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量子もつれ

[Entanglement] is not one, but rather the characteristic trait of quantum mechanics, 
the one that enforces its entire departure from classical lines of thought.

E. Schrödinger (1935)

Bell 定理：古典的な実在性概念と量子力学との矛盾

実験的検証の試み

・Photons: Aspect et al. (1982)

・Ions: Rowe et al. (2001)

・Atomic nuclei: Sakai et al. (2006)

・Mesons (proposed): CERN, Frascati, KEK (1999, 2006, 2008)
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同種粒子性

・統計性: 　Maxwell-Boltzmann → Fermi-Dirac / Bose-Einstein

・粒子散乱: 　Combination of Feynman diagrams

e−e+ → e−e+ : Distinguishable e−e− → e−e− : Indistinguishable

種々の量子現象の根幹にある性質
(ex.) 黒体輻射, (anti-)bunching, BEC
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問：同種粒子性は量子もつれの概念を変更するか？
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Outline of this Talk

1) はじめに

2) 同種粒子性に起因する問題

3) 相関と量子もつれ

4) 状態空間の構造

5) 結論と展望
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以下の議論は簡単のため N = 2 ボソンの系で行うが，フェルミオン系でも，
またさらに一般のN 粒子系で，任意の s 個の部分系を持つ場合でも成立



同種粒子性に起因する問題
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量子もつれと相関：異種粒子の場合

No correlation for any local observables

�Ψ|O1 ⊗O2|Ψ� = �Ψ|O1 ⊗ 2|Ψ��Ψ| 1 ⊗O2|Ψ�.

Source
O1 O2= �σ1 · �a = �σ2 ·�b
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同種粒子性と異種粒子系の差
7/24

- Distinguishable: 

Non-factorizability
→ Superposition of 2 situations.

| ↑�1| ↓�2 + | ↓�1| ↑�2

+

量子もつれ ⇔ 相関 ⇔ Non-factorizability



同種粒子性と異種粒子系の差

- Indistinguishable: the labels are just formal.

Non-factorizable,
but physically only 1 situation.

| ↑�1| ↓�2 + | ↓�1| ↑�2

+
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同種粒子には特別な配慮が必要
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同種粒子の量子もつれに対する種々の提案

1) Schliemann et. al (2001) Slater rank.

2) Zanardi (2001) Algebraic structure.

3) Ghirardi et. al (2002) EPR-like argument.

4) Ghirardi et. al (2004) Disagreement between 1) and 3).

5) Viola et. al (2007) Convex structure of state space.

6) Tichy et. al (2009) Detection process.

7) IT et. al (2010, 2011) Measurement setups,
Correlations.
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提案の齟齬
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(ex.) Bipartite (N = 2) bosonic state

|Ψ� = |0�1|0�2 + |1�1|1�2
: Symmetrizer.

|ψ1� = (|0� − i|1�)/
√
2

|ψ2� = (|0�+ i|1�)/
√
2

S
= S[|ψ1�1|ψ2�2].
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Entangled if

under an appropriate basis.

|Ψ� = c0|0�1|0�2 + c1|1�1|1�2

Schmidt 分解に基づく形式論 

Separable

- Ghirardiの提案: 

Separable if
|Ψ� = S [|ψ1�1|ψ2�2]

by using orthogonal vectors.

部分系での物理的実在性の有無



相関と量子もつれ

10/24



同種粒子の相関の測定とは

Source
O1 O2

？
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量子もつれ ⇔ 相関 ⇔ Non-factorizability
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量子もつれ ⇔ 相関 ⇔ Non-factorizability

相関に基づく物理的に意味のある量子もつれ

 相関を定義するには 2つの 区別可能な 測定が前提



測定における区別の導入

Source
O1 O2

無相関の条件:

�Ψ|S (O1 ⊗O2)S|Ψ� = �Ψ|S (O1 ⊗ I2)S|Ψ��Ψ|S (I1 ⊗O2)S|Ψ�.

測定器の位置による区別

�L|R� = 0.Left / Right states: |L�, |R�

O1 = �σ1 · �a⊗ |L��L|, O2 = �σ2 ·�b⊗ |R��R|.
I2 = 2 ⊗ |R��R|.I1 = 1 ⊗ |L��L|,

物理量:
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同種粒子の相関と量子もつれ

Source
O1 O2
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同種粒子の相関と量子もつれ

Source
O1 O2

S(O1 ⊗O2)S|Ψ�� = 0. No contribution to data.

|Ψ� = S [|ψ1�1|ψ2�2] + |Ψ��.

4

Distinguishable particles Fermions

O = O1 ⊗ O2 O = A (O1 ⊗ O2) A

Observables O(1) = O1 ⊗ 2 O(1) = A (O1 ⊗ I2) A

O(2) = 1 ⊗ O2 O(2) = A (I1 ⊗ O2) A

Factorization of observables O = O(1)O(2) O = O(1)O(2)

Factorization of correlations 〈Ψ|O|Ψ〉 = 〈Ψ|O(1)|Ψ〉〈Ψ|O(2)|Ψ〉 〈Ψ|O|Ψ〉 = 〈Ψ|O(1)|Ψ〉〈Ψ|O(2)|Ψ〉

Separable states |Ψ〉 = |ψ1〉1|ψ2〉2 |Ψ〉 = A |ψ1〉1|ψ2〉2

TABLE I: Comparison of observables and separable states between distinguishable particles and fermions. Label (i) in observ-
able O(i) for i = 1, 2 refers to the i-th subsystem, which will be introduced in Sec. III under general setting.

In the case of fermions, one can show (see Proposition 2) that (2.11) is equivalent to

σ1(a)|L〉11〈L|⊗ σ2(b)|R〉22〈R| → A(σ1(a)|L〉11〈L|⊗ σ2(b)|R〉22〈R|)A, (2.12)

where A is the (rescaled) anti-symmetrizer

A =
1√
2
( 1 ⊗ 2 − π12) (2.13)

given from the permutation operator π12 defined by

π12|ψ1〉1|ψ2〉2 = |ψ2〉1|ψ1〉2. (2.14)

For notational conciseness, hereafter we use the second form (2.12) for observables of fermionic systems.
In order to address the question of separation of correlations, we need to provide beforehand a possible form of

separation of operators pertaining to each of the fermions analogously to (2.1) in the distinguishable case. Clearly,
the problem is that, despite the indistinguishable nature of the particles, we need to somehow label the particles by
the observables in the measurement in order to define the correlations, and one possible approach for this is to utilize
the locality which is also presupposed for the distinguishable case. In the present situation, we have one observable
measured by an apparatus on the left and, remotely separated from it, we have another observable measured by an
apparatus on the right. These are represented by

O1 := σ1(a)|L〉11〈L|, O2 := σ2(b)|R〉22〈R|, (2.15)

with which the observable of the composite system in (2.12) becomes simply A(O1 ⊗ O2)A. One can show (see
Corollary 2) that it admits the separation with respect to the local observables:

A(O1 ⊗ O2)A = A (O1 ⊗ I2)A · A (I1 ⊗ O2) A. (2.16)

Here we have introduced the projectors,

I1 := I1|L〉11〈L|, I2 := I2|R〉22〈R|, (2.17)

with Ii being the identity matrix in the spin space of particle i. Operationally, each of the projectors (2.17) may be
interpreted as the observable which confirms merely the presence of the particles at the apparatus without measuring
the spin.

