge inc	$\tilde{g} \rightarrow t \tilde{t} \chi_1^{\circ}$ (virtual t) : 3 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108]	760 GeV g mass (any $m(\chi_1) < m(g)$)		
glu	$\tilde{g} \rightarrow t \tilde{t} \chi_{J}^{\circ}$ (virtual t): 0 lep + multi-j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV g mass $(m(\bar{\chi}_1) < 300 \text{ GeV})$		
	$\tilde{g} \rightarrow t \tilde{\chi}_{L}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	940 GeV g mass $(m(\bar{\chi}_1) < 50 \text{ GeV})$		
	$\widetilde{g} \rightarrow t t \widetilde{\chi}_1^\circ$ (real t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	820 GeV g mass $(m(\chi_1) = 60 \text{ GeV})$		
(a =	bb, $b_1 \rightarrow b \tilde{\chi}_1$: 0 lep + 2-b-jets + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106]	480 GeV b mass $(m(\tilde{\chi}_1) < 150 \text{ GeV})$		
ion	bb, $b_1 \rightarrow t \tilde{\chi}_1^{\pm}$: 3 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108]	380 GeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi_1^{\pm}}) = 2 m(\widetilde{\chi_1^{0}}))$		
lua	tt (very light), t $\rightarrow b\tilde{\chi}_1^{\pm}$: 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059]135 GeV	t mass $(m(\bar{\chi}_1^{-0}) = 45 \text{ GeV})$		
sc	tt (light), $t \rightarrow b \tilde{\chi}_{4}^{\pm}$: 1/2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-173 C	Bev t mass $(m(\tilde{\chi}_1^0) = 45 \text{ GeV})$		
en. t pi	$\widetilde{t}\widetilde{t}$ (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}_{0}^{0}$: 0 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447]	380-465 GeV t mass $(m(\tilde{\chi}_{1}^{0}) = 0)$		
d g 'ec	\widetilde{tt} (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}_{\bullet}$: 1 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 GeV t mass $(m(\chi_1^{-0}) = 0)$		
3r dii	tt (heavy), t \rightarrow t $\tilde{\chi}_{1}$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071]	298-305 GeV t mass $(m(\tilde{\chi}_{1}^{0}) = 0)$		
	tt (GMSB) $Z(\rightarrow II) + b - jet + E_{T miss}$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV t mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)		
ct /	$\tilde{I}_{L}\tilde{I}_{L}, \tilde{I} \rightarrow \tilde{\chi}_{0}^{0}$: 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-180	GeV I mass $(m(\tilde{\chi}_1^0) = 0)$		
EN	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow iv(iv) \rightarrow iv\widetilde{\chi}_{1}^{u}: 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076]	120-330 GeV $\widetilde{\chi}_{1}^{\pm}$ MASS $(m(\widetilde{\chi}_{1}^{0}) = 0, m(\widetilde{l}, \widetilde{\nu}) = \frac{1}{2}(m(\widetilde{\chi}_{1}^{\pm}) + m(\widetilde{\chi}_{1}^{0})))$		
	$\widetilde{\chi}_{\lambda}^{\pm}\widetilde{\chi}_{\lambda}^{0} \rightarrow 3I(Ivv) + v + 2\widetilde{\chi}_{\lambda}^{0}$: 3 lep + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-201 <mark>2-077]</mark>	60-500 GeV $\widetilde{\chi}_1^{\pm}$ MASS $(m(\widetilde{\chi}_1^{\pm}) = m(\widetilde{\chi}_2^{0}), m(\widetilde{\chi}_1^{0}) = 0, m(\widetilde{l}, \widetilde{v})$ as above)		
Ø	AMSB (direct $\tilde{\chi}_{1}^{\pm}$ pair prod.) : long-lived $\tilde{\chi}_{1}^{\pm}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-111] 2	10 GeV $\widetilde{\chi}_{1}^{\pm}$ MASS (1 < $\tau(\widetilde{\chi}_{1}^{\pm})$ < 10 ns)		
ive les	Stable g R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	985 GeV ĝ mass		
ng-l	Stable t R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	683 GeV t mass		
-on pa	Metastable g R-hadrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	910 GeV ğ mass (τ(ğ) > 10 ns)		
-	GMSB : stable 7	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	310 GeV $\tilde{\tau}$ MASS (5 < tan β < 20)		
	RPV : high-mass eµ	L=1.1 fb ⁻¹ , 7 TeV [1109.3089]	1.32 TeV \tilde{V}_{τ} Mass $(\lambda_{311}^{*}=0.10, \lambda_{312}=0.05)$		
\sum	Bilinear RPV : 1 lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1109.6606]	760 GeV $\tilde{q} = \tilde{g} \text{ mass } (c\tau_{LSP} < 15 \text{ mm})$		
RF	BC1 RPV : 4 lep + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035]	1.77 TeV ĝ mass		
	RPV $\tilde{\chi}_{4}^{0} \rightarrow qq\mu$: μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-113]	700 GeV $\tilde{\mathbf{q}}$ mass (3.0×10 ⁻⁶ < λ_{211} < 1.5×10 ⁻⁵ , 1 mm < ct <	1 m, g decoupled)	
5	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-110]	100-287 GeV Sgluon mass (incl. limit from 1110.2693)		
)the	Spin dep. WIMP interaction : monojet + $\dot{E}_{T.miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	709 GeV M [*] SCale (m_{χ} < 100 GeV, vector D5, Dirac χ)		
^O Sp	bin indep. WIMP interaction : monojet $+E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	548 GeV M [*] SCale $(m_{\chi} < 100 \text{ GeV}, \text{ tensor D9}, \text{ Dirac } \chi)$		
		10 ⁻¹	1 1	0	
*Only	*Only a selection of the available mass limits on new states or phenomena shown. INIASS Scale [10				

