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DISCLAIMER: 

 Start with the complex number field . 

 Fundamental theorem of algebra is assumed. 

 Do not claim any mathematical rigour. 

 



SPONTANEOUS SYMMETRY BREAKING 1 

 The solution does not have the symmetry manifest in the 
equation. 

 Example: particle in a left-right symmetric potential V(x) 

  



                 m
d2x

dt 2
 

dV (x)

dx
, V (x) V (x)

Equation is invariant under the parity transformation x x 

but the solution may not be.

  



V (x)  x 4 2x 2

dV (x)

dx
 4x (x 2 1)  0          x 2 1        x  1



SPONTANEOUS SYMMETRY BREAKING 2 

 The equation has left-right symmetry, but the solution 
does not. The mass is forced to choose between two 
possible ground states. 

 The two ground states transform into each other 
under the broken (hidden) symmetry transformation 
non-trivial representation of the symmetry group. 



WHO WAS ÉVARISTE GALOIS? 

 

 

 

 

 

 

 

 Born Oct. 25, 1811 in a suburb of Paris. 

 Mathematical prodigy, but failed entrance exam to École Polytechnic. 
Entered École Normale instead but expelled. 

 Political radical (Republican). Jailed many times. 

 Died May 31, 1832 from a bullet wound suffered during a duel on May 
30. He was 20 years old. Circumstances of the duel are unknown. 

 Wrote papers during the night before the duel outlining his 
mathematical ideas Proof that the quintic cannot be solved by 
radicals () using Group Theory. 

 



WHO KILLED ÉVARISTE GALOIS? 

 Was Galois murdered by his political enemies?  Note that the duel 
was just a week before the failed Paris Uprising of 1832 (June 5~6, 
1832) by his Republican friends. 
cf. “Les Misérables” by Victor Hugo, musical by Claude-Michel 
Schönberg, movie coming in 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Students at the barricade in Les Misérables. 

Would have Galois been killed at the uprising 

had he not died a week earlier? 

Marius and Cosette in Les Misérables. 

Did Evariste and Stephanie enjoy a similar 

relationship or was she the reason for the duel? 



BRIEF HISTORY OF ALGEBRAIC EQUATIONS 

  



Linear :  ax b  0

Quadratic :  ax2  bx  c  0

Cubic :  ax3  bx2  cx  d  0

Quartic :  ax4  bx3  cx2  dx  e  0

Quintic :  ax5  bx4  cx3  dx 2  ex  f  0

 The solution formula for the quadratic equation was known 
worldwide since ancient times. (Can be found on 
mesopotamian cuniform tablets.) 

 Solution formulae to the cubic and the quartic were 
discovered during the 16th century in Italy. 

 The formula for the quintic could not be found. 
Proved that it did not exist independently by Neils Henrik 
Abel (Norwegian, 1802-1829) and Galois (1811-1832). 



THE CUBIC & THE QUARTIC 

THE BATTLE OF THE ITALIAN MATH-MAGICIANS: 

 Del Ferro discovers solution to the special case x3+px=q, p>0, q>0. 

 Del Ferro’s student Antonio Maria Fiore, who had inherited the magic 
formula from del Ferro, challenges Tartaglia to a math duel in 1535 and is 
defeated, Tartaglia having discovered the solution overnight. 

 Cardano bugs Tartaglia until he divulges his secret. Cardano supposedly 
promised that he will not tell anyone. 

 Cardano generalizes the result, learns that del Ferro had the result before 
Tartaglia, and publishes “Ars Magna” in 1545. 

 Infuriated Tartaglia challenges Cardano to a math duel but is defeated by 
Cardano’s student Ferrari who figured out the solution to the quartic. 

Scipione del Ferro 

(1465-1526) 

 

Niccolo Fontana (Tartaglia) 

(1499/1500?-1557) 

 

Geralomo Cardano 

(1501-1576) 

 

Lodovico Ferrari 

(1522-1565) 

 

? 



