Some Curious Consequences of the Minimal Length Uncertainty Relation

Tatsu Takeuchi

Virginia Tech
@Kyoto Sangyo University - Maskawa Juku
January 11, 2012

Work in collaboration with:

- Zack Lewis
- Djordje Minic
- Lay Nam Chang

Also contributions from:

- Naotoshi Okamura (Yamanashi Univ.)
- Sandor Benczik (quit physics)
- Saif Rayyan (MIT, physics education)

The Minimal Length Uncertainty Relation

$$
\Delta x \geq \frac{\mathrm{h}}{2}\left(\frac{1}{\Delta p}+\beta \Delta p\right) \Rightarrow \Delta x \geq \Delta x_{\min }=\mathrm{h} \sqrt{\beta}
$$

Suggested by Quantum Gravity. Observed in perturbative String Theory.

Deformed Commutation Relation

$$
\frac{1}{i \mathrm{~h}}[\hat{x}, \hat{p}]=1+\beta \hat{p}^{2} \quad \Rightarrow \quad \Delta x \geq \frac{\mathrm{h}}{2}\left(\frac{1}{\Delta p}+\beta \Delta p\right)
$$

The operators can be represented as:

$$
\left\{\begin{array}{l}
\hat{x}=i \mathrm{~h}\left(1+\beta \hat{p}^{2}\right) \frac{d}{d p} \\
\hat{p}=p
\end{array}\right.
$$

and the inner product as

$$
\langle f \mid g\rangle=\int_{-\infty}^{\infty} \frac{d p}{\left(1+\beta p^{2}\right)} f^{*}(p) g(p)
$$

Harmonic Oscillator

$$
\begin{aligned}
& \hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2} \\
& \Rightarrow\left[-\frac{\mathrm{h}^{2} k}{2}\left\{\left(1+\beta p^{2}\right) \frac{d}{d p}\right\}^{2}+\frac{p^{2}}{2 m}\right] \psi(p)=E \psi(p)
\end{aligned}
$$

Can be solved exactly. Energy eigenvalues :

$$
\begin{aligned}
& E_{n}=\frac{k}{2}\left[\left(n+\frac{1}{2}\right) \sqrt{\left(\Delta x_{\min }\right)^{4}+4 a^{4}}+\left(n^{2}+n+\frac{1}{2}\right)\left(\Delta x_{\min }\right)^{2}\right] \\
& a=\sqrt[4]{\frac{\mathrm{h}^{2}}{k m}}=\sqrt{\frac{\mathrm{h}}{m \omega}}
\end{aligned}
$$

No longer evenly spaced. n^{2}-dependence is introduced.

Multi Dimensional Case

$$
\begin{aligned}
\frac{1}{i h}\left[\hat{x}_{i}, \hat{p}_{j}\right] & =\left(1+\beta \hat{p}^{2}\right) \delta_{i j}+\gamma \hat{p}_{i} \hat{p}_{j} \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =0 \\
\frac{1}{i h}\left[\hat{x}_{i}, \hat{x}_{j}\right] & =-\left\{(2 \beta-\gamma)+\beta(2 \beta+\gamma) \hat{p}^{2}\right\} \hat{L}_{i j}, \quad \hat{L}_{i j}=\frac{\hat{x}_{i} \hat{p}_{j}-\hat{x}_{j} \hat{p}_{i}}{1+\beta \hat{p}^{2}}
\end{aligned}
$$

The operators can be represented as:

$$
\left\{\begin{array}{l}
\hat{x}_{i}=i h\left[\left(1+\beta \hat{p}^{2}\right) \frac{\partial}{\partial p_{i}}+\gamma p_{i} p_{j} \frac{\partial}{\partial p_{j}}+\left\{\beta+\gamma\left(\frac{D+1}{2}\right)-\delta(\beta+\gamma)\right\} p_{i}\right] \\
\hat{p}_{i}=p_{i}
\end{array}\right.
$$

and the inner product as

$$
\langle f \mid g\rangle=\int_{-\infty}^{\infty} \frac{d p}{\left[1+(\beta+\gamma) p^{2}\right]^{\delta}} f^{*}(p) g(p)
$$

