Hidden sector renormalization in minimal supersymmetric standard model

Masato Arai (Czech Technical University in Prague)

Talk based on arXiv: 1001.1509 and 1011.3998 with S. Kawai (Sungkyunkwan U.) and N. Okada (U. of Alabama)

Where is Czech ?

首都:プラハ 公用語:チェコ語 人口:1千43万人

Where is Czech ?

首都:プラハ 公用語:チェコ語 人口:1千43万人 ビール消費量159リットル/人/年 (日本の約3倍)

Czech food

Czech food

日本人人口: 462人(2000年) 1530人(2009年) 企業数:58(2000年) 241(2009年) 日本人研究者:4人以上(物理1,生物2,機械1)

日本人人口: 462人(2000年)
企業数: 58(2000年)
241(2009年)
日本人研究者: 4人以上(物理1, 生物2, 機械1)
チェコで働いた科学者: Albert Einstein, Johannes Kepler, Tycho de Brahe,
Ernst Mach, Christian Doppler, Kurt Godel

Introduction - Purpose

Supersymmetry: Expected to be observed at LHC.

Studying RG flows of masses of superparticles

Introduction - Purpose

Supersymmetry: Expected to be observed at LHC.

Studying RG flows of masses of superparticles

- 1. Contribution from SUSY breaking sector
- 2. Spontaneous breaking of SUSY as a consequence of strong gauge dynamics

(Theoretical interests rather than phenomenology)

Standard Model

Successful theory up to O(100) GeV

- Standard Model
 - Successful theory up to O(100) GeV
- Problems
 - Gauge hierarchy problem
 - No candidate for dark matter

- Standard Model
 - Successful theory up to O(100) GeV
- Problems
 - Gauge hierarchy problem
 - No candidate for dark matter
- Beyond the Standard Model
 - Supersymmetry

Q|boson >= |fermion >

 $m_{\rm boson} = m_{\rm fermion}$

Minimal Supersymmetric Standard Model (MSSM)

$u_L, d_L \rightarrow \tilde{u}_L, d_L$

Superpartner

Minimal Supersymmetric Standard Model (MSSM)

Multiplets		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
	d	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ē	\widetilde{e}_R^*	e_{R}^{\dagger}	(1, 1, 1)
Higgs, higgsinos	H _u	$(H_u^+ H_u^0)$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, +\frac{1}{2})$
	H _d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$(\ 1,\ 2,\ -rac{1}{2})$

Multiplets	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	ĝ	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^{0}$	(1,3,0)
bino, B boson	\widetilde{B}^{0}	B ⁰	(1, 1, 0)

* Minimal Supersymmetric Standard Model (MSSM) $u_L, d_L \Rightarrow \tilde{u}_L, \tilde{d}_L$

Superpartner New Physics

* Minimal Supersymmetric Standard Model (MSSM) $u_L, d_L \Rightarrow \tilde{u}_L, \tilde{d}_L$

Superpartner *New Physics* No observation of superpartner with the same mass

SUSY must be broken.

MSSM

Not break SUSY. Need to extend.

MSSM

Not break SUSY. Need to extend. SUSY breaking (hidden) sector

•Various SUSY breaking models

These structures may be revealed by experimental data such as *masses of superpartners*.

- Mass & Renormalization group equation (RGE)
 - Minimal gauge mediated SUSY breaking (GMSB)

Hidden sector effects are not considered Hidden sector may affect on RGE if M_{hid} < M_{mes}

[Cohen Roy Schmaltz (2007)]

Hidden sector effects are not considered

• Hidden sector may affect on RGE if $M_{hid} < M_{mes}$ [Cohen Roy Schmaltz (2007)]

RG study for constrained MSSM

[Campbell Ellis Maybury (2008)]

RG study for minimal GMSB

[MA Kawai Okada (2010)]

RGE in minimal gauge mediation scenario

• Hidden sector (toy): $W = \frac{\lambda}{3}X^3$ $\langle F_X \rangle \neq 0$

MA, N. Okada, S. kawai

- Prediction changes
 - Next lightest superparticle

Without hidden	With hidden		
sector effects	sector effects		
Bino (superpartner of	Scalar tau		
$U(1)_Y$ gauge boson)			

- Scalar tau may have long lifetime.
 - Ex. 100 sec for $m_{\tilde{\tau}} \sim 130 \text{ GeV}, \ m_{3/2} = 0.1 \text{ GeV}$
 - Maybe possible to trap it outside detector.

