KSU2011

同種粒子性と量子相関 - 量子もつれの測定依存性 -

Izumi TSUTSUI (KEK) / 筒井泉 (高エネルギー加速器研究機構)

Collaborators:

Toshihiko SASAKI (Univ. Tokyo) / 佐々木 寿彦 (東京大学)

Tsubasa ICHIKAWA (Kinki Univ.) / 市川 翼 (近畿大学)

References:

- J. Math. Phys. 51 (2010) 062202

- Phys. Rev. A 83 (2011) 012123

Introduction (1/2)

2/24

E. Schrödinger (1935)

[Entanglement] is not one, but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.

Bell 定理:古典的な実在性概念と量子力学との矛盾

実験的検証の試み

- Photons: Aspect et al. (1982)
- lons: Rowe *et al.* (2001)
- Atomic nuclei: Sakai et al. (2006)
- Mesons (proposed): CERN, Frascati, KEK (1999, 2006, 2008)

同種粒子性

種々の量子現象の根幹にある性質

(ex.) 黒体輻射, (anti-)bunching, BEC

- 統計性: Maxwell-Boltzmann → Fermi-Dirac / Bose-Einstein
- 粒子散乱: Combination of Feynman diagrams

Introduction (2/2)

同種粒子性

種々の量子現象の根幹にある性質

(ex.) 黒体輻射, (anti-)bunching, BEC

- 統計性: Maxwell-Boltzmann → Fermi-Dirac / Bose-Einstein
- 粒子散乱: Combination of Feynman diagrams

問:同種粒子性は量子もつれの概念を変更するか?

3/24

Introduction (2/2)

Outline of this Talk

Outline of this Talk

以下の議論は簡単のため N = 2 ボソンの系で行うが,フェルミオン系でも, またさらに一般のN 粒子系で,任意の s 個の部分系を持つ場合でも成立

同種粒子性に起因する問題

No correlation for any local observables $\langle \Psi | O_1 \otimes O_2 | \Psi \rangle = \langle \Psi | O_1 \otimes \mathbb{1}_2 | \Psi \rangle \langle \Psi | \mathbb{1}_1 \otimes O_2 | \Psi \rangle.$

No correlation for any local observables $\langle \Psi | O_1 \otimes O_2 | \Psi \rangle = \langle \Psi | O_1 \otimes \mathbb{1}_2 | \Psi \rangle \langle \Psi | \mathbb{1}_1 \otimes O_2 | \Psi \rangle.$

 $\Leftrightarrow \quad \text{Separable (factorized) state:} \quad |\Psi\rangle = |\psi_1\rangle_1 |\psi_2\rangle_2.$

No correlation for any local observables

 $\langle \Psi | O_1 \otimes O_2 | \Psi \rangle = \langle \Psi | O_1 \otimes \mathbb{1}_2 | \Psi \rangle \langle \Psi | \mathbb{1}_1 \otimes O_2 | \Psi \rangle.$

 \Leftrightarrow Separable (factorized) state: $|\Psi\rangle = |\psi_1\rangle_1 |\psi_2\rangle_2$.

Entangled state = Non-separable state: $|\Psi\rangle = |e_1\rangle_1 |f_1\rangle_2 + |e_2\rangle_1 |f_2\rangle_2$ $\neq |\psi_1\rangle_1 |\psi_2\rangle_2.$

No correlation for any local observables

 $\langle \Psi | O_1 \otimes O_2 | \Psi \rangle = \langle \Psi | O_1 \otimes \mathbb{1}_2 | \Psi \rangle \langle \Psi | \mathbb{1}_1 \otimes O_2 | \Psi \rangle.$

 \Leftrightarrow Separable (factorized) state: $|\Psi\rangle = |\psi_1\rangle_1 |\psi_2\rangle_2$.