Now that we have introduced the factorization (2.16) for observables of fermions analogously to the factorization
(2.1) for observables of distinguishable particles, we may also define the factorization of correlations by

〈Ψ|A (O1 ⊗ O2)A|Ψ〉 = 〈Ψ|A (O1 ⊗ I2) A|Ψ〉〈Ψ|A (I1 ⊗ O2)A|Ψ〉. (2.18)

One can show (see Proposition 3) that, in analogy with (2.2) and (2.3) in the case of distingushable particles, the
factorization (2.18) occurs if the state |Ψ〉 is given by

|Ψ〉 = A |ψ1〉1|ψ2〉2, |ψ1〉1 = |α〉1|L〉1, |ψ2〉2 = |α′〉2|R〉2, (2.19)

Separable states w.r.t. L / R measurement:
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量子もつれ: 測定器の設定に相対的



量子もつれの相対性

Separable w.r.t. L / R measurement

|Ψ� = |0, L�1|1, R�2 + |1, R�1|0, L�2
∝ S(|0, L�1|1, R�2).

Up / Down:

Entangled w.r.t. U / D measurement

|±� = (|L�±|R�)/
√
2.

|Ψ� ∝ S(|0,+�1|1,−�2 + |1,+�1|0,−�2)
+|Ψ��
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従来の提案の齟齬の解釈
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測定器の設定の変更に相当 {|0�, |1�} → {|ψ1�, |ψ2�}.

(ex.) Bipartite bosonic state

|ψ1� = (|0� − i|1�)/
√
2

|ψ2� = (|0�+ i|1�)/
√
2

S : Symmetrizer.

|Ψ� = |0�1|0�2 + |1�1|1�2 = S[|ψ1�1|ψ2�2].

Entangled Separable

- Schliemannの提案: 

Entangled if

under an appropriate basis.

|Ψ� = c0|0�1|0�2 + c1|1�1|1�2

- Ghirardiの提案: 

Separable if
|Ψ� = S [|ψ1�1|ψ2�2]

by using orthogonal vectors.



状態空間の構造 Katsura Imperial Villa, Kyoto
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測定結果と１粒子状態空間の直和分解

Separable state w.r.t. Left / Right measurements

4
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TABLE I: Comparison of observables and separable states between distinguishable particles and fermions. Label (i) in observ-
able O(i) for i = 1, 2 refers to the i-th subsystem, which will be introduced in Sec. III under general setting.

In the case of fermions, one can show (see Proposition 2) that (2.11) is equivalent to
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where A is the (rescaled) anti-symmetrizer

A =
1√
2
( 1 ⊗ 2 − π12) (2.13)

given from the permutation operator π12 defined by

π12|ψ1〉1|ψ2〉2 = |ψ2〉1|ψ1〉2. (2.14)

For notational conciseness, hereafter we use the second form (2.12) for observables of fermionic systems.
In order to address the question of separation of correlations, we need to provide beforehand a possible form of

separation of operators pertaining to each of the fermions analogously to (2.1) in the distinguishable case. Clearly,
the problem is that, despite the indistinguishable nature of the particles, we need to somehow label the particles by
the observables in the measurement in order to define the correlations, and one possible approach for this is to utilize
the locality which is also presupposed for the distinguishable case. In the present situation, we have one observable
measured by an apparatus on the left and, remotely separated from it, we have another observable measured by an
apparatus on the right. These are represented by

O1 := σ1(a)|L〉11〈L|, O2 := σ2(b)|R〉22〈R|, (2.15)

with which the observable of the composite system in (2.12) becomes simply A(O1 ⊗ O2)A. One can show (see
Corollary 2) that it admits the separation with respect to the local observables:

A(O1 ⊗ O2)A = A (O1 ⊗ I2)A · A (I1 ⊗ O2) A. (2.16)

Here we have introduced the projectors,

I1 := I1|L〉11〈L|, I2 := I2|R〉22〈R|, (2.17)

with Ii being the identity matrix in the spin space of particle i. Operationally, each of the projectors (2.17) may be
interpreted as the observable which confirms merely the presence of the particles at the apparatus without measuring
the spin.

Now that we have introduced the factorization (2.16) for observables of fermions analogously to the factorization
(2.1) for observables of distinguishable particles, we may also define the factorization of correlations by

〈Ψ|A (O1 ⊗ O2)A|Ψ〉 = 〈Ψ|A (O1 ⊗ I2) A|Ψ〉〈Ψ|A (I1 ⊗ O2)A|Ψ〉. (2.18)

One can show (see Proposition 3) that, in analogy with (2.2) and (2.3) in the case of distingushable particles, the
factorization (2.18) occurs if the state |Ψ〉 is given by

|Ψ〉 = A |ψ1〉1|ψ2〉2, |ψ1〉1 = |α〉1|L〉1, |ψ2〉2 = |α′〉2|R〉2, (2.19)

|Ψ� = S [|ψ1�1|ψ2�2] + |Ψ��.

: No contribution to data.|Ψ��
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H1

V1

H2

V2

H

H(V )

H(V )⊥

⇒ ：測定不能な状態空間
: 測定可能な状態空間

H = H(V )⊕H(V )⊥.

H(V )

H(V )⊥

- Distinct measurement setups:

V1 ⊥ V2.

V1 = {|α, L� |α} V2 = {|α�, R� |α�}

V = {V1, V2}.
orthogonal



同種粒子の量子もつれ

判定基準
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ii) 直和分解の実施

iii) 

直積状態 

⇒  　 : 量子もつれ 

|Φ� �=

i) 測定の設定の指定 V.

|Ψ� = |Ψ(V )�+ |Ψ(V )⊥�

|Ψ(V )� = S|Φ�

|Ψ�

H(V )

H(V )⊥

H



測定可能なデータとテンソル積構造

- Subspace corresponding to the observed data

19/24

H(V ) = S[V1 ⊗ V2].

