KSU2011

同種粒子性と量子相関
 －量子もつれの測定依存性－

Izumi TSUTSUI（KEK）／筒井 泉（高エネルギー加速器研究機構）

Collaborators：
Toshihiko SASAKI（Univ．Tokyo）／佐々木 寿彦（東京大学）
Tsubasa ICHIKAWA（Kinki Univ．）／市川 翼（近畿大学）

References：
－J．Math．Phys． 51 （2010） 062202
－Phys．Rev．A 83 （2011） 012123

量子もつれ

E．Schrödinger（1935）
［Entanglement］is not one，but rather the characteristic trait of quantum mechanics， the one that enforces its entire departure from classical lines of thought．

Bell 定理：古典的な実在性概念と量子力学との矛盾実験的検証の試み
－Photons：Aspect et al．（1982）
－Ions：Rowe et al．（2001）
－Atomic nuclei：Sakai et al．（2006）
－Mesons（proposed）：CERN，Frascati，KEK $(1999,2006,2008)$

同種粒子性

種々の量子現象の根幹にある性質

（ex．）黒体輻射，（anti－）bunching，BEC

- 統計性：Maxwell－Boltzmann \rightarrow Fermi－Dirac／Bose－Einstein
- 粒子散乱：Combination of Feynman diagrams

同種粒子性

種々の量子現象の根幹にある性質

（ex．）黒体輻射，（anti－）bunching，BEC

- 統計性：Maxwell－Boltzmann \rightarrow Fermi－Dirac／Bose－Einstein
- 粒子散乱：Combination of Feynman diagrams

問：同種粒子性は量子もつれの概念を変更するか？

Outline of this Talk

1）はじめに
2）同種粒子性に起因する問題

3）相関と量子もつれ
4）状態空間の構造
5）結論と展望

Outline of this Talk

1）はじめに
 2）同種粒子性に起因する問題
 3）相関と量子もつれ
 4）状態空間の構造
 5）結論と展望

以下の議論は簡単のため $N=2$ ボソンの系で行うが，フェルミオン系でも， またさらに一般の N 粒子系で，任意の s 個の部分系を持つ場合でも成立

同種粒子性に起因する問題

量子もつれと相関：異種粒子の場合

$$
O_{1}=\vec{\sigma}_{1} \cdot \vec{a} \xrightarrow{\text { Source }}
$$

No correlation for any local observables

$$
\langle\Psi| O_{1} \otimes O_{2}|\Psi\rangle=\langle\Psi| O_{1} \otimes \mathbb{1}_{2}|\Psi\rangle\langle\Psi| \mathbb{1}_{1} \otimes O_{2}|\Psi\rangle .
$$

量子もつれと相関：異種粒子の場合

No correlation for any local observables

$$
\langle\Psi| O_{1} \otimes O_{2}|\Psi\rangle=\langle\Psi| O_{1} \otimes \mathbb{1}_{2}|\Psi\rangle\langle\Psi| \mathbb{1}_{1} \otimes O_{2}|\Psi\rangle .
$$

$\Leftrightarrow \quad$ Separable（factorized）state：$\quad|\Psi\rangle=\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}$.

量子もつれと相関：異種粒子の場合

No correlation for any local observables

$$
\langle\Psi| O_{1} \otimes O_{2}|\Psi\rangle=\langle\Psi| O_{1} \otimes \mathbb{1}_{2}|\Psi\rangle\langle\Psi| \mathbb{1}_{1} \otimes O_{2}|\Psi\rangle .
$$

$\Leftrightarrow \quad$ Separable（factorized）state：$\quad|\Psi\rangle=\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}$.
Entangled state $=$ Non－separable state：$|\Psi\rangle=\left|e_{1}\right\rangle_{1}\left|f_{1}\right\rangle_{2}+\left|e_{2}\right\rangle_{1}\left|f_{2}\right\rangle_{2}$

$$
\neq\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}
$$

量子もつれと相関：異種粒子の場合

No correlation for any local observables

$$
\langle\Psi| O_{1} \otimes O_{2}|\Psi\rangle=\langle\Psi| O_{1} \otimes \mathbb{1}_{2}|\Psi\rangle\langle\Psi| \mathbb{1}_{1} \otimes O_{2}|\Psi\rangle .
$$