READ ALL ABOUT IT IN… 

  



x 3  px  q

x 3  px  q

x 3  q  px

x 3  px 2  q

x 3  px 2  q

x 3  q  px 2

  



x 3  px 2  qx  r

x 3  px 2  qx  r

x 3  px 2  qx  r

x 3  qx  px 2  r

x 3  r  px 2  qx

x 3  qx  r  px 2

x 3  px 2  r  qx

Still in print after more than four and a half centuries. 

(Perhaps not as impressive as Euclid’s Elements.)   

 

The cubic is separated into 13 cases (to avoid the use 

of negative numbers) and discussed in gory detail: 

Ferrari’s result for the quartic is only mentioned in 

passing. Cardano didn’t think it was important 

because the space we live in is 3-dimensional. (Huh?) 
First published in 1545 



QUADRATIC EQUATION 

  



0  ax2  bx  c

  

0  x 2 
b

a
x 

c

a

 x 2 
b

a
x 

b2

4a2











b2

4a2


c

a











 x 
b

2a











2


b2

4a2


c

a











  



x 
b

2a











2


b2

4a2


c

a













x 
b

2a
 

b2

4a2


c

a
 

b2  4ac

2a



x 
b  b2  4ac

2a

Divide both sides by a, 

then complete the square: 



COMPLETING THE SQUARE: 

  



x2 2Ax  x2 2Ax  A 2  (x  A)2



RELATION BETWEEN COEFFICIENTS AND ROOTS 

 

 Solving the quadratic is equivalent to finding the two 
numbers for which their sum and product are given. 

 Note that the coefficients are symmetric polynomials  
of the roots. They are invariant under a1a2, that is, 
their symmetry group is S2. 

  



x 2  s1x  s2  (x a1)(x a2)



s1  a1 a2

s2  a1a2



CUBIC EQUATION – STEP 1 

  



0  ax3  bx2  cx  d



0  x 3 
b

a
x 2 

c

a
x 

d

a

 x 3 
b

a
x 2 

b2

3a2
x 

b3

27a3











b2

3a2
x 

b3

27a3











c

a
x 

d

a

 x 
b

3a











3


c

a


b2

3a2











p
1 2 4 3 4 

x 
b

3a











d

a


bc

3a2


2b3

27a3











q
1 2 4 4 3 4 4 

 y 3  py  q

Divide both sides by a, then complete the cube: 



CUBIC EQUATION – STEP 2 

  



Let y  u  v :

  



0  y 3  py  q

 (u  v)3  p(u  v)  q

 (u3  v 3  q)  (3uv  p)(u  v)



uv  
p

3
, u3  v 3  q



u3v 3  
p3

27

  



u3 and v3 are solutions to:

  



0  z 2  qz 
p3

27



z  
q

2


q2

4


p3

27
 z



u  z
3 , v  z

3 , z
3 z

3  
p

3



y 

u  v

u  v 2

u 2  v











where  3 1.



RELATION BETWEEN COEFFICIENTS AND ROOTS 

 

 Solving the cubic is equivalent to finding the three 
numbers for which their sum, product, and the sum of 
products of all pairs are given. 

 The coefficients are symmetric polynomials  
of the roots. They are invariant under all permutations of 
the three roots, i.e. their symmetry group is S3. 
 

  



x 3  s1x
2  s2x  s3  (x a1)(x a2)(x a3)



s1  a1 a2 a3

s2  a1a2 a2a3 a3a1

s3  a1a2a3



QUARTIC EQUATION – STEP 1 

  



0  ax4  bx3  cx 2  dx  e



0  x 4 
b

a
x 3 

c

a
x 2 

d

a
x 

e

a

 x 
b

4a











4


c

a


3b2

8a2











p
1 2 4 3 4 

x 
b

4a











2


d

a


bc

2a2


b3

8a3











q
1 2 4 4 3 4 4 

x 
b

4a












e

a


bd

4a2


b2c

16a3


3b4

256a4











r
1 2 4 4 4 4 3 4 4 4 4 

 y 4  py 2  qy  r

Complete the 4D-hypercube to eliminate the x3 term: 



QUARTIC EQUATION – STEP 2 – FERRARI 

  



py 2  qy  r  y 4

(2t  p)y 2  qy  (t 2  r)  y 4  (2t y 2  t 2)  (y 2  t)2

  



