益川塾セミナー

14 July 2012, 京都産業大学

超低温原子気体の精密量子制御: 強相関量子多体系の量子シミュレーションと 基礎物理学への応用

Kyoto University, JST

Y. Takahashi

Quantum Simulation

Quantum SimulationHubbard Model: $H = -J \sum_{\langle i,j \rangle} c_i^+ c_j^- + U \sum_i n_{i\uparrow} n_{i\downarrow}$ $\stackrel{J}{\stackrel{i-th}{\stackrel{j-th}{\xrightarrow{j-th}}}$

Magnetism, Superconductivity

Numerical Calculation
 DMFT(動的平均場)
 Gutzwiller
 QMC(量子モンテカルロ)
 DMRG(密度行列繰り込み群)
 Exact Diagonalization (厳密対角化)

Cold Atoms in Optical Lattice

Outline

Atom Manipulation Technique

Laser Cooling and Trapping Optical Lattice Tuning Interatomic Interaction

Quantum Simulation of Hubbard Model Using Alkali Atoms in an Optical Lattice 1)Bose-Hubbard Model

Superfluid-Mott Insulator Transition Quantum Gas Microscope

2)Fermi-Hubbard Model

Mott insulator

Laser Cooling and Trapping

Experimental Setup for Cold Atom

Experimental Setup for Cold Atom

Atomic Gases Reach the Quantum Degenerate Regime

"Boson versus Fermion"

Momentum Distribution [E. Cornell et al, (1995)]

Spatial Distribution [R. Hulet et al, (2000)]

Optical Absorption Imaging of Atoms cold atoms $I_{incident}(x,y)$ $I_{transmission}(x,y)$ CCD inf inf $f_{transmission}(x,y)$ inf $f_{transmission}(x,y)$ inf $f_{transmission}(x,y)$ f

■ *In-Situ* Image: — Reflect "**density**" distribution in a trap

 Reflect "**momentum**" distribution in a trap $x = p / M \cdot t_{TOF}$

Optical Lattice

[C. Becker *et al.*, New J. Phys. **12** 065025(2010)]

Quantum Simulation of Hubbard Model using "Cold Atoms in Optical Lattice"

[D. Jaksch *et al.*, PRL, **81**, 3108(1998)]

$$H = -J\sum_{\langle i,j \rangle} c_i^+ c_j + U\sum_i n_{i\uparrow} n_{i\downarrow}$$

$$J = E_R (2/\sqrt{\pi}) s^{3/4} \exp(-2\sqrt{s})$$

$$U = E_R a_s k_L \sqrt{8/\pi} s^{3/4}$$

$$s \equiv V_o / E_R \quad E_R \equiv (\hbar k_L)^2 / 2m \quad a_s: \text{ scattering length}$$

$$Controllable Parameters$$
hopping between lattice sites : J lattice potential : V_o
On-site interaction : U Feshbach Resonance : a_s
filling factor (e- or h-doping) : n atom density : n
$$Various geometry$$

Feshbach Resonance:

ability to tune an inter-atomic interaction

Collision is in Quantum Regime

It is described by s-wave scattering length a_s

$$a_{s} = -O_{l} / \kappa$$
$$\sigma_{0} = 4\pi |f_{0}|^{2} = 4\pi |a_{s}|^{2}$$

C

/ 1_

230

Coupling between "Open Channel" and "Closed Channel"

Control of Interaction(a_s)

[C. Regal and D. Jin, PRL90, 230404(2003)]

Quantum Simulation of Hubbard Model Using Ultracold Alkali Atoms in an Optical Lattice

Bosons in a 3D optical lattice

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i (n_i - 1) + \sum_i \mathcal{E}_i n_i$$

"Bose-Hubbard Model"

Interference Fringe :
the direct signature of the phase coherence
"Sudden Release"

$$\int free expansion t_{TOF}$$

$$x \leftrightarrow \hbar k$$

$$x = (\hbar k / M) t_{TOF}$$

$$n(k) \propto \left| \widetilde{w}(k) \right|^2 G(k)$$
Fourier Transform of the Wannier function
no long-range order: $\langle \hat{a}_R^+ \hat{a}_{R'} \rangle = \delta_{R,R'} \rightarrow G(k) = N$
uniform long-range order: $\langle \hat{a}_R^+ \hat{a}_{R'} \rangle = 1 \rightarrow G(k) = \frac{\sin^2(kdN/2)}{\sin^2(kd/2)}$
peaks at $\pm 2n\hbar k_L(n=0,1,2...)$

Bose-Hubbard Model:

"Superfluid - Mott-insulator Transition"

[M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415,39 (2002)]

[C. Becker et al., New J. Phys. 12 065025(2010)]