Entangled state = Non-separable state: $|\Psi\rangle = |e_1\rangle_1 |f_1\rangle_2 + |e_2\rangle_1 |f_2\rangle_2$ $\neq |\psi_1\rangle_1 |\psi_2\rangle_2.$

量子もつれ ⇔ 相関 ⇔ Non-factorizability

同種粒子性と異種粒子系の差

量子もつれ ⇔ 相関 ⇔ Non-factorizability

- Distinguishable:

 $|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2$

→ Superposition of 2 situations.

同種粒子性と異種粒子系の差

量子もつれ ⇔ 相関 ⇔ Non-factorizability

- Distinguishable:

 $|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2$

→ Superposition of 2 situations.

- Indistinguishable: the labels are just formal. $|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2$

Non-factorizable, but physically only 1 situation.

同種粒子性と異種粒子系の差

量子もつれ ⇔ 相関 ⇔ Non-factorizability

- Distinguishable:

 $|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2$

→ Superposition of 2 situations.

- Indistinguishable: the labels are just formal. $|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2$

Non-factorizable, but physically only 1 situation.

同種粒子には特別な配慮が必要

同種粒子の量子もつれに対する種々の提案

1) Schliemann <i>et. al</i>	(2001)	Slater rank.
2) Zanardi	(2001)	Algebraic structure.
3) Ghirardi <i>et. al</i>	(2002)	EPR-like argument.
4) Ghirardi <i>et. al</i>	(2004)	Disagreement between 1) and 3).
5) Viola <i>et. al</i>	(2007)	Convex structure of state space.
6) Tichy <i>et. al</i>	(2009)	Detection process.
7) IT <i>et. al</i>	(2010, 2011)	Measurement setups, Correlations.

(ex.) Bipartite (N = 2) bosonic state

 \mathcal{S} : Symmetrizer.

(ex.) Bipartite (N = 2) bosonic state

$$\begin{split} |\Psi\rangle &= |0\rangle_1 |0\rangle_2 + |1\rangle_1 |1\rangle_2 = \mathcal{S}[|\psi_1\rangle_1 |\psi_2\rangle_2]. \\ \\ & \text{Entangled} \end{split}$$

 \mathcal{S} : Symmetrizer.

 $|\psi_1\rangle = (|0\rangle - \mathbf{i}|1\rangle)/\sqrt{2}$ $|\psi_2\rangle = (|0\rangle + \mathbf{i}|1\rangle)/\sqrt{2}$

- Schliemannの提案:

Entangled if

 $|\Psi\rangle = c_0|0\rangle_1|0\rangle_2 + c_1|1\rangle_1|1\rangle_2$

under an appropriate basis.

Schmidt 分解に基づく形式論

(ex.) Bipartite (N = 2) bosonic state \mathcal{S} : Symmetrizer. $|\Psi\rangle = |0\rangle_1 |0\rangle_2 + |1\rangle_1 |1\rangle_2 = \mathcal{S}[|\psi_1\rangle_1 |\psi_2\rangle_2].$ $|\psi_1\rangle = (|0\rangle - \mathbf{i}|1\rangle)/\sqrt{2}$ $|\psi_2\rangle = (|0\rangle + \mathbf{i}|1\rangle)/\sqrt{2}$ Separable Entangled - Ghirardiの提案: - Schliemannの提案: Entangled if Separable if $|\Psi\rangle = c_0|0\rangle_1|0\rangle_2 + c_1|1\rangle_1|1\rangle_2$ $|\Psi\rangle = \mathcal{S}[|\psi_1\rangle_1 |\psi_2\rangle_2]$ by using orthogonal vectors. under an appropriate basis. Schmidt 分解に基づく形式論 部分系での物理的実在性の有無

相関と量子もつれ

同種粒子の相関の測定とは

同種粒子の相関の測定とは

相関に基づく物理的に意味のある量子もつれ

相関を定義するには 2つの 区別可能な 測定が前提

測定における区別の導入

測定器の位置による区別

Left / Right states: $|L\rangle, |R\rangle$ $\langle L|R\rangle = 0.$

物理量: $O_1 = \vec{\sigma}_1 \cdot \vec{a} \otimes |L\rangle \langle L|,$ $O_2 = \vec{\sigma}_2 \cdot \vec{b} \otimes |R\rangle \langle R|.$ $\mathbb{I}_1 = \mathbb{1}_1 \otimes |L\rangle \langle L|,$ $\mathbb{I}_2 = \mathbb{1}_2 \otimes |R\rangle \langle R|.$