Choose the constant t so that the left hand side is a complete square:

  



2  (q)2  4(2t  p)(t 2  r)  8 t 3 
p

2
t 2  rt 

4pr  q2

8



















 0

  



(2t  p)y 2  qy  (t 2  r)  (Ay B)2  (y 2  t)2



(Ay B)  y 2  t


Then, we can take the square - root of both sides:



QUARTIC EQUATION – STEP 2 – EULER 

  



Let y  u  v w :

  



0  y 4  py 2  qy  r

 (u  v  w)4  p(u  v  w)2  q(u  v  w)  r

 (u2  v 2  w2)2  p(u2  v 2  w2)  4(u2v 2  v 2w2  w2u2)  r 

 4(u2  v 2 w2)  2p (uv  vw  wu)  8uvw  q (u  v  w)




q

8
 uvw 

q2

64
 u2v 2w2


p

2
 u2  v 2  w2,

p2  4r

16
 u2v 2  v 2w2  w2u2



QUARTIC EQUATION – STEP 3 – EULER 

  



u2, v2, and w2 are solutions to:

  



0  z 3 
p

2
z 2 

p2  4r

16
z 

q2

64
z 

2t  p

4













z  z1, z 2, z3



u  z1, v  z 2 , w  z3 , z1 z2 z 3  
q

8



y 

u  v  w

u  v  w

u  v  w

u  v  w















FERRARI–EULER COMPARISON 



Ferrari

  



(2t  p)

4u2

1 2 3 
y 2 q

8uvw
{

y  (t 2  r)

4v 2w2

1 2 3  (y 2  t

u2  v 2  w2

1 2 3 
)2



2(u y  vw)  y 2  u2  v 2  w2 


y 2 m2u y  u2  (v  w)2  0



y  (u  v  w)  y  (u  v  w)  0  y  u  v  w, u  v  w

y  (u  v  w)  y  (u  v  w)  0  y  u  v w,  u  v  w

  



0  z 3 
p

2
z 2 

p2  4r

16
z 

q2

64

4z2tp
  0  t 3 

p

2
t 2  rt 

4pr  q2

8













Euler   



z  u2  t  u2  v2 w2



RELATION BETWEEN COEFFICIENTS AND ROOTS 

 

 

 The coefficients are symmetric polynomials  
of the roots. They are invariant under all permutations of the 
four roots, i.e. their symmetry group is S4. 

  



x4  s1x
3  s2x

2  s3x  s4  (x a1)(x a2)(x a3)(x a4 )



  



s1  a1 a2 a3 a4

s2  a1a2 a1a3 a1a4 a2a3 a2a4 a3a4

s3  a1a2a3 a1a2a4 a1a3a4 a2a3a4

s4  a1a2a3a4



ORDER N ALGEBRAIC EQUATION: 

 The coefficients are symmetric polynomials of the roots. 
They are invariant under any permutation of the roots, 
i.e. their symmetry group is SN. 

  



0  xN  s1x
N 1  s2x

N 2 L  (1)N 1sN 1x  (1)N sN

 (x a1)(x a2)(x a3)L (x aN 1)(x aN )

  



s1  a1 a2 a3 L aN 1 aN

s2  aia j

i j



s3  aia jak

i j k



M

sN  a1a2a3L aN 1aN



SOLUTION FORMULA: 

 Solution formulae must invert the relations 
between the coefficients and the roots and 
express the roots in terms of the coefficients. 

  



s1  a1 a2 a3 L aN 1 aN

s2  aia j

i j



s3  aia jak

i j k

 

M

sN  a1a2a3L aN 1aN
  



a1  f1( s1, s2, s3,L sN 1, sN )

a2  f2( s1, s2, s3,L sN 1, sN )

a3  f3( s1, s2, s3,L sN 1, sN )

M

aN 1  fN 1( s1, s2, s3,L sN 1, sN )

aN  fN ( s1, s2, s3,L sN 1, sN )



IMPOSSIBLITY OF SOLUTION FORMULAE: 

 Right-hand side is manifestly invariant under 
any permutation of the roots. 

