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1. Introduction

Koide’s mass formula Koide ‘82 'Fif,
g
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Charged lepton on-shell (pole) masses:

m,. = 0.510998910 £ 0.000000013 MeV
m, = 105.658367 4 0.000004 MeV
m, = 1776.82 £ 0.16 MeV
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= cos45° = —
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= 1.000006 £ 0.000007

7 x 107° accuracy !
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Problem of QED correction

If running masses m;(u) at p > My satisfy Koide’s relation,
QED corr. violates the relation among the pole masses:

~
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mio = (14 2 { s (2 )+

0 (x/z CcOSs 9) ~ 0.1% 130 times larger than exp. error !

Problem against an idea, that a UV theory (beyond SM) predicts Koide’s relation.

Rem: Corr. of the form const. X m; does not affect Koide’s relation.

> QED corr. is indep. of p

Other corr. (W,Z, Higgs, would-be Goldstone) are smaller than exp. error.



Interesting scenario to generate Koide’s formula Koide, et al.
Charged lepton mass matrix w1 (1) 0 0
My o (@) (D) with (b)) = 0 va(pt) 0
0 0 va ()
originating from effective higher-dimensional op.
.FI:' (ﬁ) r‘:t) .r‘:t) !
O = A2 Vi Pik Prj @ €rj S ) £ ) “:O>
| 1 |
| 1 |
e.g. via see-saw mechanism = : ' :
YL H H' en
vi(p) +v2(p) + vs(p) 1

Minimize potential V(& _ . : _ —
(#) V3 [w1()?2 + va(p)? +vs(p)?] V2

(However, no potential in previous models is protected by sym. )

In a similar scenario and EFT valid at 4 < A, we examine indication of Koide’s
formula and charged lepton spectrum.
We arrive at a specific family gauge symmetry.
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2. Cancellation of QED correction

We consider U (3) ~ SU (3) x U (1) family gauge sym.

* Generators

¢ 1 . 1 @
tr (T°T7) = Eam*, T = 77 T" = NG 1, T°= o3
0<a B<8 1<a<8

‘Reps. ¥r: (3,1), er: (3,—1), ®: (3,1), ¢: (1,0)
[tranSf. T,I(JL—}U’I,/JL, ER—}UECER, b - Udd ; U:EX])('EQUETUE)]

 Higher-dimensional op.
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by ® BT pep (Largersym. U(3)x0(3): )

¢ — U®0T, 00T =1

(®) breaks U(3) symmetry completely, and the spectrum of family gauge bosons
Is determined by it.
vy () 0 0

(P) = 0 wva(p) O
0 0 wva(p)
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Rad. corr. by family gauge bosons has the same form as the QED caorr.
but with opposite sign:

family gauge boson

O,
¢ f" X EH f”’
c yole 30517 au‘z ﬁ,(,U, VEw b
Omi — pe log (Ui(,u)E) + c Tni(:u*) ’ mi(p) = %Uﬁ(#)z

v; (1) defined from the minimum of 1-loop effective pot. of @ in Landau gauge.

vi(p) + v (p) + vs(p) o . .
If STt T o V2 is satisfied at tree-level, there is

no O(ay) correction to this relation.

» The form of 6mf”l° is determined by multiplicative renormalization of O
and by the sym. breaking pattern: U(3) — U(2) — U(1) — nothing.

1 ole ,
If a = s dm?" cancels QED corr. for arbitrary p (> My)



¥ and er in same rep. of SU(3) or O(3): ¥ : (3,Q), er: (3,Q")

;JWI‘Q /—\ .
T €r
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| ap - (@) jr(P)r;
O ~ — X KPpipep x —1
T A2

—>  (0me, dmy,om;) o< (1,1,1)

¥ and er in conjugate reps of SU3): v : (3.Q), er: (3,Q")

(@7 ¢

f= (=TT

Multiplicative renormalization

Other than in Landau gauge, each rad. corr. becomes quite intricate:

m; log m; corrections in wL pZy¥pand eg pZe er ;J/\/\/\LA

O(ap) corrections to the relation among v;’s.
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Rad. corr. by family gauge bosons has the same form as the QED caorr.
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and by the sym. breaking pattern: U(3) — U(2) — U(1) — nothing.