Phase Diagram of Repulsively Interacting Bosons

Shell Structure of Mott States

High-Resolution RF Spectroscopy: Observation of Mott Shell Structure

[G. K. Campbell et al., Science 313, 649 (2006)]

predicted contours of the shells. Absorption images taken for rf frequencies between the peaks (images i to iv) show a much smaller signal. The field of view was 185 µm by 80 µm.

$$hv_n = \frac{U}{a_{11}}(a_{12} - a_{11})(n-1)$$

New Technique: Single Site Observation

[WS. Bakr, I. Gillen, A. Peng, S. Folling, and M. Greiner, Nature 462(426), 74-77(2009)]

Fluorescence Imaging

Single Site Resolved Detection of MI

[WS Bakr, et al., Science 329, 547–550 (2010)]

New Technique: Single Site Manipulation

[C. Ewitenberg et al, Nature 471, 319(2011)]

Manipulation of Mott Shell / Filter Cooling (Maxwell Demon)

[arXiv:1105.5834v1, W. S. Bakr, et al.,]

Recooled superfluid

Dephased cloud

Fermions in a 3D optical lattice

$$H = -J\sum_{\langle i,j \rangle} C_i^{\dagger} C_j + U\sum_i n_{i,\uparrow} n_{i,\downarrow} + \sum_i \mathcal{E}_i n_i$$

"Fermi-Hubbard Model"

Phase Diagram of High-T_c Cuprate Superconductor

[in T. Moriya and K. Ueda, Rep. Prog.Phys.66(2003)1299] There is controversy in the under-dope region

Current Status of Quantum Simulation of Fermi Hubbard Model: "Formation of (paramagnetic) Mott insulator"

"A Mott insulator of ⁴⁰K atoms (2-component)"

[R. Jördens et al., Nature 455, 204 (2008)] [U. Schneider, et al., Science 322,1520(2008)]

Current Status of Quantum Simulation of Fermi Hubbard Model: "Formation of (paramagnetic) Mott insulator"

[R. Jördens *et al.*, PRL **104**, 180401 (2010)] **40K atoms (2-component)**

Other Progress Spin-Orbit Interaction in Cold Atoms:

$$\mathcal{H} = \frac{\hbar^2 k^2}{2m} - \frac{g\mu_B}{\hbar} \mathbf{S} \cdot (\mathbf{B}^{(D)} + \mathbf{B}^{(R)} + \mathbf{B}^{(Z)}), \quad \mathbf{B}^{(R)} = \alpha(-k_y, k_x, 0)$$

Summary1

Quantum Simulation of Hubbard Model Using Alkali Atoms in an Optical Lattice

Tuning Interatomic Interaction: magnetic Feshbach resonance Superfluid-Mott Insulator Transition *matter-wave interference, spectroscopy* Quantum Gas Microscope SF-Mott insulator transition, Single-site manipulation, entropy reduction by Maxwell demon Fermi Mott Insulator SU(2) Mott insulator Spin-Orbit Inteaction BEC, Fermi gas

Quantum Simulation of Hubbard Model Using Ultracold Ytterbium Atoms in an Optical Lattice

1)Bose-Hubbard Model:

SF-Mott Insulator Transition by Laser spectroscopy

2)Fermi-Hubbard Model: Fermi Mott Insulator SU(6) Mott insulator, Pomeranchuk Cooling,

3)Bose-Fermi-Hubbard Model:

Mixed Mott Insulator

4)Plan

[†]Based upon ¹²C. () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

¹⁶⁸ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb	¹⁷³ Yb	¹⁷⁴ Yb	¹⁷⁶ Yb
(0.13%)	(3.05%)	(14.3%)	(21.9%)	(16.2%)	(31.8%)	(12.7%)
Boson	Boson	Fermion	Boson	Fermion	Boson	Boson
Isotopic Tuning of Interatomic Interaction

[M. Kitagawa, et al, PRA77, 012719 (2008)]

Collaboration with R. Ciurylo, P. Naidon, P. Julienne

Unique Features of Ytterbium Atoms

Rich Variety of Isotopes

¹⁶⁸ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb	¹⁷³ Yb	¹⁷⁴ Yb	¹⁷⁶ Yb
(0.13%)	(3.05%)	(14.3%)	(21.9%)	(16.2%)	(31.8%)	(12.7%)
Boson	Boson	Fermion	Boson	Fermion	Boson	Boson

¹⁷³Yb (I=5/2)
$$H_{int} = \frac{4\pi\hbar^2 a_s}{M} \delta(\vec{r_1} - \vec{r_2})$$
 SU(6) system
 \longrightarrow novel magnetism

[M. A. Cazalilla, *et al.*, N. J. Phys**11**, 103033(2009), Hermele, et al., PRL 103, 130351 (2009); A. V. Gorshkov, *et al.*, Nat. Physics, 6, 289(2010)]

