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Abstract

The topic of ’mass and gauge’ in QCD is taken up implying that d espite much effort

since early ’beginnings’ there remain analytically unsolv ed questions. The work covered

is unfinished and concentrates on the renewed analysis of som e of these questions.
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1

1 - Conditions of enveloping local gauge invariance, integr ability of field strengths from connections and

boundary values in eventual conflict with lattice QCD

Connections and associated field strengths pertaining to a l ocal, compact and semi-simple gauge group

G (→ SU3c for QCD ) shall be called complete, if extendable to the full ring of re presentations of

potential matter fields , irrespective of the actual presenc e of such fields in the full gauge theory . The

requirement of continuity with respect to space time deriva tives shall apply to classical configurations,

as substrate of path integrals.

Let a general irreducible unitary representation of G of dimension dim (D ) be denoted D with

(D ( g ) ) αβ ∈ D : α , β = 1 , · · · , dim (D ) ; g ∈ G

(D ( g ) ) αβ → D ( g )
(1)

Then the Lie (D ) associated connection is represented by the connection one form
`
W (1) (D )

´
αβ

= W r
µ ( x ) ( d r (D ) ) αβ d x µ

W r
µ ( x ) : real ; r = 1, · · · , dim ( G )

`
W (1) (D )

´
αβ

→ W (1) (D ) → W (1) ( | D
´

( d r (D ) ) αβ → d r (D ) → d r = − d †
r ; r = 1 , · · · , dim G

(2)

The antihermitian matrices d r in eq. 2 form a basis of Lie (D ) . →
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Lie (D ) is aligned with the adjoint representation Lie ( G ) as explained below, but is conceived in

an apparently simpler context all by itself through the expo nential mapping and its inverse

D ( g )D ( h ) = D ( g . h ) ; D ( g )D † ( g ) = ¶ | dim ( D ) × dim ( D )

D ( g ) → D ; Det (D ) = 1
(3)

The unimodularity of the matrices D follows from the require ment that G be semi-simple , i.e. be a direct

product of simple factor groups, none of which contain any co ntinuous normal subgroups .

The exponential mapping associates the linear space of anti hermitian matrices ≡ Lie (D ) with the

set of representation matrices {D } ≡ D

( ω ) αβ → bω ∈ Lie (D ) ; bω † = − bω

D = exp bω ; bω = ω r d r , ω r : real ; r = 1 , · · · , dim G
(4)

The precise definition of the matrix valued quantity bω introduced in eq. 4 is given in eq. 6 below.

The exponential mapping Lie (D ) → D as defined in eq. 4 is embedded into the one parameter

abelian subgroup of D as represented restricting to D by associating first the adjoint representation

and then also D with the ’notion of motion’

ω → τ ω ; τ : real → D ( τ ; ω ) = exp ( τ bω )

D ( τ 1 + τ 2 ; ω ) = D ( τ 1 ; ω)D ( τ 2 ; ω ) = D ( τ 2 ; ω)D ( τ 1 ; ω )
(5)

→
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Interpreting the variable τ as representing the time development of the group element g ∈ G a

differential eq. follows from eq. 5

d

d τ

D ( τ ; ω ) =

D ( d τ ; ω) − ¶

d τ

˛̨
˛̨
˛̨
˛̨
dτ→0

D ( τ ; ω ) ≡ bω D ( τ ; ω )

D ( d t ; ω) − ¶

d t

≡

d

d t

D ( t ; ω )

˛̨
˛̨
˛̨
˛̨
t=0

≡ bω = ω r d r ∈ Lie (D )

bω = bω (D ) = Ḋ ( 0 ; ω ) ; ˙ =

d

d τ or d t

(6)

The relations in eqs. 4 - 6 define the real coordinates ω r and antihermitian base matrices d r – both

independent of τ – the latter forming the matrix valued structure bω (D ) , identified for shortness of

notation with Lie (D ) . The solution to the differential equation in eq. 6 with init ial condition

D ( 0 ; ω ) = ¶ is given in eq. 5 .
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1 a - Derivations from continuous coordinate transformatio n groups representing G , fibre manifolds

and irreducible submanifolds at the origin of conditions on complete connections

This section shall contain a most concise r ésum é of those notions inherent to the mathematics

underlying compact semi-simple Lie groups as is necessary t o infer conditions on field theoretical

connections as announced in points 3) and 4) of the introduct ion, whereby most derivations are omitted.

A minimum of historical and textbook references shall be giv en here [11-1951-1961] - [14-1963] .

The results presented below are based on my treatment in ref. [15-2010] .

3 a-1 - general fibres → irreducible ones ≃ homogenous spaces [13-1962]

A general fibre manifold F ( called B in ref. [15-2010] ) with structure group G is required to allow a

continuous representation of G by coordinate transformations of F → F . The set of these

coordinate transformations shall be denoted T F =
˘ S

a T a ; a ∈ G
¯

F

φ =
`
φ 1 , · · · , φ F

´
; F = dim (F ) : coordinates on F

T a φ = ψ ( φ ; a ) ; ψ j = ψ j
`
φ 1 , · · · φ F ; a 1 , · · · , a G

´

j = 1 , · · · , F ; G = dim G

(7)

with suitable continuity / differentiability requirement s for the functions ψ ( φ ; a ) defined in eq, 7 . →

– p. 7



5

The group property of T F then translates to, by the assciative property of coordinat e transformations

T b ( T a φ ) = ( T b T a ) φ ; T b T a = T b a with b a = b . a : group
multiplication

∈ G

in coordinates : ψ ( ψ ( φ ; a ) ; b ) = ψ ( φ ; b . a ) ; ψ , φ ∈ F ; b , a ∈ G

(8)

The group transformation properties on G enter implicitely into the T F ones, as shown in eq. 8

b . a = @ ( b , a ) ; @ ν = @ ν ( b 1 , · · · b G ; a 1 , · · · , a G )

ν = 1 , · · · , G
(9)

We use the symbol @ ( instead of c ) to denote the G functions @ ν , ν = 1 , · · · , G determining

multiplication on G in order to freely use the symbols a , b , c , · · · for group elements ∈ G .