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

(ATLAS, SUSY2012)

SUSY

Higgs boson search at ATLAS & CMS

SM Higgs(-like) boson discovered: $m(h) \approx 125 \text{ GeV}$.

SUSY 模型へのインパクト?

- 基研研究会 標準模型を超えた素粒子理論へ向けて
 - ~新しい実験結果をふまえて~(2012.3.19-23)で議論。[まとめPDF]

MSSM Higgs boson masses

$$V_{\text{Higgs}} = m_1^2 |h_1|^2 + m_2^2 |h_2|^2 - \left(m_3^2 h_1 h_2 + \text{H.c.}\right) + \frac{g_1^2 + g_2^2}{8} \left(|h_1|^2 - |h_2|^2\right)^2$$

$$\frac{\partial V_{\text{Higgs}}}{\partial h_i} = 0 \quad \Longrightarrow \quad \langle h_1 \rangle = v \cos \beta, \quad \langle h_2 \rangle = v \sin \beta.$$

Physical Higgs bosons: charged H^{\pm} , pseudoscalar A^{0} , scalar H^{0} , h^{0} .

Tree level mass relations:

$$m_{A^0}^2 = m_1^2 + m_2^2, \quad m_{H^{\pm}}^2 = m_{A^0}^2 + m_W^2,$$
$$m_{H^0,h^0}^2 = \frac{1}{2} \left\{ m_{A^0}^2 + m_Z^2 \pm \sqrt{\left(m_{A^0}^2 + m_Z^2\right)^2 - 4m_{A^0}^2 m_Z^2 \cos^2 2\beta} \right\}.$$
$$\frac{m_{h^0}^2 < m_Z^2 \cos^2 2\beta}{m_{H^0}^2 \cos^2 2\beta}.$$

• $m_{A^0} \gtrsim 200 \text{ GeV}$ 程度なら、 h^0 (軽い方)はほぼ SM Higgs とみなしてよい。

MSSM Higgs boson masses

Top Yukawa による loop correction が重要 (Okada, Yamaguchi & Yanagida, '91)。

1-loop approximate formula:

$$m_{h^0}^2 = m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right],$$

 $M_S = \sqrt{m_{\widetilde{t}_1} m_{\widetilde{t}_2}}, \qquad X_t$: Left-right mixing of \widetilde{t} .