 Left-hand side is not. 

 Therefore, such a relation is impossible!?? 

 But formulae for the quadratic, cubic, and the 
quartic exist! 

 So what is wrong with this argument? 

  



ai  fi ( s1, s2, s3,L sN 1, sN )



THE LANGUAGE OF SYMMETRIES: GROUP THEORY 

 Definition of a Group G: 

 Closed under group multiplication 

 

Group multiplication is associative 

 

 Unit element exists 

 

 Inverse element exists for every element 

  



a, bG  aobG

  



(aob) oc  ao(boc)

  



eG such that eoa aoe  a aG

  



aG, a1 G such that aoa1  a1 oa  e



GROUP OF SYMMETRY 

TRANSFORMATIONS 
 “Symmetry” refers to invariance under some set of 

transformations. 

 Define the “product” of two symmetry 
transformations as the transformation obtained by 
performing the two symmetry transformations in 
succession. Then, the set of all symmetry 
transformations forms a group. 

 The unit element is the transformation which does 
nothing. 

 The inverse element is the inverse transformation.  



THE SYMMETRIC GROUP SN 

 The group formed by all possible permutations of N 
objects is called the symmetric group and denoted SN. 
It has N! elements.  

 Examples: 

  



S2  {e, (12)}

S3  {e, (12), (13), (23), (123), (132)}

S4  {e, (12), (13), (14), (23), (24), (34),

(12)(34), (13)(24), (14)(23),

(123), (132), (124), (142), (134), (143), (234), (243),

(1234), (1243), (1324), (1342), (1423), (1432)}



NOTATION: 

  



e :  do nothing

(12) :  12 1

(123) :  12 3 1

(1234) :  12 3 4 1

(123)(45) :  12 3 1, 4 5 4       etc.



1



4

2



1

3



3

4



2
















 (142),

1



5

2



1

3



4

4



2

5



3
















 (15342)



SUBGROUPS 

 A Group H contained inside another Group G is called a 
subgroup of G, e.g.: 

 

 

 

 

 

 

 The number of elements in a subgroup is always a divisor 
of the number of element in the parent group. (Lagrange’s 
theorem.) 

 

  



Group :  S3  {e, (12), (13), (23), (123), (132)}

Subgroups :  {e}, S2  {e, (12)}, S2
  {e, (13)}, S2

  {e, (23)},

                      C3  {e, (123), (132)}

       



COSETS 

 Let H be a subgroup of G. The elements of G can be 
classified into equivalence classes using a-1bH as 
an equivalence relation. That is, a and b are 
equivalent if hH such that b=ah. These classes are 
called cosets.  

 

 

 

 

  



Group :  S3  {e, (12), (13), (23), (123), (132)}

Subgroup :  S2  {e, (12)}

Cosets:  eS2  {e, (12)}, (13)S2  {(13),(123)}, (23)S2  {(23),(132)}

Group :  S3  {e, (12), (13), (23), (123), (132)}

Subgroup :  C3  {e, (123), (132)}

Cosets:  eC3  {e, (123), (132)}, (13)C3  {(13), (12), (23)}

       



CONJUGACY CLASSES 

 Two elements a and b of a group G are said to be conjugate to each 
other if gG such that gag-1b.  What this means is that a and b 
are the “same kind” of transformation which can be transformed 
into each other by g. 

 

 

 

 

 Conjugacy is an equivalence relation which can be used to classify 
the elements of G into conjugacy classes. 

  



S3 : {e}, {(12),(13),(23)}, {(123),(132)}

S4 : {e}, {(12),(13),(14),(23),(24),(34)}, {(12)(34),(13)(24),(14)(23)},

{(123),(132),(124),(142),(134),(143),(234),(243)},

{(1234),(1243),(1324),(1342),(1423),(1432)}



(12)(23)(12)  (13)

(12)(123)(12)  (132)

(123)(12)(132)  (23)



INVARIANT SUBGROUPS 

 Let H be a subgroup of G.  
If for all hH and all gG, we have the relation ghg-1H, 
then the subgroup H is said to be an invariant subgroup.  It 
is a subgroup consisting of complete conjugate classes. 