無相関の条件:

 $\langle \Psi | \mathcal{S}(O_1 \otimes O_2) \mathcal{S} | \Psi \rangle = \langle \Psi | \mathcal{S}(O_1 \otimes \mathbb{I}_2) \mathcal{S} | \Psi \rangle \langle \Psi | \mathcal{S}(\mathbb{I}_1 \otimes O_2) \mathcal{S} | \Psi \rangle.$

同種粒子の相関と量子もつれ

同種粒子の相関と量子もつれ

同種粒子の相関と量子もつれ

量子もつれ: 測定器の設定に相対的

量子もつれの相対性

$$|\Psi\rangle = |0, L\rangle_1 |1, R\rangle_2 + |1, R\rangle_1 |0, L\rangle_2$$

$$\propto \mathcal{S}(|0, L\rangle_1 |1, R\rangle_2).$$

Separable w.r.t. L / R measurement

Up / Down:
$$|\pm\rangle = (|L\rangle \pm |R\rangle)/\sqrt{2}$$
.
 $|\Psi\rangle \propto S(|0,+\rangle_1|1,-\rangle_2 + |1,+\rangle_1|0,-\rangle_2)$
 $+|\Psi'\rangle$

Entangled w.r.t. U / D measurement

量子もつれの相対性

$$|\Psi\rangle = |0, L\rangle_1 |1, R\rangle_2 + |1, R\rangle_1 |0, L\rangle_2$$

$$\propto \mathcal{S}(|0, L\rangle_1 |1, R\rangle_2).$$

Separable w.r.t. L / R measurement

Up / Down:
$$|\pm\rangle = (|L\rangle \pm |R\rangle)/\sqrt{2}$$
.
 $|\Psi\rangle \propto S(|0,+\rangle_1|1,-\rangle_2 + |1,+\rangle_1|0,-\rangle_2)$
 $+|\Psi'\rangle$

Entangled w.r.t. U / D measurement

従来の提案の齟齬の解釈

(ex.) Bipartite bosonic state

$$\begin{split} |\Psi\rangle &= |0\rangle_1 |0\rangle_2 + |1\rangle_1 |1\rangle_2 = \mathcal{S}[|\psi_1\rangle_1 |\psi_2\rangle_2]. & |\psi_1\rangle = (|0\rangle - \mathrm{i}|1\rangle)/\\ & \text{Entangled} & \text{Separable} & |\psi_2\rangle = (|0\rangle + \mathrm{i}|1\rangle)/\\ \end{split}$$

- Schliemannの提案:

Entangled if

 $|\Psi\rangle = c_0|0\rangle_1|0\rangle_2 + c_1|1\rangle_1|1\rangle_2$

under an appropriate basis.

- Ghirardiの提案:

Separable if $|\Psi\rangle = \mathcal{S} \left[|\psi_1\rangle_1 |\psi_2\rangle_2\right]$ by using orthogonal vectors.

 \mathcal{S} : Symmetrizer.

測定器の設定の変更に相当 $\{|0\rangle, |1\rangle\} \rightarrow \{|\psi_1\rangle, |\psi_2\rangle\}.$

 $\sqrt{2}$

 $\sqrt{2}$

状態空間の構造

Katsura Imperial Villa, Kyoto

測定結果と1粒子状態空間の直和分解

Separable state w.r.t. Left / Right measurements

$$\begin{split} |\Psi\rangle &= \mathcal{S} \left[|\psi_1\rangle_1 |\psi_2\rangle_2 \right] + |\Psi'\rangle. \\ |\psi_1\rangle_1 &= |\alpha\rangle_1 |L\rangle_1, \quad |\psi_2\rangle_2 = |\alpha'\rangle_2 |R\rangle_2, \\ |\Psi'\rangle &: \text{No contribution to data.} \end{split}$$