H1

V1

H2

V2- Symmetrizer as a map:

S : V1 ⊗ V2 → H(V )

one-to-one map due to the orthogonality of V

異種 粒子系の状態空間

=

→ テンソル積空間と同形H(V )

S

V1 ⊗ V2 H(V )

H(V )⊥

H



Universally Separable States

量子もつれ: 測定の設定に相対的な概念
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H

H(V )
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i) 量子もつれの相対性の意義は？

TOSHIHIKO SASAKI, TSUBASA ICHIKAWA, AND IZUMI TSUTSUI PHYSICAL REVIEW A 83, 012113 (2011)

In the provision-based description, the criterion on the
entanglement of indistinguishable particles then emerges as
follows. Given an arbitrary (normalized) state |!〉 ∈ HX , we
first decompose it as

|!〉 = |!(",V )〉 + |!(",V )⊥〉, (21)

according to the orthogonal decomposition,

HX = HX (",V ) ⊕ HX (",V )⊥. (22)

Since |!(",V )⊥〉 has a vanishing support for the observ-
ables in T (",V ) and is filtered out by the measurement,
the only part significant for correlation is |!(",V )〉. Thus,
for studying correlations in the measurement outcomes by
ignoring the events which are not detected in the setup, one
uses the renormalized state ‖|!(",V )〉‖ = 1. We now see that
if the observable part takes the form

|!(",V )〉 =
√

MX
s⊗

i=1

|ψi〉"i
, (23)

then for any Õ ∈ T (",V ) we have the factorization

〈!|Õ|!〉 =
s∏

i=1

〈!|Õi |!〉, (24)

in analogy with (7). Since the converse is also true, we learn
that the state |!〉 is separable if and only if the part |!(",V )〉
in (21) admits the (anti)symmetrized direct product form (23);
if not, it is entangled. In more simple terms, to examine the
separability of a given state |!〉 ∈ HX , we just concentrate
on the observable part |!(",V )〉 and then strip it off the
projection X (and perform necessary renormalization) to
obtain, via the identification in Fig. 1, the corresponding state
|!mes(",V )〉 ∈ Hmes describing the measurement outcomes
directly. In the case (23) we find |!mes(",V )〉 = ⊗s

i=1|ψi〉"i
,

which is factorizable and hence separable. As is evident from
the explicit dependence on V , the entanglement of the state
is determined only relatively with respect to the measurement
setup.

Generalization of our argument to mixed states is straight-
forward. Given a density matrix ρ on HX , one can decompose
it as

ρ =
(

ρ(",V ) ∗
∗ ρ(",V )⊥

)
, (25)

where ρ(",V ) and ρ(",V )⊥ are (unnormalized) density
matrices on HX (",V ) and HX (",V )⊥, respectively. By virtue
of the isomorphism fX , the separability criterion for the mixed
distinguishable systems [13] can be utilized for the density
matrix ρmes(",V ), which is defined from f −1

X (ρ(",V )) with a
suitable rescaling to fulfill Tr ρmes(",V ) = 1. We then find that
a mixed state ρ on HX is separable under our measurement
setup specified by " and V if ρmes(",V ) admits the form

ρmes(",V ) =
∑

α

pα

∣∣!mes
α

〉 〈
!mes

α

∣∣, (26)

where |!mes
α 〉 ∈ Hmes are separable pure states and {pα}

satisfies
∑

α pα = 1 and pα ! 0.
It should be clear by now that since a state of indistin-

guishable particles, either pure or mixed, can be mapped to

a state in Hmes, the entanglement of the state can be studied
in terms of the standard entanglement measures developed for
distinguishable particles. This will be demonstrated next.

IV. MEASUREMENT SETUP DEPENDENCE
OF ENTANGLEMENT: EXAMPLES

To evaluate explicitly the dependence of entanglement
on the measurement setup we choose, let us consider the
case of N = 2 fermions, each possessing n = 4 dimensional
constituent space, given in the state

|!〉 =
√

2A|e1〉1|e3〉2 ∈ HA. (27)

We wish to examine if, and to what extent, the state is entangled
under the partition " = {{1},{2}} when our setup is “rotated”
among the set of basis {|e1〉,|e4〉} and {|e2〉,|e3〉}. To this end,
we adopt the orthogonal decomposition (which defines the
measurement setup) V = {V1,V2} with

V1 = span{|e′
1〉,|e′

2〉}, V2 = span{|e′
3〉,|e′

4〉}, (28)

where

|e′
1〉 = c|e1〉 + s|e4〉, |e′

2〉 = −s|e3〉 + c|e2〉,
(29)

|e′
3〉 = c|e3〉 + s|e2〉, |e′

4〉 = −s|e1〉 + c|e4〉,

and we have used the shorthand c = cos θ , s = sin θ to express
the rotation with angle θ . According to the decomposition (21),
the measurable part turns out to be

|!(",V )〉 = A(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2), (30)

up to a constant. We then map it to the corresponding
normalized state in Hmes as

|!mes(",V )〉 = 1√
c4 + s4

(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2). (31)

The amount of entanglement may be evaluated by the (squared)
concurrence,

C(|!mes(",V )〉) = 2[1 − Tr1(Tr2|!mes〉〈!mes|)2]

= 4
(tan2 θ + cot2 θ )2

, (32)

and the result is depicted in Fig. 2. We find that the state (27) is
strictly separable at θ = nπ/2 and maximally entangled at θ =
(n + 1/2)π/2 for integer n, and it can take any intermediate
values C in between.

As a second example, we consider the case of N = 2 bosons
with n = 6 prepared in the state,

|!〉 = 1√
6

6∑

i=1

|ei〉1|ei〉2 ∈ HS . (33)

As before, we study the entanglement for the partition " =
{{1},{2}} when the rotated family of entanglement setups are
considered, which are now provided by

V1 = span{|e′
1〉,|e′

2〉,|e′
3〉}, V2 = span{|e′

4〉,|e′
5〉,|e′

6〉}, (34)

with

|e′
i〉 = U |ei〉, U ∈ U(6). (35)
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FIG. 2. (Color online) Concurrence C of |!mes(",V )〉 as a
function of the angle θ . The variation shows that the state undergoes
the change from complete separation to maximal entanglement by
the adjustment of the setup angle θ .