Purpose of work

Consider a more desirable hidden sector

- Spontaneous SUSY breaking sector
 - SUSY breaking vacuum appears as a consequence of strong gauge dynamics

SUSY is broken, but vacuum is degenrate.

One vacuum is selected, included quantum corrections

Purpose of work

Consider a more desirable hidden sector

- Spontaneous SUSY breaking sector
 - SUSY breaking vacuum appears as a consequence of strong gauge dynamics

Perturbed N=2 SUSY QCD

[MA Okada (2001)] [Ooguri Ookouchi Park (2007)] [Pastras (2007)][Marsano Ooguri Ookouchi Park (2007)]

Purpose of work

Studying mass RG flow including hidden sector effects of the following system

- Visible sector: MSSM
- Hidden sector: Perturbed N=2 SUSY QCD

in the GMSB scenario.

How hidden sector affects on masses of RG flow?

Sfermion mass

$$\mu \frac{dm_i^2}{d\mu} = (\text{MSSM RGE part}) + \gamma m_i^2$$

Anomalous dimension:
$$\gamma = -\mu \frac{d}{d\mu} \ln Z_X$$

- Gaugino mass RGE; the same as MSSM
- Mainly explained by superfield

$\mathcal{L} = \mathcal{L}_{\mathrm{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\mathrm{mes}}(X, Q, \tilde{Q}) + \mathcal{L}_{\mathrm{hid}}(X)$

Setup

$\mathcal{L} = \mathcal{L}_{\mathrm{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\mathrm{mes}}(X, Q, \tilde{Q}) + \mathcal{L}_{\mathrm{hid}}(X)$

MSSM sector

Multiplets		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
	d	\widetilde{d}_R^*	d_R^{\dagger}	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ē	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	Hu	$(H_{u}^{+} H_{u}^{0})$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, +\frac{1}{2})$
	H _d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$(\ 1,\ 2,\ -rac{1}{2})$

Multiplets	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	ĝ	g	(8 , 1 , 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^{0}$	(1 , 3 , 0)
bino, B boson	\widetilde{B}^{0}	B^0	(1, 1, 0)

Setup

$$\mathcal{L} = \mathcal{L}_{\mathrm{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\mathrm{mes}}(X, Q, \tilde{Q}) + \mathcal{L}_{\mathrm{hid}}(X)$$

 Q, \tilde{Q} : Messenger field charged under 5 & $\overline{5}$ rep. of SU(5) ($\supset SU(3)_C \times SU(2)_L \times U(1)_Y$)

$$\mathcal{L}_{\rm mes} = \int d^2 \theta W_{\rm mes} + h.c. \quad W_{\rm mes} = X Q \tilde{Q}$$

Setup

$$\mathcal{L} = \mathcal{L}_{\mathrm{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\mathrm{mes}}(X, Q, \tilde{Q}) + \mathcal{L}_{\mathrm{hid}}(X)$$

$$\mathcal{L}_{\rm mes} = \int d^2 \theta W_{\rm mes} + h.c. \quad W_{\rm mes} = X Q \tilde{Q}$$

 $\bigstar \mathcal{L}_{\mathrm{hid}}(X) : \mathsf{SUSY} \text{ breaking sector} \\ \text{- perturbed N=2 SUSY QCD}$

$$\langle X \rangle \neq 0 \quad \langle F_X \rangle \neq 0$$
$$W_{\rm mes} = (X + \langle X \rangle) Q \tilde{Q} = (X + M_{\rm mes}) Q \tilde{Q}$$

Mass of messenger

Integrating out messenger fields

 $Consider M_{hid} < M_{mes} (M_{hid} mass of hidden field)$ $\mathcal{L} = \mathcal{L}_{MSSM}(\Phi, W_{\alpha}) + \mathcal{L}_{mes}(X, Q, \tilde{Q}) + \mathcal{L}_{hid}(X)$