● 現在は 2-loop まで計算されている。

 $m_{h^0} > m_Z$ になるには:

- Heavy stop,
- Large stop left-right mixing (max: $X_t/M_S = \sqrt{6}$),

 $m_{h^0} \approx 125 \, \text{GeV} \Longrightarrow SUSY parameters に制限。$

MSSM Higgs boson masses

Constraints from flavor physics

Flavor Changing Neutral Current (FCNC) processes が重要な制限。

mSUGRA (degenerate squark mass \oplus RG running) では、 Quark 質量行列の構造 \Rightarrow squark 質量行列の構造

$$rac{m_{u,c}}{m_W} \ll 1 \lesssim rac{m_t}{m_W} \; \Rightarrow \; m(\widetilde{u}) pprox m(\widetilde{c}) > m(\widetilde{t})$$

- $K^0 \overline{K}^0$ 混合への寄与は抑えられる。
- Squark フレイバー混合は主に \tilde{q}_L 、 ~ V_{CKM} 。
- *b* の物理には効き得る。
 - $\triangleright b \to s \gamma$ $\triangleright B_s \to \mu^+ \mu^-$

$b \to s \, \gamma$ in <code>mSUGRA</code>

- $B(b \rightarrow s \gamma)_{exp} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$ (Belle+Babar+CLEO, '10)
- $B(b \to s \gamma)_{SM} = (3.15 \pm 0.23) \times 10^{-4}$ (Misiak, '07, $O(\alpha_s^2) \pm c$)

- SM(W) + H[−] と squark-"ino" ループの寄与の相対符号は模型のパラメー タによって決まる (Higgsino mass µ と gaugino mass m_{1/2} の相対符号 が主)。
- SUSY 粒子による寄与が標準模型(W)分と同等の大きさになり得る。
 - ▷ $b \rightarrow s \gamma$ はクォークのカイラリティが反転する $(b_R \rightarrow s_L)$ 過程。
 - * 標準模型では m_b がカイラリティ反転の最大要因。
 - * squark- "ino" ループでは gaugino/higgsino の質量等でカイラリティ 反転を生じる。

 $b \to s \, \gamma$ in mSUGRA

SUSY braking パラメータに重要な制限を与えていた。

 $b \to s \, \gamma$ in <code>mSUGRA</code>

(Mahmoudi, '12)

• $\overline{sk} : CMS exclusion limit with 4.4 fb^{-1} data.$

$B_s \rightarrow \mu^+ \mu^-$ in mSUGRA • $B(B_s \rightarrow \mu^+ \mu^-)_{exp} < 4.5 \times 10^{-9}$ at 95% C.L. (LHCb, '12) • $B(B_s \rightarrow \mu^+ \mu^-)_{SM} = (3.58 \pm 0.36) \times 10^{-9}$

標準模型値に迫って来た。

- SUSY breaking による湯川相互作用への補正が重要な寄与。
 ▷ B_{SUSY} ≫ B_{SM} になり得るとして注目された。
- B($B_s \to \mu^+ \mu^-$)_{SUSY} $\propto \frac{\tan^6 \beta}{m_A^4} \Rightarrow \tan \beta \gtrsim 40$ で強い制限。

$$B_s
ightarrow \mu^+ \, \mu^-$$
 in mSUGRA

 $\tan \beta = 50$ の場合 (Mahmoudi, '12)

• 黄色: LHCb limit for $B(B_s \to \mu^+ \mu^-)$

Conclusion

- SUSY は new physics の候補。
- LHC SUSY search でシグナルは見つかっていない。
 - ▷ spectrum に制限:

 $m(\widetilde{g}) > 1 \text{ TeV}, \ m(\widetilde{q}) > 1.5 \text{ TeV}.$

- 125 GeV Higgs は MSSM と整合。
- $B_s \rightarrow \mu^+ \mu^-$ で large tan β に直接探索より強い制限。