Precision Measurements and New Physics

Tatsu Takeuchi Virginia Tech January 11, 2012 @ Kyoto Sangyo University - Maskawa Juku

By scrutinizing existing Knowledge, you can obtain New Knowledge

Example in Astronomy:

• Discovery of Neptune: (September 23, 1846)

Le Verrier

 Precise measurement of the orbit of Uranus (discovered March 13, 1781)

 Did not agree with the Standard 7 Planet Model of the solar system

 Assume deviation is due to perturbation from yet undiscovered 8th planet

 Calculate properties of 8th planet so that the theoretical orbit of Uranus agrees with observation

• Tell observers (experimentalists) to look for it!

The "Neptune" strategy for Particle Physics:

- Measure the properties of known particles to extreme precision.
- Compare with Standard Model predictions and look for deviations.
- Calculate properties of New Physics that can explain the discrepancy.
- Tell experimentalists what to look for at the LHC, and other experiments.

Precedents:

• K-Kbar mixing:

- Predicted charm mass: 1.5 GeV (Gaillard and Lee, March 1974)
- J/ψ (c-cbar bound state) discovered at 3.1 GeV (November 1974)
- Top quark mass was also predicted from B-Bbar mixing.

Implimentation:

- Both precise experimental data and theoretical predictions are necessary. Forget QCD. Concentrate on electroweak observables.
- Make some reasonable assumptions about new physics (eg. 8th planet hypothesis) :
 - 1. Electroweak Gauge Group is $SU(2)_{I} \times U(1)_{Y}$
 - 2. New particles couple weakly to light fermions
 - 3. The scale of new physics is large compared to the electroweak scale
- These assumptions allow for a (relatively) model independent parametrization of radiative corrections from new physics

Consequences of the Assumptions:

- Electroweak Gauge Group is SU(2)_LxU(1)_Y
 - > No new electroweak gauge bosons
 - > Only need to consider W, Z, and photon exchange diagrams

New particles couple weakly to light fermions
 Vertex corrections and box diagrams are suppressed

> Only vacuum polarizations need to be considered.

• The scale of new physics is large compared to the electroweak scale

$$W \underbrace{f}_{p} \qquad \Pi_{WW}(p^{2}) = \Pi_{WW}(0) + p^{2}\Pi'_{WW}(0) + L$$

$$Z \underbrace{f}_{p} \qquad \Pi_{ZZ}(p^{2}) = \Pi_{ZZ}(0) + p^{2}\Pi'_{ZZ}(0) + L$$

$$Z \underbrace{f}_{p} \qquad \Pi_{Z\gamma}(p^{2}) = p^{2}\Pi'_{Z\gamma}(0) + L$$

$$Y \underbrace{f}_{\gamma\gamma}(p^{2}) = p^{2}\Pi'_{\gamma\gamma}(0) + L$$

 Of the six (infinite) parameters, three linear combinations are absorbed into the three input parameters α, G_F, and M_Z and are unobservable.

• Three remaining (finite) parameters can be taken to be:

$$\alpha S = 4s^{2}c^{2} \left[\Pi'_{ZZ}(0) - \frac{c^{2} - s^{2}}{sc} \Pi'_{Z\gamma}(0) - \Pi'_{\gamma\gamma}(0) \right]$$

$$\alpha T = \frac{\Pi_{WW}(0)}{M_{W}^{2}} - \frac{\Pi_{ZZ}(0)}{M_{Z}^{2}}$$

$$\alpha U = 4s^{2} \left[\Pi'_{WW}(0) - c^{2} \Pi'_{ZZ}(0) - 2sc \Pi'_{Z\gamma}(0) - s^{2} \Pi'_{\gamma\gamma}(0) \right]$$

Examples:

 $\frac{M_W}{[M_W]_{SM}} = 1 - \frac{\alpha}{4(c^2 - s^2)} \left(S - 2c^2T - \frac{c^2 - s^2}{2s^2}U \right)$ $\frac{s_*^2}{\left[s_*^2\right]_{SM}} = 1 + \frac{\alpha}{4s^2(c^2 - s^2)} \left(S - 4s^2c^2T\right)$

 $\sum_{i=1}^{Z} \left(I_3 - S^2 Q \right) = \sum_{i=1}^{Z} \left(SM \right) \left(Q \right) = \sum_{i=1}^{Y} \left(Q \right) \left(New \right) \left(Q \right) = \sum_{i=1}^{Z} \left(New \right) \left(New \right) \left(Q \right) = \sum_{i=1}^{Z} \left(New \right) \left(New \right) \left(Q \right) = \sum_{i=1}^{Z} \left(New \right) \left(New \right) \left(New \right) \left(Q \right) = \sum_{i=1}^{Z} \left(New \right) \left($

Only M_w depends on U:

(H

Current ST bounds:

From the 2008 PDB

Part 2 **守株待兎** (韓非子)

Just because it worked once does not necessarily mean it will ever work again

Search for the Planet Vulcan

- Precession of the perihelion of Mercury.
- Le Verrier hypothesized that it was due to a 0th planet closer to the Sun than Mercury. (Named "Vulcan.")
- Prediction was made for its orbit.
- Was discovered many times. (Sun spots.)
- Correct explanation was Einstein's GR (1916).