Integrating out messenger fields

 $Consider M_{hid} < M_{mes} (M_{hid} mass of hidden field)$ $\mathcal{L} = \mathcal{L}_{MSSM}(\Phi, W_{\alpha}) + \mathcal{L}_{mes}(X, Q, \tilde{Q}) + \mathcal{L}_{hid}(X)$

 $\mathcal{L} = \mathcal{L}_{\text{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\text{int}}(X, \Phi) + \mathcal{L}_{\text{hid}}(X)$

$$\mathcal{L}_{\rm int} = k_i \int d^4\theta \frac{XX^{\dagger}}{M_{\rm mes}^2} \Phi_i \Phi_i^{\dagger} + \left(w_a \int d^2\theta \frac{X}{M_{\rm mes}} W^{a\alpha} W^a_{\alpha} + h.c. \right)$$

Effective Lagrangian

Sfermion and gaugino masses

Effective Lagrangian

Sfermion and gaugino masses
Hidden sector effects and RGE

How hidden sector affects mass RGE?

$$\mathcal{L}_{\text{int}} = k_i \int d^4\theta \frac{XX^{\dagger}}{M_{\text{mes}}^2} \Phi_i \Phi_i^{\dagger} + \left(w_a \int d^2\theta \frac{X}{M_{\text{mes}}} W^{a\alpha} W_{\alpha}^a + h.c. \right)$$

$$X \to Z_X^{-1/2} X \quad \Phi \to Z_{\Phi}^{-1/2} \Phi \quad W \to Z_W^{-1/2} W$$

$$\mathcal{L}_{\text{int}} = k_i \int d^4\theta Z_X^{-1} Z_{\Phi}^{-1} \frac{XX^{\dagger}}{M_{\text{mes}}^2} \Phi_i \Phi_i^{\dagger}$$

$$+ \left(w_a \int d^2\theta Z_X^{-1/2} Z_W^{-1/2} Z_W^{-1/2} \frac{X}{M_{\text{mes}}} W^{a\alpha} W_{\alpha}^a + h.c. \right)$$

 k_i and w_a are renormalized.

RG equations of k_i and w_a are derived.

- Mass RGE of gaugino (from RGE of w_a)
 - The same as one of MSSM (no effect from hidden sector)

Extracting hidden sector effects

Information of hidden sector is encoded in Z_X
Z_X: Kähler metric of hidden sector

$$\mathcal{L}_{\text{hid}} = g_{XX^{\dagger}} \partial X \partial X^{\dagger} + \dots \rightarrow \partial X \partial X^{\dagger} + \dots$$
$$X \to Z_X^{-1/2} X$$

 Obtained it at most perturbatively in N=1 SUSY
 Possible to derive it exactly in (perturbed) N=2 SUSY gauge theory

Our hidden sector model

Short summary - 1

Hidden sector affects on masses of RG flow

Sfermion mass RGE

Anomalous dimension: $\gamma = -\mu \frac{d}{d\mu} \ln Z_X$

- Gaugino mass RGE; the same as MSSM
- Z_X can be derived exactly (as will be seen).

SUSY is broken, but vacuum is degenerate.

One vacuum is selected, included quantum corrections

Effective theory of hidden sector

 $\mathcal{L}_{\text{hid}}(X) \to \mathcal{L}_{\text{hid}}(A_2, A_1, M, \tilde{M})$

Our model

Our hidden sector model

[MA, Okada (2001)]

- N=2 SUSY SU(2)xU(1) coupled to 2 massless hypermultiplets perturbed by Fayet-Iliopoulos (FI) term.
- SUSY is spontaneously broken at classical level.
 - Pseudo flat direction (moduli)
- Degeneracy of vacua removed by taking quantum corrections into account.