- Distinct measurement setups:

$$V_1 = \{ |\alpha, L\rangle | \alpha \} \quad V_2 = \{ |\alpha', R\rangle | \alpha' \}$$

$$V_1 \perp V_2. \text{ orthogonal}$$

$$V = \{ V_1, V_2 \}.$$

$$\mathcal{H}(V)$$
:測定可能な状態空間
 $\mathcal{H}(V)^{\perp}$:測定不能な状態空間
 $\mathcal{H} = \mathcal{H}(V) \oplus \mathcal{H}(V)^{\perp}.$

同種粒子の量子もつれ

i) 測定の設定の指定 V. ii) 直和分解の実施 $|\Psi\rangle = |\Psi(V)\rangle + |\Psi(V)^{\perp}\rangle$ iii) $|\Psi(V)\rangle = S|\Phi\rangle$ $|\Phi\rangle \neq 直積状態$ $\Rightarrow |\Psi\rangle : 量子もつれ$

測定可能なデータとテンソル積構造

- Subspace corresponding to the observed data $\mathcal{H}(V) = \mathcal{S}[V_1 \otimes V_2].$
- Symmetrizer as a map:
 - $\mathcal{S}: V_1 \otimes V_2 \to \mathcal{H}(V)$

one-to-one map due to the orthogonality of V

→ H(V) テンソル積空間と同形
 Ⅱ
 異種 粒子系の状態空間

量子もつれ: 測定の設定に相対的な概念

量子もつれ: 測定の設定に相対的な概念

Q. どんな測定設定に対しても量子もつれしていない 状態は存在するか?

量子もつれ: 測定の設定に相対的な概念

- Q. どんな測定設定に対しても量子もつれしていない 状態は存在するか?
 - A. No for fermions. Yes for bosons.

$$|\Psi
angle = |\phi
angle^{\otimes 2}$$
 i.i.d. pure states.

量子もつれ: 測定の設定に相対的な概念

- Q. どんな測定設定に対しても量子もつれしていない 状態は存在するか?
 - A. No for fermions. Yes for bosons.

$$|\Psi
angle = |\phi
angle^{\otimes 2}$$
 i.i.d. pure states.

etc...

結論と展望

結論

i) 同種粒子系の場合にも,相関に基づく量子もつれの定義が可能. N体のボソン,フェルミオン系が,任意のs個の部分系に分解する 場合にも適用可能.

- 測定結果と直接に関係
- 同種粒子と異種粒子が同じ枠組で取り扱われる

結論

i) 同種粒子系の場合にも,相関に基づく量子もつれの定義が可能. N 体のボソン,フェルミオン系が,任意のs 個の部分系に分解する 場合にも適用可能.

- 測定結果と直接に関係
- 同種粒子と異種粒子が同じ枠組で取り扱われる

ii) 相関に基づく定義から判ることは

- 量子もつれの相対性
- i.i.d. pure states \mathcal{O} universal separability

展望

i) 量子もつれの相対性の意義は?

ex.)
$$N = 2$$
 bosonic states
 $|\Psi\rangle = \frac{1}{\sqrt{6}} \sum_{i=1}^{6} |e_i\rangle_1 |e_i\rangle_2 \longrightarrow \sum_{i=1}^{3} \lambda_i |e_i''\rangle_1 |e_{i+3}'\rangle_3$
Schmidt decomp.

varying meas. setups: $|e'_i\rangle = U|e_i\rangle$, $U \in U(6)$.

展望

i) 量子もつれの相対性の意義は?

ii) 他の提案との整合性の吟味,量子光学などでの標準的操作との関連

- Tichy et al. (2009): Analyses based on measurement setups.

Detector level density matrix, Effective indistinguishability

- Second quantization, occupation number representation.

Thank you!