Discovery of Neptune was a fluke:

• Both Le Verrier and Adams were mislead by Bode's Law.

$$a_n = 0.4 + 0.3 \times 2^n \text{ AU}$$

Mercury: $n = -\infty$ Venus: n = 0Earth: n = 1Mars: n = 2Ceres: n = 3Jupiter: n = 4Saturn: n = 5Uranus: n = 6

Need to try different hypotheses/assumptions

- There exist several (minor) disagreements between the SM and experiments in the neutrino data which cannot be explained by the STU parameters:
 - The ratio of charged to neutral current neutrino-nucleon DIS cross sections disagrees with the SM by 3 sigma (NuTeV).
 - The invisible width of the Z is smaller than the SM prediction by 2 sigma.
 - The value of $\sin^2\theta_W$ determined from b-quark and lepton asymmetries on the Z-pole disagree by 3 sigma.
- NuTeV is often ignored as an "anomaly" and the Z-invisible width is considered a statistical fluctuation.
- What if they are not?

What did NuTeV measure?

$$R_{\nu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} = g_{L}^{2} + rg_{R}^{2}$$
$$R_{\overline{\nu}} = \frac{\sigma(\overline{\nu}_{\mu}N \to \overline{\nu}_{\mu}X)}{\sigma(\overline{\nu}_{\mu}N \to \mu^{+}X)} = g_{L}^{2} + \frac{g_{R}^{2}}{r}$$
$$r = \frac{\sigma(\overline{\nu}_{\mu}N \to \mu^{+}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} \approx \frac{1}{3}$$

The target must be an isoscalar for these relations to be valid.

The NuTeV Anomaly:

• NuTeV result:

$$g_L^2 = 0.3001 \pm 0.0014 \Leftrightarrow 0.3038$$

 $g_R^2 = 0.0308 \pm 0.0011 \Leftrightarrow 0.0301$

- $\mathbf{R}_{\{}$ was smaller than the SM prediction.
- This cannot be explained with new physics contributions through S and T.

Fit with S and T:

• Can be explained if the neutrino mixed with heavy (=heavier than Z) sterile states:

$$v = v_{light} \cos \theta + v_{heavy} \sin \theta$$
$$\chi = -v_{light} \sin \theta + v_{heavy} \cos \theta$$

• Effective couplings will be suppressed:

$$Zvv \to Zv_{light} v_{light} \cos^2 \theta = Zv_{light} v_{light} (1-\varepsilon)$$

W $v \to W v_{light} \cos \theta = W v_{light} \left(1 - \frac{\varepsilon}{2}\right)$

• The suppression of the couplings will lead to:

$$R_{\nu} = [R_{\nu}]_{SM}(1-\varepsilon)$$

$$\Gamma_{in\nu} = [\Gamma_{in\nu}]_{SM}(1-2\varepsilon)$$

• However, the relation between the Fermi constant and the muon decay constant will also be modified:

$$G_F = G_\mu(1 + \varepsilon)$$

• To maintain the agreement between the SM and all other electroweak observables, shift in G_F must be absorbed in the $\rho=1+\alpha T$ parameter:

$$L = -\frac{G_F}{\sqrt{2}} \left[J^+ J^- + \rho J^0 J^0 \right]$$
$$\rho G_F = G_\mu (1 + \alpha T) (1 + \varepsilon)$$
$$= G_\mu (1 + \alpha T + \varepsilon)$$

• Must perform fit with S, T, and ϵ .

Fit with S, T, and ϵ :

Fit result:

$S = -0.03 \pm 0.10$ $T = -0.44 \pm 0.15$ $\varepsilon = 0.0030 \pm 0.0010$

What type of new physics will generate the required values of S and T?
 > Heavy Higgs!

Blowup of ST plot:

Dependence of χ^2 on the Higgs mass:

How heavy are the heavy states?

• Direct search limits are weak:

Seesaw Type Model:

• If the scale of the Dirac masses is m, and the scale of the Majorana masses is M, the suppression factor is:

$$\varepsilon \approx \frac{m^2}{M^2}$$

- I order to have ϵ =0.003 and m~100 GeV, we must have M~2 TeV.
 - The heavy states will be light enough to be produced at the LHC!
 - Unfortunately, the production cross section is too small.(Tao Han, et al.)
 - Is there any other way to detect the presence of these states?

The Electric Dipole Moment:

• Magnetic and Electric Dipole Moments:

$$\mu \sigma \cdot \dot{B} \qquad d\sigma \cdot \dot{E}$$

• Under CPT:

Tatsu Takeuchi, Pheno 2007, May 8, 2007 - p.5/14

 $\propto (U_{\alpha i}^* U_{\beta i}^*) (U_{\alpha j} U_{\beta j})$

Diagram is anti-symmetric under the interchange $i \leftrightarrow j$

 \implies Imaginary parts of $(U_{\alpha i}^* U_{\beta i}^*)(U_{\alpha j} U_{\beta j})$ survive

Tatsu Takeuchi, Pheno 2007, May 8, 2007 - p.6/14

20 Diagrams ÷Ð,

Tatsu Takeuchi, Pheno 2007, May 8, 2007 - p.9/14

Result of 2-loop Calculation:

 Seesaw type model: (calculation by Saifuddin Rayyan)

$$d_{\rm I} = 10^{-31} \sim 10^{-32} \, e \cdot cm$$

• Current experimental constraint:

$$d_e = (6.9 \pm 7.4) \times 10^{-28} e \cdot cm$$
$$d_u = (3.7 \pm 3.4) \times 10^{-19} e \cdot cm$$

• Proposals exist to improve current bound by many orders of magnitude. (Whether they would work or not is still controvertial.)

Conclusions:

- Precision electroweak data from LEP and SLD place very strong constraints on what we can expect to see at the LHC.
- The STU parameters provide a simple way to visualize the compatibility of your model and the data.
- However, be mindful of the fact that the STU parameters do not necessarily encompass all possible new physics.
- You never really know what you will find until you get there. (Recall WMD's in Iraq.)