Our model

Hidden sector Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm VM} + \mathcal{L}_{\rm HM} + \mathcal{L}_{\rm FI} \\ \mathcal{L}_{\rm VM} &= \frac{1}{2\pi} {\rm Im} \left[{\rm Tr} \left\{ \tau_{22} \left(\int \! d^4 \theta \; A_2^\dagger e^{2V_2} A_2 e^{-2V_2} + \frac{1}{2} \int \! d^2 \theta \; W_2^2 \right) \right\} \right] \\ &\quad + \frac{1}{4\pi} {\rm Im} \left[\tau_{11} \left(\int \! d^4 \theta \; A_1^\dagger A_1 + \frac{1}{2} \int \! d^2 \theta \; W_1^2 \right) \right] \\ \text{Coupling constants:} \quad \tau_{22} &= i \frac{8\pi}{g^2} + \frac{\theta}{\pi}, \qquad \tau_{11} = i \frac{8\pi}{e^2} \\ \mathcal{L}_{\rm HM} &= \int \! d^4 \theta \left(q_r^\dagger e^{2V_2 + 2V_1} q^r + \tilde{q}_r e^{-2V_2 - 2V_1} \tilde{q}^{r\dagger} \right) \\ &\quad + \sqrt{2} \left(\int d^2 \theta \; \tilde{q}_r (A_2 + A_1) q^r + h.c. \right). \\ \mathcal{L}_{\rm FI} &= \int \! d^2 \theta \lambda_{\rm FI} A_1 + h.c. \qquad \text{Fayet-lliopoulos term} \end{split}$$

Classical vacua

◆ Potential analysis $V = V(A_2, A_1, q, \tilde{q}, \lambda_{FI})$ ↓ $\lambda_{FI} = 0$ $q = \tilde{q} = 0, A_2 = \begin{pmatrix} a_2 & 0 \\ 0 & -a_2 \end{pmatrix}, A_1 = a_1$ $SU(2) \times U(1) \Rightarrow U(1)_c \times U(1)$

 a_1

Classical vacua

SUSY Ps

Pseudo flat direction

Classical vacua

Pseudo flat direction

- Low energy Wilsonian effective action
 - Integrating out heavy fields $S = \int_{|k| > \Lambda} \Pi_i \mathcal{D}\phi_i e^{i \int \mathcal{L}(\phi_i)}$
 - Effective action

✤ Low energy effective action – N=2 part: \mathcal{L}_{SUSY} $\mathcal{L}_{SUSY} = \mathcal{L}_{VM} + \mathcal{L}_{HM} \qquad V = 0$

✤ Low energy effective action – N=2 part: \mathcal{L}_{SUSY} $\mathcal{L}_{SUSY} = \mathcal{L}_{VM} + \mathcal{L}_{HM} \qquad V = 0$

✤ Low energy effective action – N=2 part: \mathcal{L}_{SUSY} $\mathcal{L}_{SUSY} = \mathcal{L}_{VM} + \mathcal{L}_{HM} \qquad V = 0$

$$\mathcal{L}_{\text{SUSY}}(u(A_2), A_1)$$

$$\overset{i}{\times} SU(2) \times U(1) \Rightarrow U(1)_c \times U(1)$$

$$u(a_2) = \text{Tr}((A_2)^2)$$

$$\mathcal{L}_{\text{VM}} = \frac{1}{4\pi} \text{Im} \sum_{i,j=1}^2 \left[\int d^4\theta \ \frac{\partial \mathcal{F}}{\partial A_i} A_i^{\dagger} + \frac{1}{2} \int d^2\theta \ \tau_{ij} W_i W_j \right]$$

Prepotential: $\mathcal{F} = \mathcal{F}(A_1, A_2, \Lambda, \Lambda_{Landau})$ written by Elliptic function

***** Low energy effective action – N=2 part: \mathcal{L}_{SUSY}

$$\mathcal{L}_{\rm SUSY} = \mathcal{L}_{\rm VM} + \mathcal{L}_{\rm HM} \qquad \qquad V = 0$$

Massless solitonic state appears (like non-Abelian Higgs system) a_1

$$\mathcal{L}_{\mathrm{SUSY}}(u(A_2), A_1, \mathbf{M}, \tilde{\mathbf{M}}) \\ \stackrel{!}{\times} SU(2) \times U(1) \Rightarrow U(1)_c \times U(1) \quad \mathcal{L}_{\mathrm{SUSY}}(u(A_2), A_1)$$

×

$$\mathcal{L}_{\rm VM} = \frac{1}{4\pi} {\rm Im} \sum_{i,j=1}^{2} \left[\int d^4\theta \; \frac{\partial \mathcal{F}}{\partial A_i} A_i^{\dagger} + \frac{1}{2} \int d^2\theta \; \tau_{ij} W_i W_j \right] = {\rm Tr}((A_2)^2)$$