Analogously to Eq. (31), we can find the corresponding
state |!mes(",V )〉 in Hmes. This time, however, instead of
simply evaluating the concurrence we study the extent of
variation in the state |!mes(",V )〉 that can arise under distinct
measurement setups obtained by altering the unitary matrix
U in (35). To do this, we first implement the Schmidt
decomposition for the state |!mes(",V )〉 as

|!mes(",V )〉 =
3∑

i=1

λi |e′′
i 〉1|e′′

i+3〉3,

3∑

i=1

λ2
i = 1, (36)

where {|e′′
i 〉}3

i=1, {|e′′
i 〉}6

i=4 are the Schmidt bases {|e′′
i 〉}3

i=1,
{|e′′

i 〉}6
i=4 each defined within the measurable subspaces V1, V2.

We then observe the distribution of states, which is invariant
under local unitary operations from the distribution of Schmidt
coefficients. Figure 3 shows the values of λi for i = 1,2
obtained by a random generation of U , which suggests that
by tuning U properly the state (33) can furnish virtually any
possible states which can be discriminated by the Schmidt
coefficients.

FIG. 3. Distribution of the Schmidt coefficients of the state (36)
with the ordering λ1 ! λ2 ! λ3 (λ3 is not shown because it can be
determined from the other two) obtained under random setups of
measurement for the state (33) provided by 106 distinct unitaries U .
The diagonal lines represent λ1 = λ2 and λ2 = λ3, whose intersection
corresponds to the maximally entangled state. The points fill out
basically the entire region of the triangle, although in our random
generation the density becomes scarcer for states which are highly
entangled.

Despite the relative nature of entanglement with respect to
the measurement setup, there exists a special class of states in
the bosonic case which are separable under all measurement
setups. These are the i.i.d. pure states |!〉 ∈ HS defined by

|!〉 =
N⊗

k=1

|φ〉k, |φ〉k ∈ Hk. (37)

To see the universal separability of the state, we decompose
|φ〉k according to Eqs. (13) and (14) as

|φ〉k =
s∑

i=0

|ϕi〉k, |ϕi〉k ∈ Vi(Hk). (38)

Plugging this into Eq. (37), we obtain Eq. (21) with

|!(",V )〉 =
√

MS
s⊗

i=1

|ψi〉"i
, (39)

where

|ψi〉"i
∝

⊗

k∈"i

|ϕi〉k. (40)

Since the part |!(",V )〉, if nonvanishing, belongs to the class
Eq. (23), we see that the i.i.d. states (37) are separable. Further,
since this is true for any choice of (",V ), the separability holds
irrespective of the measurement setup. Interestingly, one finds
that for N = 2, n " 4, the converse is also true: states which
are universally separable must be the i.i.d. states.

V. CONCLUSION AND DISCUSSIONS

In summary, we have presented a general criterion for
entanglement of an indistinguishable N -particle system de-
composed into s subsystems based on the unambiguous
measurability of correlation. The point is that, although the
Hilbert space HX of the system does not admit a TPS,
one can find a subspace HX (",V ) ⊂ HX which has a TPS
and is directly related to the space Hmes describing the
measurement outcomes. Since Hmes has a common structure
with the space of distinguishable particles, our approach
allows us to treat indistinguishable particles on an equal
basis with distinguishable ones. Consequently, the handling of
states without considering the effect of (anti)symmetrization
practiced regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.

The structure of Hmes also implies that the standard
measures of entanglement devised so far can be used equally
for the indistinguishable case; for instance, the monotonicity
of entanglement measures with respect to local operations
and classical communications (LOCC) is preserved under
the mapping fX . This is shown by observing that all in-
gredients of LOCC for distinguishable particles [14] have
their counterparts in HX (",V ) provided by the application
of fX . Since positive operator valued measurements (POVM)
can be built from some of the ingredients of local op-
erations and classical communication (LOCC) (Naimark’s
theorem [4]), the mapping fX induces the analogs of local
POVMs in HX (",V ).

As stated in the Introduction, for bosonic systems the
characterization of separability has not been done uniquely in
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In the provision-based description, the criterion on the
entanglement of indistinguishable particles then emerges as
follows. Given an arbitrary (normalized) state |!〉 ∈ HX , we
first decompose it as

|!〉 = |!(",V )〉 + |!(",V )⊥〉, (21)

according to the orthogonal decomposition,

HX = HX (",V ) ⊕ HX (",V )⊥. (22)

Since |!(",V )⊥〉 has a vanishing support for the observ-
ables in T (",V ) and is filtered out by the measurement,
the only part significant for correlation is |!(",V )〉. Thus,
for studying correlations in the measurement outcomes by
ignoring the events which are not detected in the setup, one
uses the renormalized state ‖|!(",V )〉‖ = 1. We now see that
if the observable part takes the form

|!(",V )〉 =
√

MX
s⊗

i=1

|ψi〉"i
, (23)

then for any Õ ∈ T (",V ) we have the factorization

〈!|Õ|!〉 =
s∏

i=1

〈!|Õi |!〉, (24)

in analogy with (7). Since the converse is also true, we learn
that the state |!〉 is separable if and only if the part |!(",V )〉
in (21) admits the (anti)symmetrized direct product form (23);
if not, it is entangled. In more simple terms, to examine the
separability of a given state |!〉 ∈ HX , we just concentrate
on the observable part |!(",V )〉 and then strip it off the
projection X (and perform necessary renormalization) to
obtain, via the identification in Fig. 1, the corresponding state
|!mes(",V )〉 ∈ Hmes describing the measurement outcomes
directly. In the case (23) we find |!mes(",V )〉 = ⊗s

i=1|ψi〉"i
,

which is factorizable and hence separable. As is evident from
the explicit dependence on V , the entanglement of the state
is determined only relatively with respect to the measurement
setup.

Generalization of our argument to mixed states is straight-
forward. Given a density matrix ρ on HX , one can decompose
it as

ρ =
(

ρ(",V ) ∗
∗ ρ(",V )⊥

)
, (25)

where ρ(",V ) and ρ(",V )⊥ are (unnormalized) density
matrices on HX (",V ) and HX (",V )⊥, respectively. By virtue
of the isomorphism fX , the separability criterion for the mixed
distinguishable systems [13] can be utilized for the density
matrix ρmes(",V ), which is defined from f −1

X (ρ(",V )) with a
suitable rescaling to fulfill Tr ρmes(",V ) = 1. We then find that
a mixed state ρ on HX is separable under our measurement
setup specified by " and V if ρmes(",V ) admits the form

ρmes(",V ) =
∑

α

pα

∣∣!mes
α

〉 〈
!mes

α

∣∣, (26)

where |!mes
α 〉 ∈ Hmes are separable pure states and {pα}

satisfies
∑

α pα = 1 and pα ! 0.
It should be clear by now that since a state of indistin-

guishable particles, either pure or mixed, can be mapped to

a state in Hmes, the entanglement of the state can be studied
in terms of the standard entanglement measures developed for
distinguishable particles. This will be demonstrated next.