$\Leftrightarrow \quad$ Separable（factorized）state：$\quad|\Psi\rangle=\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}$.
Entangled state $=$ Non－separable state：$|\Psi\rangle=\left|e_{1}\right\rangle_{1}\left|f_{1}\right\rangle_{2}+\left|e_{2}\right\rangle_{1}\left|f_{2}\right\rangle_{2}$

$$
\neq\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}
$$

量子もつれ \Leftrightarrow 相関 \Leftrightarrow Non－factorizability

同種粒子性と異種粒子系の差

量子もつれ \Leftrightarrow 相関 \Leftrightarrow Non－factorizability
－Distinguishable：

$$
|\uparrow\rangle_{1}|\downarrow\rangle_{2}+|\downarrow\rangle_{1}|\uparrow\rangle_{2}
$$

Non－factorizability
\rightarrow Superposition of 2 situations．

同種粒子性と異種粒子系の差

量子もつれ \Leftrightarrow 相関 \Leftrightarrow Non－factorizability
－Distinguishable：

$$
|\uparrow\rangle_{1}|\downarrow\rangle_{2}+|\downarrow\rangle_{1}|\uparrow\rangle_{2}
$$

Non－factorizability
\rightarrow Superposition of 2 situations．
－Indistinguishable：the labels are just formal．

$$
|\uparrow\rangle_{1}|\downarrow\rangle_{2}+|\downarrow\rangle_{1}|\uparrow\rangle_{2}
$$

Non－factorizable， but physically only 1 situation．

同種粒子性と異種粒子系の差

量子もつれ \Leftrightarrow 相関 \Leftrightarrow Non－factorizability
－Distinguishable：

$$
|\uparrow\rangle_{1}|\downarrow\rangle_{2}+|\downarrow\rangle_{1}|\uparrow\rangle_{2}
$$

Non－factorizability
\rightarrow Superposition of 2 situations．
－Indistinguishable：the labels are just formal．

$$
|\uparrow\rangle_{1}|\downarrow\rangle_{2}+|\downarrow\rangle_{1}|\uparrow\rangle_{2}
$$

同種粒子の量子もつれに対する種々の提案

1）Schliemann et．al	（2001）	Slater rank．
2）Zanardi	(2001)	Algebraic structure．
3）Ghirardi et．al	(2002)	EPR－like argument．
4）Ghirardi et．al	(2004)	Disagreement between 1）and 3）．
5）Viola et．al	(2007)	Convex structure of state space．
6）Tichy et．al	(2009)	Detection process．
7）IT et．al	$(2010,2011)$	Measurement setups， Correlations．

提案の齸齬

（ex．）Bipartite $(N=2)$ bosonic state
\mathcal{S} ：Symmetrizer．

$$
\begin{aligned}
|\Psi\rangle=|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right] . \quad \begin{aligned}
&\left|\psi_{1}\right\rangle=(|0\rangle-\mathrm{i}|1\rangle) / \sqrt{2} \\
&\left|\psi_{2}\right\rangle \\
&=(|0\rangle+\mathrm{i}|1\rangle) / \sqrt{2}
\end{aligned}
\end{aligned}
$$

提案の齟齬

（ex．）Bipartite $(N=2)$ bosonic state

$$
\begin{aligned}
|\Psi\rangle=|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right] . \quad \begin{aligned}
&\left|\psi_{1}\right\rangle=(|0\rangle-\mathrm{i}|1\rangle) / \sqrt{2} \\
&\left|\psi_{2}\right\rangle \\
&=(|0\rangle+\mathrm{i}|1\rangle) / \sqrt{2}
\end{aligned}
\end{aligned}
$$