 

 

 

 
 ghg-1 is the transformation of h by g. Since all elements of 

H stay in H under all transformations in G, we can write: gHg-
1=H.  

 gHg-1=H implies gH=Hg. So H as a whole commutes with G. 

  



Group :  S3  {e, (12), (13), (23), (123), (132)}

Invariant Subgroups :  {e}, C3  {e, (123), (132)}

       



SOLUTION TO THE QUADRATIC REVISITED: 

 The square-root is double-valued  We are forced to chose between 
two possible square-roots whenever the discriminant is non-zero! 

 

 

 Symmetry breaks from S2 to the trivial invariant subgroup {e}. 

 

 

 The square-root of the discriminant serves as a basis for a 1x1 
representation of S2 : 

  



x2  s1x  s2  0  x 
s1  2

2

  



discriminant        2  s1

2  4s2  (a1 a2)2  4a1a2  (a1 a2)
2



2

(12)
   2

  



e 1 , (12)  1 



2 a1 a2     or     a2 a1



SOLUTION TO THE CUBIC REVISITED 1: 

  



x 3  s1x
2  s2x  s3  0  y 3  py  q  0   

where    y  x 
s1

3
, p  

s1

2

3
 s2, q  

2s1

3

27


s1s2

3
 s3.

  



discriminant        3  27q2  4p3

 s1

2s2

2  4s2

3  4s1

3s3 18s1s2s3 27s3

2

 (a1 a2)2(a2 a3)2(a3 a1)
2

  



z 2  qz 
p3

27
 0  z  

q

2


i

6

3

3



3  (a1 a2)(a2 a3)(a3 a1)    or    - (a1 a2)(a2 a3)(a3 a1) 



SOLUTION TO THE CUBIC REVISITED 2: 

 Symmetry breaks from S3 to the invariant subgroup C3={e,(123),(132)}. 

  



eC3 {e,(123),(132)} 1 , (12)C3 {(12),(13),(23)} 1 



3

(12)(13)(23)
   3

 The three transpositions (12), (13), and (23) are actually equivalent since: 

  



(12)  (12)e  e(12)

(13)  (12)(132)  (123)(12)

(23)  (12)(123)  (132)(12)

 The three permutations e, (123), and (132) are of course equivalent 
since they keep the discriminant invariant. So the actions of all the 
permutations of S3 are equivalent to that of {e,(12)}=S3/C3.  This is 
known as the Quotient Group. 



THE QUOTIENT GROUP 

 Let H be a subgroup of G. Each coset with respect to H 
can be expressed collectively as aH for some aG. 

 When H is an invariant subgroup of G, then 
“multiplication” between cosets can be defined as 
aH bH=a(Hb)H=a(bH)H= (ab)HH= (ab)H.  
The group formed by this group multiplication is call 
the quotient group G/H. 



SOLUTION TO THE CUBIC REVISITED 3: 

  



z 
a1 

2a2 a3

3











3

, z 
a1 a2 

2a3

3











3



z
3 

a1 
2a2 a3

3
, z

3 
a1 a2 

2a3

3

 Taking the cubic roots of z breaks C3={e,(123),(132)} 
down to the trivial invariant subgroup {e}. 

  



z
3 (123)

   z
3 (123)

   2 z
3

z
3 (132)

   z
3 (132)

   2 z
3



SOLUTION TO THE CUBIC REVISITED 4: 

  



z
3 : e  1 , (123)   , (132)   2 

z
3 : e  1 , (123)   2 , (132)   

 The cubic roots of z provide a basis for a 1x1 
representation of C3={e,(123),(132)}: 

 Together, they provide a basis for a 2x2 representation of S3: 

  



e 
1 0

0 1









, (123) 

 0

0  2









, (132) 

 2 0

0 











(23) 
0 1

1 0









, (12) 

0 

 2 0









, (13) 

0  2

 0













SOLUTION TO THE QUARTIC – OUTLINE 1: 

  



x 4  s1x
3  s2x

2  s3x  s4  0  y 4  py 2  qy  r  0   

where    y  x 
s1

4
, p  

3s1

2

8
 s2, q  

s1

3

8


s1s2

2
 s3, r  

3s1

4

256


s1

2s2

16


s1s3

4
 s4 .