Prepotential: $\mathcal{F} = \mathcal{F}(A_1, A_2, \Lambda, \Lambda_{Landau})$ written by Elliptic function

***** Low energy effective action – N=2 part: \mathcal{L}_{SUSY}

$$\mathcal{L}_{\text{SUSY}} = \mathcal{L}_{\text{VM}} + \mathcal{L}_{\text{HM}} \qquad V = 0$$
Massless solitonic state appears
(like non-Abelian Higgs system) a_1

$$\mathcal{L}_{\text{SUSY}}(u(A_2), A_1, M, \tilde{M})$$

$$= -\sqrt{2}a_1\Lambda - \frac{\Lambda^2}{8}$$
Singular point
$$u_3 = 2a_1^2 + \frac{\Lambda^2}{8}$$

$$u(a_2) = \text{Tr}((A_2)^2)$$

$$\mathcal{L}_{\text{VM}} = \frac{1}{4\pi} \text{Im} \sum_{i,j=1}^2 \left[\int d^4\theta \ \frac{\partial \mathcal{F}}{\partial A_i} A_i^{\dagger} + \frac{1}{2} \int d^2\theta \ \tau_{ij} W_i W_j \right]$$

Prepotential: $\mathcal{F} = \mathcal{F}(A_1, A_2, \Lambda, \Lambda_{Landau})$ written by Elliptic function

 u_1

***** Low energy effective action – N=2 part: \mathcal{L}_{SUSY}

$$\mathcal{L}_{\text{SUSY}} = \mathcal{L}_{\text{VM}} + \mathcal{L}_{\text{HM}} \qquad V = 0$$
Massless solitonic state appears
(like non-Abelian Higgs system) a_1

$$\mathcal{L}_{\text{SUSY}}(u(A_2), A_1, M, \tilde{M})$$
Singular point
$$\mathcal{L}_{\text{SUSY}}(u(A_2), A_1, M, \tilde{M})$$
Singular point
$$Argyres-Douglas point$$

$$Argyres-Douglas point$$

$$u = -\sqrt{2}a_1\Lambda - \frac{\Lambda^2}{8}$$

$$u = -\Lambda^2/8$$

$$u(a_2) = \text{Tr}((A_2)^2)$$

$$\mathcal{L}_{\text{VM}} = \frac{1}{4\pi} \text{Im} \sum_{i,j=1}^2 \left[\int d^4\theta \ \frac{\partial \mathcal{F}}{\partial A_i} A_i^{\dagger} + \frac{1}{2} \int d^2\theta \ \tau_{ij} W_i W_j \right]$$

Prepotential: $\mathcal{F} = \mathcal{F}(A_1, A_2, \Lambda, \Lambda_{Landau})$ written by Elliptic function

 u_1

$\label{eq:lower} \bigstar \text{Low energy effective action} - \text{N=2 part: } \mathcal{L}_{\rm SUSY}$ $\mathcal{L} = \mathcal{L}_{\rm VM} + \mathcal{L}_{\rm HM} + \mathcal{L}_{\rm FI}$

$\label{eq:lower} \bigstar \text{Low energy effective action} - \text{N=2 part: } \mathcal{L}_{\rm SUSY} \\ \mathcal{L} = \mathcal{L}_{\rm VM} + \mathcal{L}_{\rm HM} + \mathcal{L}_{\rm FI} \\ \end{cases}$

Potential analysis

Effective scalar potential

$$\mathcal{L} = \mathcal{L}_{VM} + \mathcal{L}_{HM} + \mathcal{L}_{FI}$$
$$\implies V = V(a_2(u), a_1, M, \tilde{M})$$

Solving stationary condition with respect to M, \tilde{M}

 a_1

$$0 = \frac{\partial V}{\partial M} = \frac{\partial V}{\partial \tilde{M}}$$
$$\implies \begin{cases} 1) \ V(a_2(u), a_1) = Y(a_2, a_1), \\ 2) \ V(a_2(u), a_1) = Y(a_2, a_1) - 4S(a_2, a_1)\mathcal{M}(a_2, a_1)^4 \\ S(a_2, a_1) > 0 \qquad \mathcal{M} \equiv M = \tilde{M} \end{cases}$$

• Potential minimum is energetically favored if light matter acquires VEV (along only singular points).