Entangled

－Schliemannの提案：
Entangled if

$$
|\Psi\rangle=c_{0}|0\rangle_{1}|0\rangle_{2}+c_{1}|1\rangle_{1}|1\rangle_{2}
$$

under an appropriate basis．
Schmidt 分解に基づく形式論

提案の䊀菊

（ex．）Bipartite（ $N=2$ ）bosonic state

$$
\mathcal{S}: \text { Symmetrizer. }
$$

$$
|\Psi\rangle=|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right] . \quad \begin{array}{ll}
\left|\psi_{1}\right\rangle & =(|0\rangle-\mathrm{i}|1\rangle) / \sqrt{2} \\
& \left|\psi_{2}\right\rangle=(|0\rangle+\mathrm{i}|1\rangle) / \sqrt{2}
\end{array}
$$

Entangled

－Schliemannの提案：
Entangled if

$$
|\Psi\rangle=c_{0}|0\rangle_{1}|0\rangle_{2}+c_{1}|1\rangle_{1}|1\rangle_{2}
$$

under an appropriate basis．
Schmidt 分解に基づく形式論
－Ghirardiの提案：
Separable if

$$
|\Psi\rangle=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right]
$$

by using orthogonal vectors．

相関と量子もつれ

同種粒子の相関の測定とは

量子もつれ \Leftrightarrow 相関 \Leftrightarrow Non－factorizability

同種粒子の相関の測定とは

相関に基づく物理的に意味のある量子もつれ
相関を定義するには2つの区別可能な測定が前提

測定における区別の導入

測定器の位置による区別
Left／Right states：$\quad|L\rangle,|R\rangle \quad\langle L \mid R\rangle=0$.
物理量：

$$
\begin{array}{ll}
O_{1}=\vec{\sigma}_{1} \cdot \vec{a} \otimes|L\rangle\langle L|, & O_{2}=\vec{\sigma}_{2} \cdot \vec{b} \otimes|R\rangle\langle R| . \\
\mathbb{I}_{1}=\mathbb{1}_{1} \otimes|L\rangle\langle L|, & \mathbb{I}_{2}=\mathbb{1}_{2} \otimes|R\rangle\langle R| .
\end{array}
$$

無相関の条件：

$$
\langle\Psi| \mathcal{S}\left(O_{1} \otimes O_{2}\right) \mathcal{S}|\Psi\rangle=\langle\Psi| \mathcal{S}\left(O_{1} \otimes \mathbb{I}_{2}\right) \mathcal{S}|\Psi\rangle\langle\Psi| \mathcal{S}\left(\mathbb{I}_{1} \otimes O_{2}\right) \mathcal{S}|\Psi\rangle .
$$

同種粒子の相関と量子もつれ

同種粒子の相関と量子もつれ

Separable states w．r．t．L／R measurement：

$$
|\Psi\rangle=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right]+\left|\Psi^{\prime}\right\rangle
$$

$$
\left|\psi_{1}\right\rangle_{1}=|\alpha\rangle_{1}|L\rangle_{1}, \quad\left|\psi_{2}\right\rangle_{2}=\left|\alpha^{\prime}\right\rangle_{2}|R\rangle_{2}
$$

$$
\mathcal{S}\left(O_{1} \otimes O_{2}\right) \mathcal{S}\left|\Psi^{\prime}\right\rangle=0 . \quad \text { No contribution to data. }
$$

同種粒子の相関と量子もつれ

Separable states w．r．t．L／R measurement：

$$
\begin{aligned}
|\Psi\rangle= & \mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right]+\left|\Psi^{\prime}\right\rangle \\
& \left|\psi_{1}\right\rangle_{1}=|\alpha\rangle_{1}|L\rangle_{1}, \quad\left|\psi_{2}\right\rangle_{2}=\left|\alpha^{\prime}\right\rangle_{2}|R\rangle_{2} \\
& \mathcal{S}\left(O_{1} \otimes O_{2}\right) \mathcal{S}\left|\Psi^{\prime}\right\rangle=0 . \quad \text { No contribution to data. }
\end{aligned}
$$