1 ole ,
If a = s dm?" cancels QED corr. for arbitrary p (> My)



Speculation

1
a(m,) = EQF(ﬂfF) within 1% accuracy ?

If SU(2), and U(3)r are unified at around 10® TeV, the above relation

would be satisfied, since sin® Oy ~ I

60—
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2 3 r 5 6 logio GeV

Tuning required for the unification scale is about a factor of 3.




Charged lepton spectrum and U(3) x O(3) sym.

K U(3)x0(3)
Rem: O, = )

T
Lt eer ((p—w(po]‘, 00T =1

Usually difficult to obtain, on top of Koide’s relation, a hierarchical spectrum
without fine tuning. V1 iUyt 0s = /T, 1 /T, 1 /T,

v Me + \/mﬁ + /M i 1

— cos 45° = —

\v,f’:i:! (Mme + my + my) V2

Nevertheless, assuming that Koide's relation is protected, and mimimizing
a U(3)xO(3)-inv. potential of @, realistic lepton spectrum consistent with
experimental data is obtained.



A relation for @ representing Koide’s formula:

00
Let b = O™ T. tr (T°T#) = iéag (il BT
‘ 2
Then, if the condition
((Dl])E — (I)a (I)(L (I)Lx E R

is satisfied, Koide’s relation is satisfied by the
eigenvalues of & . Koide ‘90 H R

With above constraint, and minimize
2 -
V(@) = —p?tr(@1 @) + A [tr(@T @) +g1 tr(2T @ 2T @) + gy tr(@ 2T 27 @)

If 1> g2 > g1, arealistic spectrum, consistent with experimental data, is obtained.
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Important aspect

K
¥ Cancellation of QED corr. with e ¥ ® " per jnvariant under
U(3) x O(3) family gauge symmetry.

¥ Potential with the same sym. === realistic m. : m, : m, for g > a
(provided Koide's relation is protected).

Va = — i %7 0% £ X (27 %)* + gy tr (T @ BT D) 4 gz tr(@ T @ @)

4 )
Exp. values  (y/1ies /T, /T115) o (0.01647, [}.236

Prediction for
| Precietiontor (yime, v/, v/imy) o (0.01775,0.23520.9718D
\- Y,

(vMey /My, /M) ‘%:é/\
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3. A Model: EFT and Potential
predicting Koide’s formula and charged lepton spectrum

We introduce a model with U(3) X O(3) sym. asan EFT validat p < A

Motivated by 9-dim. geometrical picture for Koide’s relation and sym. of VvV (®),
we assume U(9) as sym. above the cut-off scale.

p> A U(9) O — UL F

1 s
l cf. (@) = T en
nw=A U(3)x0(3) ® — UdOT

2 -
V(@) = —p’tr(@7®) + A {tr(@* @)} + g1 tr(@T @ T @) + gy tr(P & ¥ T
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X (45,Q")

Scalars U (9) 1 (9,Q),
2nd-rank sym. tensor X — Uy X U
unitary XX =1,

V(®, X) with U(3)xO(3) sym. and sym. enhancement to U (9).

In finite region of param. space, Koide’s relation is satisfied by
the eigenvalues of (®).

Sketch of argument

U (9) inv. potential
MI’ — _HE (I)uﬁ(]:)r_x _|_ A ((I)r_x:ic(]}u)g_l_ .

pd

Vx = const. < X is unitary

Vox = ek |7 X7 7| + ...
U(3)xO(3) inv. potential
Vo = g1 tr (@7 @ &7 @) + go tr(® @7 * df) + ...
Vx = hy te (T TP TP T7) X% XP7* ...
Vax = « 8
——> global minimum at (X“?) = diag.(—1,4+1,--- ,+1)

. _ Koide’s relation (®")* = & ®“
— (I).‘—'IX.‘-'IT' (I)':" — []1 ((I)r_x — (I)r_xn-c)—> at o= 1'1




"

SU(9)x U(1) inv. potential
Vo = —p° @D 4 X\ (D" 0)*
Vx = const. <——— X is unitary
Vex = ex| ®f XA R [P

U(d)xO(d) inv. potential
Va = g1 tr(®7 qnphp) + go tr(® OT d* PT)
Vi = hy te(TTP TP T7) XP XP7* ...