Potential analysis

Potential parameterized by 2 moduli parameters

 Local vacua develop along flows of singular points of the theory (N=2 massive SQCD) and make troughs.

SUSY is broken, but vacuum is degenerate.

One vacuum is selected, included quantum corrections

Effective theory of hidden sector

 $\mathcal{L}_{\text{hid}}(X) \to \mathcal{L}_{\text{hid}}(A_2, A_1, M, \tilde{M})$

RGE analysis

Mass RGE

$$\mu \frac{dm_i^2}{d\mu} = (\text{MSSM RGE part}) + \gamma m_i^2 \qquad \gamma = -\mu \frac{d}{d\mu} \ln Z_X$$

Hidden sector

 $\mathcal{L}_{\text{hid}}(A_2, A_1, M, \tilde{M})$

 $X \to Z_X^{-1/2} X \qquad \qquad X = A_1, \ A_2$

(Numerical evaluation)

Possible coupling to the messenger fields

- 2 possible messenger hidden couplings
 - $\mathcal{L} = \mathcal{L}_{\text{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\text{mes}}(X, \Phi) + \mathcal{L}_{\text{hid}}(X)$ $W_{\text{mes}} = XQ\tilde{Q} + m_{\text{mes}}Q\tilde{Q}$
 - Possibility 1: X = A₁ A₁ → Z^{-1/2}_{A₁}A₁
 Possibility 2: X = u/M A₂ → Z^{-1/2}_{A₂}A₂

$$\mu \frac{dm_i^2}{d\mu} = (\text{MSSM RGE part}) + \gamma m_i^2 \qquad \gamma = -\mu \frac{d}{d\mu} \ln Z_X$$

Wave function renormalization

$$\mathcal{L}_{VM} = \frac{1}{4\pi} \operatorname{Im} \sum_{i,j=1}^{2} \left[\int d^{4}\theta \; \frac{\partial \mathcal{F}}{\partial A_{i}} A_{i}^{\dagger} + \frac{1}{2} \int d^{2}\theta \; \tau_{ij} W_{i} W_{j} \right]$$

$$= g_{A_{1}A_{1}^{\dagger}} \partial A_{1} \partial A_{1}^{\dagger} + g_{A_{2}A_{2}^{\dagger}} \partial A_{2} \partial A_{2}^{\dagger} + \cdots$$

Effective couplings of $A_{1} \& A_{2}$

$$g_{A_{1}A_{1}^{\dagger}}(\boldsymbol{u}, \boldsymbol{a}_{1}) = Z_{A_{1}} = \frac{\partial^{2} K}{\partial A_{1} \partial A_{1}^{\dagger}} = \frac{1}{8\pi} \operatorname{Im} \frac{\partial^{2}}{\partial A_{1} \partial A_{1}^{\dagger}} \left(\frac{\partial \mathcal{F}}{\partial A_{1}} A_{1}^{\dagger} \right)$$

$$g_{A_{2}A_{2}^{\dagger}}(\boldsymbol{u}, \boldsymbol{a}_{1}) = Z_{A_{2}} = \frac{\partial^{2} K}{\partial A_{2} \partial A_{2}^{\dagger}} = \frac{1}{8\pi} \operatorname{Im} \frac{\partial^{2}}{\partial A_{2} \partial A_{2}^{\dagger}} \left(\frac{\partial \mathcal{F}}{\partial A_{2}} A_{2}^{\dagger} \right)$$

Identify moduli parameters as a renormalization scale in RGE How to identify two moduli parameters as a scale?