IV. MEASUREMENT SETUP DEPENDENCE
OF ENTANGLEMENT: EXAMPLES

To evaluate explicitly the dependence of entanglement
on the measurement setup we choose, let us consider the
case of N = 2 fermions, each possessing n = 4 dimensional
constituent space, given in the state

|!〉 =
√

2A|e1〉1|e3〉2 ∈ HA. (27)

We wish to examine if, and to what extent, the state is entangled
under the partition " = {{1},{2}} when our setup is “rotated”
among the set of basis {|e1〉,|e4〉} and {|e2〉,|e3〉}. To this end,
we adopt the orthogonal decomposition (which defines the
measurement setup) V = {V1,V2} with

V1 = span{|e′
1〉,|e′

2〉}, V2 = span{|e′
3〉,|e′

4〉}, (28)

where

|e′
1〉 = c|e1〉 + s|e4〉, |e′

2〉 = −s|e3〉 + c|e2〉,
(29)

|e′
3〉 = c|e3〉 + s|e2〉, |e′

4〉 = −s|e1〉 + c|e4〉,

and we have used the shorthand c = cos θ , s = sin θ to express
the rotation with angle θ . According to the decomposition (21),
the measurable part turns out to be

|!(",V )〉 = A(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2), (30)

up to a constant. We then map it to the corresponding
normalized state in Hmes as

|!mes(",V )〉 = 1√
c4 + s4

(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2). (31)

The amount of entanglement may be evaluated by the (squared)
concurrence,

C(|!mes(",V )〉) = 2[1 − Tr1(Tr2|!mes〉〈!mes|)2]

= 4
(tan2 θ + cot2 θ )2

, (32)

and the result is depicted in Fig. 2. We find that the state (27) is
strictly separable at θ = nπ/2 and maximally entangled at θ =
(n + 1/2)π/2 for integer n, and it can take any intermediate
values C in between.

As a second example, we consider the case of N = 2 bosons
with n = 6 prepared in the state,

|!〉 = 1√
6

6∑

i=1

|ei〉1|ei〉2 ∈ HS . (33)

As before, we study the entanglement for the partition " =
{{1},{2}} when the rotated family of entanglement setups are
considered, which are now provided by

V1 = span{|e′
1〉,|e′

2〉,|e′
3〉}, V2 = span{|e′

4〉,|e′
5〉,|e′

6〉}, (34)

with

|e′
i〉 = U |ei〉, U ∈ U(6). (35)
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FIG. 2. (Color online) Concurrence C of |!mes(",V )〉 as a
function of the angle θ . The variation shows that the state undergoes
the change from complete separation to maximal entanglement by
the adjustment of the setup angle θ .

Analogously to Eq. (31), we can find the corresponding
state |!mes(",V )〉 in Hmes. This time, however, instead of
simply evaluating the concurrence we study the extent of
variation in the state |!mes(",V )〉 that can arise under distinct
measurement setups obtained by altering the unitary matrix
U in (35). To do this, we first implement the Schmidt
decomposition for the state |!mes(",V )〉 as

|!mes(",V )〉 =
3∑

i=1

λi |e′′
i 〉1|e′′

i+3〉3,

3∑

i=1

λ2
i = 1, (36)

where {|e′′
i 〉}3

i=1, {|e′′
i 〉}6

i=4 are the Schmidt bases {|e′′
i 〉}3

i=1,
{|e′′

i 〉}6
i=4 each defined within the measurable subspaces V1, V2.

We then observe the distribution of states, which is invariant
under local unitary operations from the distribution of Schmidt
coefficients. Figure 3 shows the values of λi for i = 1,2
obtained by a random generation of U , which suggests that
by tuning U properly the state (33) can furnish virtually any
possible states which can be discriminated by the Schmidt
coefficients.

FIG. 3. Distribution of the Schmidt coefficients of the state (36)
with the ordering λ1 ! λ2 ! λ3 (λ3 is not shown because it can be
determined from the other two) obtained under random setups of
measurement for the state (33) provided by 106 distinct unitaries U .
The diagonal lines represent λ1 = λ2 and λ2 = λ3, whose intersection
corresponds to the maximally entangled state. The points fill out
basically the entire region of the triangle, although in our random
generation the density becomes scarcer for states which are highly
entangled.

Despite the relative nature of entanglement with respect to
the measurement setup, there exists a special class of states in
the bosonic case which are separable under all measurement
setups. These are the i.i.d. pure states |!〉 ∈ HS defined by

|!〉 =
N⊗

k=1

|φ〉k, |φ〉k ∈ Hk. (37)

To see the universal separability of the state, we decompose
|φ〉k according to Eqs. (13) and (14) as

|φ〉k =
s∑

i=0

|ϕi〉k, |ϕi〉k ∈ Vi(Hk). (38)

Plugging this into Eq. (37), we obtain Eq. (21) with

|!(",V )〉 =
√

MS
s⊗

i=1

|ψi〉"i
, (39)

where

|ψi〉"i
∝

⊗

k∈"i

|ϕi〉k. (40)

Since the part |!(",V )〉, if nonvanishing, belongs to the class
Eq. (23), we see that the i.i.d. states (37) are separable. Further,
since this is true for any choice of (",V ), the separability holds
irrespective of the measurement setup. Interestingly, one finds
that for N = 2, n " 4, the converse is also true: states which
are universally separable must be the i.i.d. states.

V. CONCLUSION AND DISCUSSIONS

In summary, we have presented a general criterion for
entanglement of an indistinguishable N -particle system de-
composed into s subsystems based on the unambiguous
measurability of correlation. The point is that, although the
Hilbert space HX of the system does not admit a TPS,
one can find a subspace HX (",V ) ⊂ HX which has a TPS
and is directly related to the space Hmes describing the
measurement outcomes. Since Hmes has a common structure
with the space of distinguishable particles, our approach
allows us to treat indistinguishable particles on an equal
basis with distinguishable ones. Consequently, the handling of
states without considering the effect of (anti)symmetrization
practiced regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.

The structure of Hmes also implies that the standard
measures of entanglement devised so far can be used equally
for the indistinguishable case; for instance, the monotonicity
of entanglement measures with respect to local operations
and classical communications (LOCC) is preserved under
the mapping fX . This is shown by observing that all in-
gredients of LOCC for distinguishable particles [14] have
their counterparts in HX (",V ) provided by the application
of fX . Since positive operator valued measurements (POVM)
can be built from some of the ingredients of local op-
erations and classical communication (LOCC) (Naimark’s
theorem [4]), the mapping fX induces the analogs of local
POVMs in HX (",V ).