  



z 3 
p

2
z 2 

p2  4r

16
z 

q2

64
 0  3  P Q  0   

where      z 
p

6
, P  

p2

48


r

4
, Q  

p3

864


q2

64


pr

24
.

  



2 Q 
P3

27
 0    

Q

2


i

384

4

3

  



 4  s1

2s2

3s3

2  4s2

3s3

2  4s1

3s3

3 18s1s2s3

3  27s3

4  4s1

2s2

3s4 16s2

4s4

18s1

3s2s3s4  80s1s2

3s3s4  6s1

2s3

2s4 144s2s3

2s4  27s1

4s4

2

144s1

2s2s4

2 128s2

2s4

2 192s1s3s4

2  256s4

3

 (a1 a2)2(a1 a3)2(a1 a4 )2(a2 a3)2(a2 a4 )2(a3 a4 )2



SOLUTION TO THE QUARTIC – OUTLINE 2: 



4

odd permutations
   4

 Symmetry breaks from S4 to the invariant subgroup A4={all even 
permutations}. 

  



eA4  {all even permutations}  1 

(12)A 4  {all odd permutations}  1 
S4 / A 4  {e, (12)}



4  (a1 a2)(a1 a3)(a1 a4 )(a2 a3)(a2 a4 )(a3 a4 )

or

 (a1 a2)(a1 a3)(a1 a4 )(a2 a3)(a2 a4 )(a3 a4 )



SOLUTION TO THE QUARTIC – OUTLINE 3: 

 Symmetry breaks from A4 to its invariant subgroup  
V={e,(12)(34),(13)(24),(14)(23)}, known as the four-group 




3 (132)(234)(124)(143)

   
3 (132)( 234)(124)(143)

   2 
3


3 (123)(134)(243)(142)

   
3 (123)(134)(243)(142)

   2 
3

  



eV  {e, (12)(34), (13)(24), (14)(23)}

(123)V  {(123), (134), (243), (142)}

(132)V  {(132), (234), (124), (143)}

A 4 /V  {e, (123), (132)}










3

1 
 2 
 


3

1 
 
 2 



SOLUTION TO THE QUARTIC – OUTLINE 4: 

  



z1

(13)(24), (14)(23)
   z1

z2

(12)(34), (14)(23)
   z2

z3

(12)(34), (13)(24)
   z3

 Symmetry breaks from V to the trivial invariant subgroup {e} via the 
invariant subgroups {e,(12)(34)}, or {e,(13)(24)}, or {e,(14)(23)}, 
depending on the order in which the square-roots are introduced. 

  



e {e, (12)(34)}  {e, (12)(34)}

(13)(24) {e, (12)(34)}  {(13)(24), (14)(23)}

V / {e, (12)(34)}  {e, (13)(24)}



THE SYMMETRY BREAKING PATTERN: 

 The unbroken subgroup is an invariant subgroup of the 
parent group at each step. 

 When p-th roots are used to break the symmetry down 
from G to H, the quotient group G/H is isomorphic to Cp. 

 For the quintic to be solvable by radicals, S5 must have a 
sequence of invariant subgroups such that the quotient 
group of the successive groups in the sequence is always 
cyclic.  

  



S2

2  {e}

S3

3  C3

z3

  {e}

S4

4  A 4

3

  V
z1  {e,(12)(34)}

z 2 z 3  {e}



THE SYMMETRIC GROUP S5 

 5!=120 elements, 60 odd and 60 even, 7 conjugacy classes: 

  



e :   1 element

()() :  15 elements

() :  20 elements

() :  24 elements













  even,  A 5

() :  10 elements

()() :  20 elements

() :  30 elements








  odd

 A5 is an invariant subgroup of S5 and S5/A5={e,(12)}. 



