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The Minimal Length Uncertainty Relation 
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Suggested by Quantum Gravity. Observed in perturbative String Theory. 



Deformed Commutation Relation 
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The operators can be represented as:
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Harmonic Oscillator 
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Can be solved exactly. Energy eigenvalues :
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No longer evenly spaced. n2 - dependence is introduced.



Multi Dimensional Case 
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The operators can be represented as:

ˆ x i  ih 1  ˆ p 2 
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and the inner product as
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Isotropic Harmonic Oscillator in D dimensions 
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Can be solved exactly. Energy eigenvalues :
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Dependence on angular momentum introduced. SU(D) degeneracy is broken.
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2D Case 



Some Details (1D case) : 

  



Change variable to :
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Schrodinger Equation :
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Infinite square - well problem for large n,  and also in the limit m .



Solution: 
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Uncertainties :
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Wave-functions: 

n=0 

n=1 

n=2 



Uncertainties of the Harmonic Oscillator: β=0 



Uncertainties of the Harmonic Oscillator: β≠0 

How can we get onto the Δx~Δp branch? 



Harmonic Oscillator with negative mass: 
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Energy eigenvalues :
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Harmonic Oscillator with negative mass: 

  



The solution is the same as before
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Uncertainties of the Harmonic Oscillator: β≠0, m<0 



Classical Limit: 
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Classical Equations of Motion:

Ý x  x, H , Ý p  p, H 

Liouville Theorem :

dx dp 
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h 1  p2  can be considered a p - dependent effective h(p).



Classical Harmonic Oscillator: 

  



Hamiltonian :
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Time - dependence of x and p are different,  but the trajectories in 

phase space are the same as the  = 0 case since the Hamiltonian 

is the same.



m>0 case: 



mlimit: 



m<0 case: 



Compactification: 



Classical Probabilities: 



Comparison with Quantum Probabilities: 



Work in progress: 

  



Other potentials:

V (x)  F x

V (x) 
Fx (x  0)

 (x  0)





 Discreate energy eigenstates have been found for the 
negative mass case. 

 Uncertainties are difficult to calculate. What do we 
mean by x=0? 

 



 The minimal length uncertainty relation allows 
discreate energy “bound” states for “inverted” 
potentials.  

 In the classical limit, these “bound” states can be 
understood to be due to the finite time the particle 
spends near the phase-space origin. 

 Particles move at arbitrary large velocites. Do the non-
relativistic negative mass states correspond to 
relativistic imaginary mass tachyons? 

Conclusions: 