RGE flow Potential parameterized by 2 moduli parameters

Choosing troughs of the potential (flow of the singular points)
 [cf. Sher (1989)]

Possible coupling to the messenger fields

2 possible messenger - hidden couplings

- $\mathcal{L} = \mathcal{L}_{\text{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\text{mes}}(X, \Phi) + \mathcal{L}_{\text{hid}}(X)$
- Model 1 U(1) field coupled: $X = A_1$

 $W_{\rm mes} = A_1 Q \tilde{Q} + m_{\rm mes} Q \tilde{Q} \qquad A_1 \to Z_{A_1}^{-1/2} A_1$

Wave function renormalization

Mass RG along u1 – model 1

• Mass RG flow of sleptons $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 0.2)$

Mass RG along u1 – model 1

• Mass RG flow of squarks $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 0.2)$

Possible coupling to the messenger fields

2 possible messenger - hidden couplings

 $\mathcal{L} = \mathcal{L}_{\text{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\text{mes}}(X, \Phi) + \mathcal{L}_{\text{hid}}(X)$

• Model 2 - SU(2) field coupled: $X = u/\tilde{M}$

Wave function renormalization

Mass RG along u2- model 2

• Mass RG flow of sleptons $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 0.2)$

Mass RG along u2 – model 2

• Mass RG flow of squarks $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 0.2)$

Possible coupling to the messenger fields

2 possible messenger - hidden couplings

 $\mathcal{L} = \mathcal{L}_{\text{MSSM}}(\Phi, W_{\alpha}) + \mathcal{L}_{\text{mes}}(X, \Phi) + \mathcal{L}_{\text{hid}}(X)$

• Model 2 - SU(2) field coupled: $X = u/\tilde{M}$

Wave function renormalization

 \diamond Z_{A_2} & γ_{A_2} along u_2

Mass RG along u2 – model 2

• Mass RG flow of sleptons $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 1.2)$

Mass RG along u2 – model 2

• Mass RG flow of squarks $(\mu \rightarrow (10^9/M_{hid})\mu, M_{hid} = 1.2)$

We investigated hidden sector contributions to the mass RG flow.

We analyzed the strong coupled hidden sector in GMSB.

Hidden sector effects make soft masses to decrease.

Near Argyres-Douglas point soft masses decrease drastically.

Masses of superpartners

Gaugino & sfermion masses

Quantum theory

- ***** Low energy effective action $\mathcal{L}_{\rm VM}$
 - Effective action respects $U(1)_c \times U(1)$
 - Landau pole Λ_{Landau} introduced because of U(1)
 - $a_1 < \Lambda_{\text{Landau}}$

$$\mathcal{L}_{\rm VM} = \frac{1}{4\pi} \text{Im} \sum_{i,j=1}^{2} \left[\int d^4\theta \ \frac{\partial \mathcal{F}}{\partial A_i} A_i^{\dagger} + \frac{1}{2} \int d^2\theta \ \tau_{ij} W_i W_j \right]$$

Prepotential: $\mathcal{F} = \mathcal{F}(A_1, A_2, \Lambda, \Lambda_{\text{Landau}})$

Assuming U(1) dynamics does not affect SU(2)

$$\mathcal{F} = \mathcal{F}_{SU(2)}^{\mathrm{SQCD}}(A_2, m, \Lambda) \Big|_{m = \sqrt{2}A_1} + cA_1^2$$

N=2 SU(2) SQCD effective action c includes the info of Landau pole. - written by elliptic curve Seiberg, Witten (1994)

Quantum theory

- ***** Low energy effective action $\mathcal{L}_{\rm HM}$
 - Quark, monopole and dyon become light in the vicinity of singular points on (u, a1)

$$\begin{aligned} \mathcal{L}_{\text{HM}} &= \int d^4\theta \Big[M_r^{\dagger} e^{2n_m V_{2D} + 2n_e V_2 + 2nV_1} M^r \\ &\quad + \tilde{M}_r e^{-2n_m V_{2D} - 2n_e V_2 - 2nV_1} \tilde{M}^{r\dagger} \Big] \\ &\quad + \sqrt{2} \int d^2\theta \left[\tilde{M}_r (n_m A_{2D} + n_e A_2 + nA_1) M^r + h.c. \right] \\ M, \ \tilde{M} : \text{Quark, monopole, dyon} \\ (n_m, n_e)_n : \text{Magnetic, electric charges, U(1) charge.} \\ &\quad \text{Ex. Quark:} \quad (n_m, n_e)_n = (0, 1)_1 \\ A_{iD} &= \frac{\partial \mathcal{F}}{\partial A_i} \end{aligned}$$