量子もつれ：測定器の設定に相対的

量子もつれの相対性

$$
\begin{aligned}
|\Psi\rangle & =|0, L\rangle_{1}|1, R\rangle_{2}+|1, R\rangle_{1}|0, L\rangle_{2} \\
& \propto \mathcal{S}\left(|0, L\rangle_{1}|1, R\rangle_{2}\right) .
\end{aligned}
$$

Separable w．r．t．L／R measurement

Up／Down：$| \pm\rangle=(|L\rangle \pm|R\rangle) / \sqrt{2}$ ．

Entangled w．r．t．U／D measurement

量子もつれの相対性

$$
\begin{aligned}
|\Psi\rangle & =|0, L\rangle_{1}|1, R\rangle_{2}+|1, R\rangle_{1}|0, L\rangle_{2} \\
& \propto \mathcal{S}\left(|0, L\rangle_{1}|1, R\rangle_{2}\right) .
\end{aligned}
$$

Separable w．r．t．L／R measurement

Up／Down：$| \pm\rangle=(|L\rangle \pm|R\rangle) / \sqrt{2}$ ．

$$
\begin{aligned}
|\Psi\rangle \propto & \mathcal{S}\left(|0,+\rangle_{1}|1,-\rangle_{2}+|1,+\rangle_{1}|0,-\rangle_{2}\right) \\
& +\left|\Psi^{\prime}\right\rangle
\end{aligned}
$$

Entangled w．r．t．U／D measurement

従来の提案の齗齚の解釈

（ex．）Bipartite bosonic state

$$
\begin{aligned}
&|\Psi\rangle=|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right] . \mathcal{S}: \text { Symmetrizer. } \\
& \text { Entangled } \text { Separable } \\
& \text { Entite }\left|\psi_{2}\right\rangle=(|0\rangle-\mathrm{i}|1\rangle) / \sqrt{2} \\
& \hline \text { Sosonic state }
\end{aligned}
$$

－Schliemannの提案：
Entangled if

$$
|\Psi\rangle=c_{0}|0\rangle_{1}|0\rangle_{2}+c_{1}|1\rangle_{1}|1\rangle_{2}
$$

under an appropriate basis．
－Ghirardiの提案：
Separable if

$$
|\Psi\rangle=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right]
$$

by using orthogonal vectors．

測定器の設定の変更に相当

$$
\{|0\rangle,|1\rangle\} \rightarrow\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right\} .
$$

状態空間の構造

Katsura Imperial Villa，Kyoto

測定結果と 1 粒子状態空間の直和分解

Separable state w．r．t．Left／Right measurements

$$
\begin{aligned}
& |\Psi\rangle=\mathcal{S}\left[\left|\psi_{1}\right\rangle_{1}\left|\psi_{2}\right\rangle_{2}\right]+\left|\Psi^{\prime}\right\rangle . \\
& \quad\left|\psi_{1}\right\rangle_{1}=|\alpha\rangle_{1}|L\rangle_{1}, \quad\left|\psi_{2}\right\rangle_{2}=\left|\alpha^{\prime}\right\rangle_{2}|R\rangle_{2}, \\
& \quad\left|\Psi^{\prime}\right\rangle: \text { No contribution to data. }
\end{aligned}
$$

－Distinct measurement setups：

$$
\begin{aligned}
& V_{1}=\{|\alpha, L\rangle \mid \alpha\} \quad V_{2}=\left\{\left|\alpha^{\prime}, R\right\rangle \mid \alpha^{\prime}\right\} \\
& V_{1} \perp V_{2} . \text { orthogonal } \\
& V=\left\{V_{1}, V_{2}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{H}(V) \quad \text { : 測定可能な状態空間 } \\
& \mathcal{H}(V)^{\perp} \text { : 測定不能な状態空間 } \\
& \mathcal{H}=\mathcal{H}(V) \oplus \mathcal{H}(V)^{\perp} .
\end{aligned}
$$