DISCRIMINANT OF THE QUINTIC 

  



 5  s1

2s2

2s3

2s4

2  4s2

3s3

2s4

2  4s1

3s3

3s4

2 18s1s2s3

3s4

2  27s3

4s4

2  4s1

2s2

3s4

3 16s2

4s4

3 18s1

3s2s3s4

3

80s1s2

2s3s4

3  6s1

2s3

2s4

3 144s2s3

2s4

3  27s1

4s4

4 144s1

2s2s4

4 128s2

2s4

4 192s1s3s4

4  256s4

5

4s1

2s2

2s3

3s5 16s2

3s3

3s5 16s1

3s3

4s5  72s1s2s3

4s5 108s3

5s5 18s1

2s2

3s3s4s5  72s2

4s3s4s5

80s1

3s2s3

2s4s5  356s1s2

2s3

2s4s5  24s1

2s3

3s4s5  630s2s3

3s4s5  6s1

3s2

2s4

2s5  24s1s2

3s4

2s5 144s1

4s3s4

2s5

746s1

2s2s3s4

2s5  560s2

2s3s4

2s5 1020s1s3

2s4

2s5  36s1

3s4

3s5 160s1s2s4

3s5 1600s3s4

3s5

27s1

2s2

4s5

2 108s2

5s5

2 144s1

3s2

2s3s5

2  630s1s2

3s3s5

2 128s1

4s3

2s5

2  560s1

2s2s3

2s5

2

825s2

2s3

2s5

2  900s1s3

3s5

2 192s1

4s2s4s5

2 1020s1

2s2

2s4s5

2  900s2

3s4s5

2 160s1

3s3s4s5

2

2050s1s2s3s4s5

2  2250s3

2s4s5

2  50s1

2s4

2s5

2  2000s2s4

2s5

2

256s1

5s5

3 1600s1

3s2s5

3  2250s1s2

2s5

3  2000s1

2s3s5

3  3750s2s3s5

3  2500s1s4s5

3  3125s5

4

 (a1 a2)2(a1 a3)2(a1 a4 )2(a1 a5)2(a2 a3)2(a2 a4 )2(a2 a5)2(a3 a4 )2(a3 a5)2(a4 a5)2

 59 terms! 

 By taking the square-root of this discriminat, it is indeed 
possible to break S5 down to A5. 



THE ALTERNATING GROUP A5 

 60 elements, 5 conjugacy classes: 

  



e :   1 element

()() :  15 elements

() :  20 elements

() :  12 elements

() :  12 elements

 Lagrange’s theorem tells us that the number of elements in a 
proper subgroup of A5 must be 30, 20, 15, 12, 10, 6, 5, 4, 3, 
2, or 1. 

 For it to be an invariant subgroup, it must contain complete 
conjugacy classes, including {e}. 

 Simple counting shows that it is impossible  
A5 does not have any invariant subgroups. 



PROOF FOR SN (N≥5) 

 Let G be a group of permutations of five objects or more that 
include all cyclic permutations of three elements. 

 

 

 

 

 Let H be an invariant subgroup of G such that G/H is cyclic (Abelian). 

 Consider the homomorphism : G G/H 

 

 

 

 

 

 Therefore (123)  H. This is true for any cyclic permutation of three 
elements.  Therefore, G is not solvable. 

  



(124)(142)  e

(135)(153)  e

(123)  (124)(135)(142)(153)

  



f [(124)]  x,

f [(135)]  y,

f [(123)]  f [(124)(135)(142)(153)]  xyx 1y 1  e



PHYSICIST VERSION OF GALOIS THEORY: 

 The N coefficients of an order N algebraic equation are 
symmetric polynomials of the N roots. They are invariant 
under all N! permutations of the N roots. The solution 
formula must break this SN symmetry down to {e}. 

 Radicals (p-th roots) break the symmetry by their multi-
valuedness, forcing us a choice among p different “vacua.” 
Transformations from one “vacuum” to another are 
represented by the p-th roots of one.  The symmetry must 
break to an invariant subgroup of the parent group such 
that the quotient group of the two is isomorphic to Cp. 

 For an order N algebraic equation to be solvable by radicals, 
the group SN must have a sequence of invariant subgroups 
for which the quotient group of successive groups is always 
cyclic.  This is not the case when N5.  