As stated in the Introduction, for bosonic systems the
characterization of separability has not been done uniquely in
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ii) 他の提案との整合性の吟味，量子光学などでの標準的操作との関連

- Tichy et al. (2009): Analyses based on measurement setups.
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In the provision-based description, the criterion on the
entanglement of indistinguishable particles then emerges as
follows. Given an arbitrary (normalized) state |!〉 ∈ HX , we
first decompose it as

|!〉 = |!(",V )〉 + |!(",V )⊥〉, (21)

according to the orthogonal decomposition,

HX = HX (",V ) ⊕ HX (",V )⊥. (22)

Since |!(",V )⊥〉 has a vanishing support for the observ-
ables in T (",V ) and is filtered out by the measurement,
the only part significant for correlation is |!(",V )〉. Thus,
for studying correlations in the measurement outcomes by
ignoring the events which are not detected in the setup, one
uses the renormalized state ‖|!(",V )〉‖ = 1. We now see that
if the observable part takes the form

|!(",V )〉 =
√

MX
s⊗

i=1

|ψi〉"i
, (23)

then for any Õ ∈ T (",V ) we have the factorization

〈!|Õ|!〉 =
s∏

i=1

〈!|Õi |!〉, (24)

in analogy with (7). Since the converse is also true, we learn
that the state |!〉 is separable if and only if the part |!(",V )〉
in (21) admits the (anti)symmetrized direct product form (23);
if not, it is entangled. In more simple terms, to examine the
separability of a given state |!〉 ∈ HX , we just concentrate
on the observable part |!(",V )〉 and then strip it off the
projection X (and perform necessary renormalization) to
obtain, via the identification in Fig. 1, the corresponding state
|!mes(",V )〉 ∈ Hmes describing the measurement outcomes
directly. In the case (23) we find |!mes(",V )〉 = ⊗s

i=1|ψi〉"i
,

which is factorizable and hence separable. As is evident from
the explicit dependence on V , the entanglement of the state
is determined only relatively with respect to the measurement
setup.

Generalization of our argument to mixed states is straight-
forward. Given a density matrix ρ on HX , one can decompose
it as

ρ =
(

ρ(",V ) ∗
∗ ρ(",V )⊥

)
, (25)

where ρ(",V ) and ρ(",V )⊥ are (unnormalized) density
matrices on HX (",V ) and HX (",V )⊥, respectively. By virtue
of the isomorphism fX , the separability criterion for the mixed
distinguishable systems [13] can be utilized for the density
matrix ρmes(",V ), which is defined from f −1

X (ρ(",V )) with a
suitable rescaling to fulfill Tr ρmes(",V ) = 1. We then find that
a mixed state ρ on HX is separable under our measurement
setup specified by " and V if ρmes(",V ) admits the form

ρmes(",V ) =
∑

α

pα

∣∣!mes
α

〉 〈
!mes

α

∣∣, (26)

where |!mes
α 〉 ∈ Hmes are separable pure states and {pα}

satisfies
∑

α pα = 1 and pα ! 0.
It should be clear by now that since a state of indistin-

guishable particles, either pure or mixed, can be mapped to

a state in Hmes, the entanglement of the state can be studied
in terms of the standard entanglement measures developed for
distinguishable particles. This will be demonstrated next.

IV. MEASUREMENT SETUP DEPENDENCE
OF ENTANGLEMENT: EXAMPLES

To evaluate explicitly the dependence of entanglement
on the measurement setup we choose, let us consider the
case of N = 2 fermions, each possessing n = 4 dimensional
constituent space, given in the state

|!〉 =
√

2A|e1〉1|e3〉2 ∈ HA. (27)

We wish to examine if, and to what extent, the state is entangled
under the partition " = {{1},{2}} when our setup is “rotated”
among the set of basis {|e1〉,|e4〉} and {|e2〉,|e3〉}. To this end,
we adopt the orthogonal decomposition (which defines the
measurement setup) V = {V1,V2} with

V1 = span{|e′
1〉,|e′

2〉}, V2 = span{|e′
3〉,|e′

4〉}, (28)

where

|e′
1〉 = c|e1〉 + s|e4〉, |e′

2〉 = −s|e3〉 + c|e2〉,
(29)

|e′
3〉 = c|e3〉 + s|e2〉, |e′

4〉 = −s|e1〉 + c|e4〉,

and we have used the shorthand c = cos θ , s = sin θ to express
the rotation with angle θ . According to the decomposition (21),
the measurable part turns out to be

|!(",V )〉 = A(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2), (30)

up to a constant. We then map it to the corresponding
normalized state in Hmes as

|!mes(",V )〉 = 1√
c4 + s4

(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2). (31)

The amount of entanglement may be evaluated by the (squared)
concurrence,

C(|!mes(",V )〉) = 2[1 − Tr1(Tr2|!mes〉〈!mes|)2]

= 4
(tan2 θ + cot2 θ )2

, (32)

and the result is depicted in Fig. 2. We find that the state (27) is
strictly separable at θ = nπ/2 and maximally entangled at θ =
(n + 1/2)π/2 for integer n, and it can take any intermediate
values C in between.

As a second example, we consider the case of N = 2 bosons
with n = 6 prepared in the state,

|!〉 = 1√
6

6∑

i=1

|ei〉1|ei〉2 ∈ HS . (33)

As before, we study the entanglement for the partition " =
{{1},{2}} when the rotated family of entanglement setups are
considered, which are now provided by

V1 = span{|e′
1〉,|e′

2〉,|e′
3〉}, V2 = span{|e′

4〉,|e′
5〉,|e′

6〉}, (34)

with

|e′
i〉 = U |ei〉, U ∈ U(6). (35)
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FIG. 2. (Color online) Concurrence C of |!mes(",V )〉 as a
function of the angle θ . The variation shows that the state undergoes
the change from complete separation to maximal entanglement by
the adjustment of the setup angle θ .

Analogously to Eq. (31), we can find the corresponding
state |!mes(",V )〉 in Hmes. This time, however, instead of
simply evaluating the concurrence we study the extent of
variation in the state |!mes(",V )〉 that can arise under distinct
measurement setups obtained by altering the unitary matrix
U in (35). To do this, we first implement the Schmidt
decomposition for the state |!mes(",V )〉 as

|!mes(",V )〉 =
3∑

i=1

λi |e′′
i 〉1|e′′

i+3〉3,

3∑

i=1

λ2
i = 1, (36)

where {|e′′
i 〉}3

i=1, {|e′′
i 〉}6

i=4 are the Schmidt bases {|e′′
i 〉}3

i=1,
{|e′′

i 〉}6
i=4 each defined within the measurable subspaces V1, V2.