Vex = - -

v1(p) + va(p) + vs(p) _ 1 )
V3[wi(p)? +va(p)? +us(p)?] V2

8> > 91 57 (oREAIRLS charged Jepran SREGIYM L vt & V2 F Vs = Vime t /Ty s/,

VT oper

e hy > g1, 92 = Koide's relation

Thes {erarcn@s of c })hp)llngs are consistent with assumed sym. and sym. enhancement.

N (T
)=& = 7 — 7L ppP R DT~ gy tr(D DT 0 DT
P P

X (T
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T2
—> hy ~ <X2 2 O(l)

/

X (T



4. Summary and discussion

Summary fmll

Y% U(3) X O(3) gauge sym. has a unique property w.r.t. radiative corr.
to Koide’s mass formula.

1
In the case a(m.) =~ —ar(Mr), QED corr. is cancelled.
1 vi(p) 0 0
Y e T pep and (®) = ( 0 walp) O )
0 0 wy(p)
« Sym. breaking U(3) — U(2) — U(1) — nothing.
vi(p) +va(p) + vs(p)

K

 Multiplicative renormalization of Az

 With tree-level Koide’s relation : = at p(> M
V31 () +va(p)? +vs(p)?] V2 2 r)
Y Vg with U(3) x O(3) sym. ) realistic lepton spectrum
(I)UT“
OO
Y Amodel EFT with enhanced sym. U(9)at p < A
0> Koide's formula ¢, X |42
Boundary cond. on potential parameters at © = A . ' paTa

Consistent with sym. and sym. enhancement.
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| Problems ‘

» Quark+neutrino sectors & anomaly cancellation

* O(3) sym. breaking

« (®) cannot be brought to diagonal form by U(3) x O(3) transf.

K K T
Y PP pep

—> e.g. Inclusion of another field \z P o0 pep — 3

» Unification of SU(2)y x U(3) vs. embedding U(3) x O(3) into SU(9) x U(1)

T
SSol =

corr. at tree level.
« Stability of small VEVs: (¢), (X) < A

« Model(s) at p+ > A .

Virtue: a cross-check A AT TN

LN

S (3 €R

l ) —> No corr. to Koide’s formula




Non-trivial aspects indep. of model details

[
Y Cancellation of QED corr. with — ¥ ® " ¢ er, invariant under
A

U(3) x O(3) family gau

Y Potential with
fine tuning, pr

Vo = —p

Predictic
g1 =

c.f. Ift

! m,

Line of argument

High precision of Koide’s formula

O

Family gauge sym.
(Existence of rad. corr.)

25

M, o (@)(®) + multiplicative renormalization

L

U(3) X O(3) sym.

~

/

T v v T7 \W\
v
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SU(4) — U(3) ~ SU(3) x U(1)
tr (T°7T7) = %5“*3
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k(p) (@) (D) (¥)

O = Az Vi Pig Prj @ €R; : : :
l ! l
@ | | |
! l l
i) = E(MEEW vi(p)? VI H H' i

L=y Yr:®;;Hpj + M Hpi Hyi + yo Hpi®s Hpy; + M Hp Hy; + ys Hpjperi + (hee.)

For instance, in the case that v./M' 2 3.

Y1, Y2, Y3 ~ 1 and vew /M’ < 3 x 107*, one finds, by computing the mass eigenvalues,” that the
3,,3
Y19%Y3  + b -
27 ) PPpep; its
e _ o TR R
contribution to the tau mass is 0m. /m, = (M, /v )? = 5 x 1075, This translates to a correction
to Koide’s relation of 3 x 1079,

largest correction to the lepton spectrum eq. (7) arises from the operator —

* Since the values of m. and v, are known, once we choose the values of w3 /M’( = 3) and y1, yo, ya(= 1), the
value of vg /M ( = 0.03) will be fixed. Then the mass eigenvalues corresponding to the SM charged leptons can be

computed in series expansion in the small parameters vew /M’ v; /M and i-‘f J(MM') = V2m; [Vew-