Optical Feshbach Resonance

$$S_{00} = \frac{\Delta - i\Gamma_{s} / 2 + i\gamma / 2}{\Delta + i\Gamma_{s} / 2 + i\gamma / 2}$$
$$\Gamma_{s} \propto \left| \langle b | V_{las} | f \rangle \right|^{2}$$
$$\gamma : \text{spontaneous decay rate}$$
$$\Delta : \text{detuning from the PA resonance}$$

[J. Bohn and P. Julienne PRA(1999)]

Nanometer-scale Spatial Modulation

Unique Features of Ytterbium Atoms

Ultra-narrow Optical Transitions

Quantum Degenerate Gases of Yb

[Y. Takasu *et al.*, PRL **91**, 040404 (2003)] [T. Fukuhara *et al.*, PRA **76**, 051604(R)(2007)] [S. Sugawa *et al.*, PRA **84**, 011610(R)(2011)]

Quantum Degenerate Mixtures of Yb

[T. Fukuhara et al., Phys. Rev. A 79, 021601(R) (2008)] [S. Taie et al., PRL105, 190401(2010)]

173Yb(Fermion) +174Yb(Boson)

¹⁷³Yb(Fermion) +¹⁷⁰Yb(Boson)

¹⁶⁸Yb(Boson) + ¹⁷⁴Yb(Boson) ¹⁷¹Yb(Fermion) + ¹⁷³Yb(Fermion)

 $T/T_{\rm F} = 0.33$

 $T/T_{\rm F} = 0.3$

Boson ¹⁷⁴Yb in a 3D optical lattice

Superfluid-Mott Transition

T. Fukuhara, et al., PRA. 79, 041604R (2009);H. Moritz and T. Esslinger, Physics 2,31(2009)(Viewpoint)

→ Unique Applications to Quantum Computing
 K. Shibata *et al*, Appl. Phys. B 97, 753(2009). Single-Atom Addressing by MRI
 A. J. Daley *et al*, PRL. 101, 170504(2008). Dual Lattice Configuration
 A. V. Gorshkov *et al*, PRL. 102, 110503(2009). Few-Qubit Quantum Register
 F. Gerbier and J. Dalibard, New J. Physics 12, 033007(2010). Gauge fields

Spectroscopy of Atoms in an Optical lattice

Spectroscopy of Atoms in an Optical lattice

Spectroscopy of Atoms in a Mott Insulating State

Spectroscopy of Superfluid-Mott Insulator Transition

Spectroscopy of Superfluid-Mott Insulator Transition

"Comparison with finite temperature Gutzwiller calculation by Inaba" (preliminary)

Spectroscopy of Superfluid-Mott Insulator Transition

Fermion (¹⁷³Yb) in a 3D optical lattice $H = -t_F \sum C_i^+ C_j + U_{FF} \sum n_{m_F,i} n_{m_F',i}$ 173 Yb(I=5/2) $a_{\rm s}=10.5~{\rm nm}$ $\langle i, j \rangle$ $i, m_F \neq m_F$ SU(6)Mott-state $\lambda_{\text{lattice}} = 532 \text{ nm}$

266ni

 $\lambda_{\text{lattice}} = 532 \text{ nm}$

 $\lambda_{\text{lattice}} = 532 \text{ nm}$

"Formation of SU(6) Mott insulator"

[S. Taie *et al*,]

Atomic Pomeranchuk Cooling

[¹⁷³Yb atoms in optical lattice; Taie *et al*,]

Pomeranchuk Cooling

Pomeranchuk Cooling

[Pomeranchuk, (1950)]

 \longrightarrow Discovery of Superfluid ³He by Osheroff, Lee, Richardson

Initial state: Spin *de*polarized and also with *degeneracy*:

Final state: Spin *de* polarized and also with *localization*

Adiabatic change $s \sim k_B \pi^2 T/T_F$ $s \sim k_B \ln(N)$ liquid ³He atoms in a trap solid ³He atoms in Mott Insulator

"entropy flows from motional degrees of freedom to spin, which results in the low temperature"
 "Pomeranchuk Cooling of an Atomic Gas"

Spin Degrees of Freedom is Cool

Demagnetization Cooling [W. J. De Haas, *et al.*, (1934)]

Strongly Interacting Two Different Mott Insulators

[S. Sugawa, K. Inaba, *et al.*, arXiv:1011.4503v2] Bosonic Mott insulator Fermionic Mott Insulator

Mixture of Spinless Boson and SU(6) Fermion in a 3D optical lattice

Dual Mott Insulators of Boson and Fermion:

Measurement of Site Occupancy by Photoassociation

Repulsively Interacting Bose-Fermi Mott Insulators

[Sugawa et al. NP. 7, 642–648 (2011)]

Repulsively Interacting Bose-Fermi Mott Insulators

[Sugawa et al. NP. 7, 642–648 (2011)]