We then observe the distribution of states, which is invariant
under local unitary operations from the distribution of Schmidt
coefficients. Figure 3 shows the values of λi for i = 1,2
obtained by a random generation of U , which suggests that
by tuning U properly the state (33) can furnish virtually any
possible states which can be discriminated by the Schmidt
coefficients.

FIG. 3. Distribution of the Schmidt coefficients of the state (36)
with the ordering λ1 ! λ2 ! λ3 (λ3 is not shown because it can be
determined from the other two) obtained under random setups of
measurement for the state (33) provided by 106 distinct unitaries U .
The diagonal lines represent λ1 = λ2 and λ2 = λ3, whose intersection
corresponds to the maximally entangled state. The points fill out
basically the entire region of the triangle, although in our random
generation the density becomes scarcer for states which are highly
entangled.

Despite the relative nature of entanglement with respect to
the measurement setup, there exists a special class of states in
the bosonic case which are separable under all measurement
setups. These are the i.i.d. pure states |!〉 ∈ HS defined by

|!〉 =
N⊗

k=1

|φ〉k, |φ〉k ∈ Hk. (37)

To see the universal separability of the state, we decompose
|φ〉k according to Eqs. (13) and (14) as

|φ〉k =
s∑

i=0

|ϕi〉k, |ϕi〉k ∈ Vi(Hk). (38)

Plugging this into Eq. (37), we obtain Eq. (21) with

|!(",V )〉 =
√

MS
s⊗

i=1

|ψi〉"i
, (39)

where

|ψi〉"i
∝

⊗

k∈"i

|ϕi〉k. (40)

Since the part |!(",V )〉, if nonvanishing, belongs to the class
Eq. (23), we see that the i.i.d. states (37) are separable. Further,
since this is true for any choice of (",V ), the separability holds
irrespective of the measurement setup. Interestingly, one finds
that for N = 2, n " 4, the converse is also true: states which
are universally separable must be the i.i.d. states.

V. CONCLUSION AND DISCUSSIONS

In summary, we have presented a general criterion for
entanglement of an indistinguishable N -particle system de-
composed into s subsystems based on the unambiguous
measurability of correlation. The point is that, although the
Hilbert space HX of the system does not admit a TPS,
one can find a subspace HX (",V ) ⊂ HX which has a TPS
and is directly related to the space Hmes describing the
measurement outcomes. Since Hmes has a common structure
with the space of distinguishable particles, our approach
allows us to treat indistinguishable particles on an equal
basis with distinguishable ones. Consequently, the handling of
states without considering the effect of (anti)symmetrization
practiced regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.

The structure of Hmes also implies that the standard
measures of entanglement devised so far can be used equally
for the indistinguishable case; for instance, the monotonicity
of entanglement measures with respect to local operations
and classical communications (LOCC) is preserved under
the mapping fX . This is shown by observing that all in-
gredients of LOCC for distinguishable particles [14] have
their counterparts in HX (",V ) provided by the application
of fX . Since positive operator valued measurements (POVM)
can be built from some of the ingredients of local op-
erations and classical communication (LOCC) (Naimark’s
theorem [4]), the mapping fX induces the analogs of local
POVMs in HX (",V ).

As stated in the Introduction, for bosonic systems the
characterization of separability has not been done uniquely in
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In the provision-based description, the criterion on the
entanglement of indistinguishable particles then emerges as
follows. Given an arbitrary (normalized) state |!〉 ∈ HX , we
first decompose it as

|!〉 = |!(",V )〉 + |!(",V )⊥〉, (21)

according to the orthogonal decomposition,

HX = HX (",V ) ⊕ HX (",V )⊥. (22)

Since |!(",V )⊥〉 has a vanishing support for the observ-
ables in T (",V ) and is filtered out by the measurement,
the only part significant for correlation is |!(",V )〉. Thus,
for studying correlations in the measurement outcomes by
ignoring the events which are not detected in the setup, one
uses the renormalized state ‖|!(",V )〉‖ = 1. We now see that
if the observable part takes the form

|!(",V )〉 =
√

MX
s⊗

i=1

|ψi〉"i
, (23)

then for any Õ ∈ T (",V ) we have the factorization

〈!|Õ|!〉 =
s∏

i=1

〈!|Õi |!〉, (24)

in analogy with (7). Since the converse is also true, we learn
that the state |!〉 is separable if and only if the part |!(",V )〉
in (21) admits the (anti)symmetrized direct product form (23);
if not, it is entangled. In more simple terms, to examine the
separability of a given state |!〉 ∈ HX , we just concentrate
on the observable part |!(",V )〉 and then strip it off the
projection X (and perform necessary renormalization) to
obtain, via the identification in Fig. 1, the corresponding state
|!mes(",V )〉 ∈ Hmes describing the measurement outcomes
directly. In the case (23) we find |!mes(",V )〉 = ⊗s

i=1|ψi〉"i
,

which is factorizable and hence separable. As is evident from
the explicit dependence on V , the entanglement of the state
is determined only relatively with respect to the measurement
setup.

Generalization of our argument to mixed states is straight-
forward. Given a density matrix ρ on HX , one can decompose
it as

ρ =
(

ρ(",V ) ∗
∗ ρ(",V )⊥

)
, (25)

where ρ(",V ) and ρ(",V )⊥ are (unnormalized) density
matrices on HX (",V ) and HX (",V )⊥, respectively. By virtue
of the isomorphism fX , the separability criterion for the mixed
distinguishable systems [13] can be utilized for the density
matrix ρmes(",V ), which is defined from f −1

X (ρ(",V )) with a
suitable rescaling to fulfill Tr ρmes(",V ) = 1. We then find that
a mixed state ρ on HX is separable under our measurement
setup specified by " and V if ρmes(",V ) admits the form

ρmes(",V ) =
∑

α

pα

∣∣!mes
α

〉 〈
!mes

α

∣∣, (26)

where |!mes
α 〉 ∈ Hmes are separable pure states and {pα}

satisfies
∑

α pα = 1 and pα ! 0.
It should be clear by now that since a state of indistin-

guishable particles, either pure or mixed, can be mapped to

a state in Hmes, the entanglement of the state can be studied
in terms of the standard entanglement measures developed for
distinguishable particles. This will be demonstrated next.