Isotropic Harmonic Oscillator in D dimensions

$$
\begin{aligned}
& \Psi_{D}\left(p_{1}, p_{2}, \mathrm{~L}, p_{D}\right)=R(p) Y_{\mid m_{D-2} m_{D-3} \mathrm{~L} m_{2} m_{1}}(\Omega) \\
&-\frac{\mathrm{h}^{2} k}{2}\left[\left\{\left[1+(\beta+\gamma) p^{2}\right] \frac{\partial}{\partial p}\right\}^{2}+\frac{(D-1)\left(1+\beta p^{2}\right)\left[1+(\beta+\gamma) p^{2}\right]}{p} \frac{\partial}{\partial p}\right. \\
&\left.-\frac{L^{2}\left(1+\beta p^{2}\right)^{2}}{p^{2}}\right] R(p)+\frac{p^{2}}{2 m} R(p)=E R(p), \quad L^{2}=I(I+D-2)
\end{aligned}
$$

Can be solved exactly. Energy eigenvalues :

$$
\begin{aligned}
E_{n \mid}= & \frac{k}{2}\left[\left(n+\frac{D}{2}\right) \sqrt{\Delta x_{\min }^{4}\left[4 L^{2}+(D+\eta)^{2}\right]+4 a^{4}}\right. \\
& \left.+\Delta x_{\min }^{2}\left\{(1+\eta)\left(n+\frac{D}{2}\right)^{2}+(1-\eta)\left(L^{2}+\frac{D^{2}}{4}\right)+\eta \frac{D}{2}\right\}\right), \Delta x_{\min }=\mathrm{h} \sqrt{\beta}, \quad \eta=\frac{\gamma}{\beta} .
\end{aligned}
$$

Dependence on angular momentum introduced. SU(D) degeneracy is broken.

2D Case

Some Details (1D case) :

Change variable to :

$$
\begin{aligned}
& \rho=\frac{1}{\sqrt{\beta}} \arctan \sqrt{\beta} p
\end{aligned}\left\{-\frac{\pi}{2 \sqrt{\beta}}<\rho<\frac{\pi}{2 \sqrt{\beta}}, \begin{array}{ll}
\hat{x}=i \mathrm{~h} \frac{d}{d \rho} & \langle f \mid g\rangle=\int_{-\pi / 2 \sqrt{\beta}}^{\pi / 2 \sqrt{\beta}} d \rho f^{*}(\rho) g(\rho) \\
\hat{p}=\frac{1}{\sqrt{\beta}} \tan \sqrt{\beta} \rho &
\end{array}\right.
$$

Schrodinger Equation :

$$
\left[-\frac{\mathrm{h}^{2} k}{2} \frac{d^{2}}{d \rho^{2}}+\frac{1}{2 m \beta} \tan ^{2} \sqrt{\beta} \rho\right] \psi(\rho)=E \psi(\rho)
$$

Infinite square - well problem for large n, and also in the limit $m \rightarrow \infty$.

Solution:

The solution is:

$$
\psi_{n}^{(\lambda)}(\rho)=\sqrt[4]{\beta}\left[2^{\lambda} \Gamma(\lambda) \sqrt{\frac{n!(n+\lambda)}{2 \pi \Gamma(n+2 \lambda)}}\right](\cos \sqrt{\beta} \rho)^{\lambda} C_{n}^{\lambda}(\sin \sqrt{\beta} \rho)
$$

where:

$$
\lambda=\frac{1}{2}+\sqrt{\frac{1}{4}+\left(\frac{a}{\Delta x_{\min }}\right)^{4}} \quad(1<\lambda)
$$

Uncertainties :

$$
\Delta x=\Delta x_{\min } \sqrt{\frac{(\lambda+n)[(2 \lambda-1) n+\lambda}{(2 \lambda-1)}}, \quad \Delta p=\frac{1}{\sqrt{\beta}} \sqrt{\frac{2 n+1}{2 \lambda-1}}
$$

Wave-functions:

Uncertainties of the Harmonic Oscillator: $\beta=0$

Uncertainties of the Harmonic Oscillator: $\beta \neq 0$

How can we get onto the $\Delta x \sim \Delta p$ branch?