  

 



COLLORARY AND CAVEATS: 

 Not all algebraic numbers can be expressed 

algebraically ! 

 

 

 The generic quintic can be solved if you allow 

for an infinite number of rational operations 

and/or radicals. 

 Solution formulas exist which use elliptic 

functions. 

 



SOLUTION TO THE QUINTIC - STEP 1 

COMPLETING THE 5D HYPERCUBE 

Complete the 5D-hypercube to eliminate the x4 term: 

  



0  x 5  s1x
4  s2x

3  s3x
2  s4x  s5

 x 
s1

5











5

 s2 
2s1

2

5











t 2

1 2 4 3 4 

x 
s1

5











3

 s3 
3s1s2

5


4s1

3

25











t 3

1 2 4 4 4 3 4 4 4 

x 
s1

5











2

 s4 
2s1s3

5


3s1

2
s2

25


3s1

4

125











t 4

1 2 4 4 4 4 3 4 4 4 4 

x 
s1

5









 s5 

s1s4

5


s1

2
s3

25


s1

3
s2

125


4s1

5

3125











t 5

1 2 4 4 4 4 4 3 4 4 4 4 4 

 y 5  t 2y
3  t 3y

2  t 4y  t 5

  



y  x 
s1

5



SOLUTION TO THE QUINTIC - STEP 1 

ALTERNATIVE POINT OF VIEW 

  



Let the five roots of 0  x 5  s1x
4  s2x

3  s3x
2  s4x  s5 be x =a1,a2,a3,a4,a5.

Note that ai

i1

5

  s1.

Let i  ai  a and choose a so that i

i1

5

  0  a  
s1

5
.

Then, y = 1,2,3,4 ,5 will be the roots of a quintic equation in y 

without the y 4  term:

0  y 5  t 2y
3  t 3y

2  t 4y  t 5



SOLUTION TO THE QUINTIC - STEP 2 

TSCHIRNHAUSEN TRANSFORMATION (1683) 

  



Let the five roots of 0  y 5  t 2y
3  t 3y

2  t 4y  t 5 be y = 1,2,3,4,5.

Note that i

i1

5

  0, ij

i j

  t 2.

Let  i  i

2  ai + b and choose a and b so that  i

i1

5

  0,  i j

i j

  0

 a 
3t 3

2t 2


3t 2

5


2t 4

t 2


9t 3

2

4t 2

2
, b 

2t 2

5

Then, z = 1, 2, 3, 4 , 5 will be the roots of a quintic equation in z 

without the z 4  and z3 terms :

0  z 5  u3z
2  u4z  u5 (principal quintic form)

where u3,u4,u5 are complicated functions of t 2,t 3,t 4 ,  and t 5 .



SOLUTION TO THE QUINTIC - STEP 3  

BRING (1786)-JERRARD (1852) 

  



Let the five roots of 0  z 5  u3z
2  u4z  u5 be y = 1, 2, 3, 4 , 5.

Note that i

i1

5

  0, i j

i j

  0, i j k

i j k

  u3 .

Let i  i

4  ai

3 + bi

2 +ci + d and choose a,b,c and d so that

 i

i1

5

  0, i j

i j

  0, i jk

i j k

  0

 d 
4u4  3u3a

5
, b  

5u5  4u4a

3u3

,

       a  solution to a quadratic, c  solution to a cubic

Then,  =1,2,3,4 ,5 will be the roots of a quintic equation in 

without the 4 ,3 and 2 terms :

0  5  v4  v5 (Bring - Jerrard normal form)

where v4,v5 are very complicated functions of u3,u4,  and u5 .



SOLUTION TO THE QUINTIC - STEP 4 

RESCALE 

  



0  5  v4  v5



0 
5

(v4 )5 / 4




(v4 )1/ 4


1 2 3 


v5

(v4 )5 / 4

a
1 2 3 



0  5    a



5    a



SOLUTION TO THE QUINTIC – STEP 5 

INVERT RELATION 

  



5   a



 
5k

k











k0




(1)k a4 k1

4k 1
 a a5  5a9  35a13 L