Repulsively Interacting Bose-Fermi Mott Insulators

Strongly Interacting Two Different Mott Insulators [S. Sugawa, K. Inaba, *et al.*, arXiv:1011.4503v2] Bosonic Mott insulator Fermionic Mott Insulator **Phase Separation** Filling (N_F) **Composite Particles Mixed Mott Insulator** Attractive ($U_{\rm BF}$ <0) $U_{\rm BF}=0$ Repulsive ($U_{\rm RF}$ >0) Interspecies Interaction

Anderson Hubbard Model with Li-Yb Mixture

Fermion(⁶Li)-Boson(¹⁷⁴Yb)

 $T/T_F = 0.08 \pm 0.01$

Fermion(⁶Li)-Fermion(¹⁷³Yb)

 $T/T_F = 0.07 \pm 0.02$

[H. Hara et al. , PRL 106, 205304, (2011)]

 $M_{174_{Vb}} / M_{6_{Ii}} \cong 29$

[D. Semmler, K. Byczuk, and W. Hofstetter, PRB **81**, 115111(2010)]

Summary2

Quantum Simulation of Hubbard Model Using <u>Yb atoms</u> <u>in an Optical Lattice</u>

 Bose-Hubbard Model: Superfluid-Mott Insulator Transition High-Resolution Laser spectroscopy
 Fermi-Hubbard Model: Fermi Mott Insulator

SU(6) Mott insulator Pomeranchuk Cooling,

Close to quantum magnetism

3)Bose-Fermi-Hubbard Model:

Mixed Mott Insulaotr

4)Plan

Anderson Localization (Lieb Lattice, Spin-Orbit interaction)

(Optical and magnetic Feshbach resonance, Quantum Gas Microscope)

極低温極性分子を用いた時間反転対称性の検証

極低温原子の超精密分光による近距離重力補正の検証

Outline

Possible Test of Gravity at Short Range by Photoassociation

Possible EDM Search by using Ultracold HgYb Molecules

Outline

Possible Test of Gravity at Short Range by Photoassociation

Possible EDM Search by using Ultracold HgYb Molecules

Test of the Gravitational r² Law at Short Range

Gravity at Short Range

Our Approach : Photoassociation

[M. Kitagawa, et al., PRA 77, 012719(2008)] thermal gas :~100kHz 174 Yb:v=1, J=0

Our Approach : Photoassociation

[M. Kitagawa, et al., PRA 77, 012719(2008)]

Lenard-Jones-type Potential

$$\bigvee V(r) = \frac{C_{12}}{r^{12}} - \frac{C_6}{r^6} - \frac{C_8}{r^8}$$

 $C_6 = 1931.7 E_h a_0^6$, $C_8 = 1.93 \times 10^6 E_h a_0^8$, $C_{12} = 1.3041 E_h a_0^{12}$

Our Approach : Photoassociation

[M. Kitagawa, et al., PRA 77, 012719(2008)]

 $C_6 = 1931.7 E_h a_0^6$, $C_8 = 1.93 \times 10^6 E_h a_0^8$, $C_{12} = 1.3041 E_h a_0^{12}$

@1nm
Many Advantages of Ytterbium Nice Atomic Species for this experiment !

- Heavy (N~174)
- Single Molecular Potential :No Hyperfine Structure

Contrary to Alkali Dimers

Insensitivity to magnetic field

• Many Isotopes:

¹⁶⁸Yb, ¹⁷⁰Yb, ¹⁷¹Yb, ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁴Yb, ¹⁷⁶Yb

Check the mass dependence

• Ultracold Quantum Gases :

Free from thermal shift and broadening

Our Approach : Photoassociation

Evaluation of Systematic Shifts

Light Shift due to Photoassociation Laser

Light Shift due to Optical Trapping Laser

Atoms and Molecules have slightly different polarizabilities

Collision Shift due to Atom-Dimer Collision

$$\delta_{\rm MF} = 2\pi \hbar^2 \left(\frac{2a_{\rm aa}}{\mu_{\rm aa}} - \frac{a_{\rm am}}{\mu_{\rm am}} \right) n_{\rm atom}(r)$$

 a_{am} : scattering length between atom and molecule $\{V(r) + g | \psi(r) |^2\} \psi(r) = \mu \psi(r)$

Results (Preliminary)

Eb/h [MHz] (by M. Borkowski)

 $C_6\!\!=\!\!1933.4~E_h\,{a_0}^6$, $C_8\!\!=\!\!2.086\!\times\!10^65E_h\!{a_0}^8$

$$C_{n,n} = -\frac{\hbar^2}{2\mu} \int \psi_{\mathsf{e}}^n(\vec{r}_i, R) \nabla_R^2 \psi_{\mathsf{e}}^n(\vec{r}_i, R) \, \mathsf{d}\vec{r}_i \propto \frac{1}{\mu}$$