Harmonic Oscillator with negative mass:

$$
\begin{aligned}
& \hat{H}=-\frac{\hat{p}^{2}}{2|m|}+\frac{1}{2} k \hat{x}^{2} \\
& \Rightarrow\left[-\frac{h^{2} k}{2}\left\{\left(1+\beta p^{2}\right) \frac{d}{d p}\right\}^{2}-\frac{p^{2}}{2|m|}\right] \psi(p)=E \psi(p)
\end{aligned}
$$

Energy eigenvalues :

$$
\begin{aligned}
& E_{n}=\frac{k}{2}\left[\left(n+\frac{1}{2}\right) \sqrt{\left(\Delta x_{\min }\right)^{4}-4 a^{4}}+\left(n^{2}+n+\frac{1}{2}\right)\left(\Delta x_{\min }\right)^{2}\right] \\
& a=\sqrt[4]{\frac{\mathrm{h}^{2}}{k|m|}}
\end{aligned}
$$

Harmonic Oscillator with negative mass:

The solution is the same as before

$$
\psi_{n}^{(\lambda)}(\rho)=\sqrt[4]{\beta}\left[2^{\lambda} \Gamma(\lambda) \sqrt{\frac{n!(n+\lambda)}{2 \pi \Gamma(n+2 \lambda)}}\right](\cos \sqrt{\beta} \rho)^{\lambda} C_{n}^{\lambda}(\sin \sqrt{\beta} \rho)
$$

except :

$$
\lambda=\frac{1}{2}+\sqrt{\frac{1}{4}-\left(\frac{a}{\Delta x_{\min }}\right)^{4}} \quad\left(\frac{1}{2}<\lambda<1, \quad \Delta x_{\min }>\sqrt{2} a\right)
$$

Uncertainties of the Harmonic Oscillator: $\beta \neq 0, m<0$

Classical Limit:

$$
\frac{1}{i \mathrm{~h}}[\hat{x}, \hat{p}]=\left(1+\beta \hat{p}^{2}\right) \Rightarrow\{x, p\}=\left(1+\beta p^{2}\right)
$$

Classical Equations of Motion:

$$
\dot{x}=\{x, H\}, \quad \dot{x}=\{p, H\}
$$

Liouville Theorem :

$$
d x \wedge d p \quad \rightarrow \quad \frac{d x \wedge d p}{1+\beta p^{2}}
$$

$\mathrm{h}\left(1+\beta p^{2}\right)$ can be considered a p-dependent effective $\mathrm{h}(p)$.

Classical Harmonic Oscillator:

Hamiltonian :

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}
$$

Classical Equations of Motion:

$$
\left\{\begin{array}{l}
\dot{X}=\{x, H\}=\frac{1}{m}\left(1+\beta p^{2}\right) p \\
\dot{X}=\{p, H\}=-k\left(1+\beta p^{2}\right) x
\end{array}\right.
$$

Time - dependence of x and p are different, but the trajectories in phase space are the same as the $\beta=0$ case since the Hamiltonian is the same.

m>0 case:

$\mathrm{m} \rightarrow$ limit:

$\sqrt{\beta} p(t)$

$\mathrm{m}<0$ case:

Compactification:

Classical Probabilities:

Comparison with Quantum Probabilities:

Work in progress:
Other potentials:

$$
\begin{aligned}
& V(x)=F|x| \\
& V(x)= \begin{cases}F x & (x>0) \\
\infty & (x<0)\end{cases}
\end{aligned}
$$

- Discreate energy eigenstates have been found for the negative mass case.
- Uncertainties are difficult to calculate. What do we mean by $x=0$?

Conclusions:

- The minimal length uncertainty relation allows discreate energy "bound" states for "inverted" potentials.
- In the classical limit, these "bound" states can be understood to be due to the finite time the particle spends near the phase-space origin.
- Particles move at arbitrary large velocites. Do the nonrelativistic negative mass states correspond to relativistic imaginary mass tachyons?