IV. MEASUREMENT SETUP DEPENDENCE
OF ENTANGLEMENT: EXAMPLES

To evaluate explicitly the dependence of entanglement
on the measurement setup we choose, let us consider the
case of N = 2 fermions, each possessing n = 4 dimensional
constituent space, given in the state

|!〉 =
√

2A|e1〉1|e3〉2 ∈ HA. (27)

We wish to examine if, and to what extent, the state is entangled
under the partition " = {{1},{2}} when our setup is “rotated”
among the set of basis {|e1〉,|e4〉} and {|e2〉,|e3〉}. To this end,
we adopt the orthogonal decomposition (which defines the
measurement setup) V = {V1,V2} with

V1 = span{|e′
1〉,|e′

2〉}, V2 = span{|e′
3〉,|e′

4〉}, (28)

where

|e′
1〉 = c|e1〉 + s|e4〉, |e′

2〉 = −s|e3〉 + c|e2〉,
(29)

|e′
3〉 = c|e3〉 + s|e2〉, |e′

4〉 = −s|e1〉 + c|e4〉,

and we have used the shorthand c = cos θ , s = sin θ to express
the rotation with angle θ . According to the decomposition (21),
the measurable part turns out to be

|!(",V )〉 = A(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2), (30)

up to a constant. We then map it to the corresponding
normalized state in Hmes as

|!mes(",V )〉 = 1√
c4 + s4

(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2). (31)

The amount of entanglement may be evaluated by the (squared)
concurrence,

C(|!mes(",V )〉) = 2[1 − Tr1(Tr2|!mes〉〈!mes|)2]

= 4
(tan2 θ + cot2 θ )2

, (32)

and the result is depicted in Fig. 2. We find that the state (27) is
strictly separable at θ = nπ/2 and maximally entangled at θ =
(n + 1/2)π/2 for integer n, and it can take any intermediate
values C in between.

As a second example, we consider the case of N = 2 bosons
with n = 6 prepared in the state,

|!〉 = 1√
6

6∑

i=1

|ei〉1|ei〉2 ∈ HS . (33)

As before, we study the entanglement for the partition " =
{{1},{2}} when the rotated family of entanglement setups are
considered, which are now provided by

V1 = span{|e′
1〉,|e′

2〉,|e′
3〉}, V2 = span{|e′

4〉,|e′
5〉,|e′

6〉}, (34)

with

|e′
i〉 = U |ei〉, U ∈ U(6). (35)
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FIG. 2. (Color online) Concurrence C of |!mes(",V )〉 as a
function of the angle θ . The variation shows that the state undergoes
the change from complete separation to maximal entanglement by
the adjustment of the setup angle θ .

Analogously to Eq. (31), we can find the corresponding
state |!mes(",V )〉 in Hmes. This time, however, instead of
simply evaluating the concurrence we study the extent of
variation in the state |!mes(",V )〉 that can arise under distinct
measurement setups obtained by altering the unitary matrix
U in (35). To do this, we first implement the Schmidt
decomposition for the state |!mes(",V )〉 as

|!mes(",V )〉 =
3∑

i=1

λi |e′′
i 〉1|e′′

i+3〉3,

3∑

i=1

λ2
i = 1, (36)

where {|e′′
i 〉}3

i=1, {|e′′
i 〉}6

i=4 are the Schmidt bases {|e′′
i 〉}3

i=1,
{|e′′

i 〉}6
i=4 each defined within the measurable subspaces V1, V2.

We then observe the distribution of states, which is invariant
under local unitary operations from the distribution of Schmidt
coefficients. Figure 3 shows the values of λi for i = 1,2
obtained by a random generation of U , which suggests that
by tuning U properly the state (33) can furnish virtually any
possible states which can be discriminated by the Schmidt
coefficients.

FIG. 3. Distribution of the Schmidt coefficients of the state (36)
with the ordering λ1 ! λ2 ! λ3 (λ3 is not shown because it can be
determined from the other two) obtained under random setups of
measurement for the state (33) provided by 106 distinct unitaries U .
The diagonal lines represent λ1 = λ2 and λ2 = λ3, whose intersection
corresponds to the maximally entangled state. The points fill out
basically the entire region of the triangle, although in our random
generation the density becomes scarcer for states which are highly
entangled.

Despite the relative nature of entanglement with respect to
the measurement setup, there exists a special class of states in
the bosonic case which are separable under all measurement
setups. These are the i.i.d. pure states |!〉 ∈ HS defined by

|!〉 =
N⊗

k=1

|φ〉k, |φ〉k ∈ Hk. (37)

To see the universal separability of the state, we decompose
|φ〉k according to Eqs. (13) and (14) as

|φ〉k =
s∑

i=0

|ϕi〉k, |ϕi〉k ∈ Vi(Hk). (38)

Plugging this into Eq. (37), we obtain Eq. (21) with

|!(",V )〉 =
√

MS
s⊗

i=1

|ψi〉"i
, (39)

where

|ψi〉"i
∝

⊗

k∈"i

|ϕi〉k. (40)

Since the part |!(",V )〉, if nonvanishing, belongs to the class
Eq. (23), we see that the i.i.d. states (37) are separable. Further,
since this is true for any choice of (",V ), the separability holds
irrespective of the measurement setup. Interestingly, one finds
that for N = 2, n " 4, the converse is also true: states which
are universally separable must be the i.i.d. states.

V. CONCLUSION AND DISCUSSIONS

In summary, we have presented a general criterion for
entanglement of an indistinguishable N -particle system de-
composed into s subsystems based on the unambiguous
measurability of correlation. The point is that, although the
Hilbert space HX of the system does not admit a TPS,
one can find a subspace HX (",V ) ⊂ HX which has a TPS
and is directly related to the space Hmes describing the
measurement outcomes. Since Hmes has a common structure
with the space of distinguishable particles, our approach
allows us to treat indistinguishable particles on an equal
basis with distinguishable ones. Consequently, the handling of
states without considering the effect of (anti)symmetrization
practiced regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.

The structure of Hmes also implies that the standard
measures of entanglement devised so far can be used equally
for the indistinguishable case; for instance, the monotonicity
of entanglement measures with respect to local operations
and classical communications (LOCC) is preserved under
the mapping fX . This is shown by observing that all in-
gredients of LOCC for distinguishable particles [14] have
their counterparts in HX (",V ) provided by the application
of fX . Since positive operator valued measurements (POVM)
can be built from some of the ingredients of local op-
erations and classical communication (LOCC) (Naimark’s
theorem [4]), the mapping fX induces the analogs of local
POVMs in HX (",V ).

As stated in the Introduction, for bosonic systems the
characterization of separability has not been done uniquely in
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