同種粒子の量子もつれ

判定基準
i）測定の設定の指定 V ．
ii）直和分解の実施

$$
|\Psi\rangle=|\Psi(V)\rangle+\left|\Psi(V)^{\perp}\right\rangle
$$

iii）$|\Psi(V)\rangle=\mathcal{S}|\Phi\rangle$
$|\Phi\rangle \neq$ 直積状態

$$
\Rightarrow|\Psi\rangle \text { : 量子もつれ }
$$

測定可能なデータとテンソル積構造

－Subspace corresponding to the observed data $\mathcal{H}(V)=\mathcal{S}\left[V_{1} \otimes V_{2}\right]$.
－Symmetrizer as a map：
$\mathcal{S}: V_{1} \otimes V_{2} \rightarrow \mathcal{H}(V)$

one－to－one map due to the orthogonality of V
$\rightarrow \mathcal{H}(V) \quad$ テンソル積空間と同形

異種 粒子系の状態空間

Universally Separable States

量子もつれ：測定の設定に相対的な概念

Universally Separable States

量子もつれ：測定の設定に相対的な概念
Q．どんな測定設定に対しても量子もつれしていない状態は存在するか？

Universally Separable States

量子もつれ：測定の設定に相対的な概念
Q．どんな測定設定に対しても量子もつれしていない状態は存在するか？

A．No for fermions．Yes for bosons．

$$
|\Psi\rangle=|\phi\rangle^{\otimes 2} \quad \text { i.i.d. pure states. }
$$

Universally Separable States

量子もつれ：測定の設定に相対的な概念
Q．どんな測定設定に対しても量子もつれしていない状態は存在するか？

A．No for fermions．Yes for bosons．

$$
|\Psi\rangle=|\phi\rangle^{\otimes 2} \quad \text { i.i.d. pure states. }
$$

Q．どんな測定設定に対しても量子もつれしている状態は存在するか？
etc．．．

結論と展望

結論
 結論

結論

i）同種粒子系の場合にも，相関に基づく量子もつれの定義が可能． N 体のボソン，フェルミオン系が，任意の s 個の部分系に分解する場合にも適用可能。

- 測定結果と直接に関係
- 同種粒子と異種粒子が同じ枠組で取り扱われる

結言侖

i）同種粒子系の場合にも，相関に基づく量子もつれの定義が可能． N 体のボソン，フェルミオン系が，任意の s 個の部分系に分解する場合にも適用可能。

- 測定結果と直接に関係
- 同種粒子と異種粒子が同じ枠組で取り扱われる
ii）相関に基づく定義から判ることは
－量子もつれの相対性
－i．i．d．pure states の universal separability

展望

展望

i）量子もつれの相対性の意義は？

ex．）$N=2$ bosonic states

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{6}} \sum_{i=1}^{6}\left|e_{i}\right\rangle_{1}\left|e_{i}\right\rangle_{2} \longrightarrow \sum_{i=1}^{3} \lambda_{i}\left|e_{i}^{\prime \prime}\right\rangle_{1}\left|e_{i+3}^{\prime \prime}\right\rangle_{3} \\
\text { Schmidt decomp. }
\end{gathered}
$$ varying meas．setups：$\left|e_{i}^{\prime}\right\rangle=U\left|e_{i}\right\rangle, \quad U \in \mathrm{U}(6)$ ．

㞘 皆

i）量子もつれの相対性の意義は？

ex．）$N=2$ bosonic states

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{6}} \sum_{i=1}^{6}\left|e_{i}\right\rangle_{1}\left|e_{i}\right\rangle_{2} \longrightarrow \sum_{i=1}^{3} \lambda_{i}\left|e_{i}^{\prime \prime}\right\rangle_{1}\left|e_{i+3}^{\prime \prime}\right\rangle_{3} \\
\text { Schmidt decomp. }
\end{gathered}
$$ varying meas．setups：$\quad\left|e_{i}^{\prime}\right\rangle=U\left|e_{i}\right\rangle, \quad U \in \mathrm{U}(6)$

ii）他の提案との整合性の吟味，量子光学などでの標準的操作との関連
－Tichy et al．（2009）：Analyses based on measurement setups．
Detector level density matrix，Effective indistinguishability
－Second quantization，occupation number representation．

Thank you!