We display here the eligibility of G as a special fiber manifold using left multiplication first, r enaming the

fiber variable h and the variables a , b , c · · · for T ∈ T G L

T L → T ∈ T G L → T a h = @ ( a ; h )

T b ( T a h ) = ( T b T a ) h = @ ( b ; @ ( a ; h ) )

@ ( b ; @ ( a ; h ) ) = b .@ ( a ; h ) = b . ( a . h ) = ( b . a ) . h

(10)

→
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Clearly the choice F = G is singled out, since there exists in this case, independent ly of the left

multiplication transfomation group – T G L – also the right multiplication one – T G R with the

associations

T R → T ∈ T G R → T a h = @
`
h ; a −1

´

T b ( T a h ) = ( T b T a ) h = @
`

@
`
h ; a −1

´
; b −1

´

@
`

@
`
h ; a −1

´
; b −1

´
= @

`
h ; a −1

´
. b −1

=
`
h . a −1

´
. b −1 = h . ( b . a ) −1

(11)

Requiring an inversion symmetry on the tangent spaces of F – following ref. [13-1962] – allows to

identify the irreducible parts of the fibre manifolds on whic h T F acts transitively to the (right or left -)

coset spaces

F → F irr → G /H ; H : Lie subgroup of G(12)

With the identification F → F irr in eq. 12 and choosing right cosets for definitensess

T F becomes

F ∋ φ = h ∼ h . h R ∀ h R ∈ H ⊂ G

T F ∋ T a , T G L ∋ T
′

a : T a φ =
“
T

′

a h
”
∼ a . h . h R ∀ h R ∈ H

(13)

→
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The classification of fibre manifolds according to cosets G /H as specified in eq. 12 allows a

graduation of fibres F :

regularity conditions for connections as described in eq. 2 compatible with F 1 = G /H 1 are not

less restrictive than relative to F 2 = G /H 2 for H 1 ⊆ H 2 . We denote this graduation as

W
(1)
F 1

(D ) � W
(1)
F 2

(D ) for F 1 � F 2 ≡ H 1 ⊆ H 2(14)

At this stage the connection 1-forms are still defined for a gi ven matrix representation Lie (D ) . The

direct anchoring of connections to the fibre manifolds F as considered in this subsection will be

defined after its conclusion .

While H 0 = { ¶ } – i.e. consisting only of the unit element of G – is strictly speaking not a Lie

(sub)group of G , we adjoin the group G as the maximal fibre manifold, with both tranformation group s

T G L and T G R , as defined in eqs. 9 - 11 . Accordingly we adjoin as unique disc rete subgroup

H 0 = { ¶ } to the set of genuine Lie subgroups
S

(H ) . Then eq. 14 takes the form

Fmax → G ; F = G /H −→ W
(1)
G

(D ) � W
(1)
F

(D ) ∀ F(15)

This subsection (1 a-1 ) serves to define the selection of fibre manifolds and among the m the maximal

one according to eqs. 12 - 15 characterizing complete connec tion as introduced in eqs. 1 - 2 .
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1 b - Ordered differentials : Killing fields on the group fibre m anifold G with transformation group(s)

T G L(R) and as derivations on associated induced representations

1 b-1 - adjoint representation from infinitesimal group coor dinates and the Lie algebra

Coordinates of group elements of G in the sense of a classical manifold shall be denoted with the same

symbol as the group elements as such.

G → M | G ∼ h ∈ G → h = ( h ν ) =
`
h 1 , · · · , h G

´ ˛̨
M

(16)

The suffix |M in eq. 16 signals that h as coordinates on M are not unique. It shall be suppressed for

simplicity with exceptions granted to avoid confusion .

The unit elements e → T e (
.
= ¶ ) – with T ∈ T arbitrary – have the property

e . a = a . e = a ↔ T a T e = T e T a = T a ( ∀ a )(17)

It is no loss of generality to assign the neutral element e the coordinates in G

e =
`
e 1 , · · · , e G

´
; e ν = 0 , ν = 1 , · · · , G(18)

The infinitesimal neighbourhood of e forms the substrate of tangent space at e . Here we anchor the

exponential mapping discussed with respect to a finite dimen sional linear representation

D ( G ) → Lie (D ) defined in eqs. 3 - 6 in Lie ( G ) →
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with the substitutions

ω = ( ω ν ) ∈ G −→ d τ ω ∈ G |M ; d τ ω −→ T d τ ω ∈ T ( arbitrary )

T d τ ω − ¶

d τ

˛̨
˛̨
˛̨
˛̨
dτ→0

−→ bω = bω
`
T (1)

´
= ω ν bI ν ; bI ̺ ∈ T (1)

bω −→ ω ∈ Lie ( G ) |
M (1) ( e )

(19)

In eq. 19 we have introduced two notions

1) T (1) : the set of differential quotients of transformations T h ∈ T G .

2) M (1) ( h ) ; h ∈ G |M : the tangent spaces of M at h ∈ G .

All differential operations on the ordered fibre manifolds a dmitted as described in subsection 1 a-1 in

particular on the group manifold itself are allowed by the co ndition of differentiablity – once for

T (1) and
S
h M

(1) ( h ) – imposed ’eo ipso’ on fibres and Lie groups .

With the definitions given in eqs. 16 - 19 we set out next to find t he adjoint representation . →
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The finite adjoint matrix representation denoted A arises directly from the group tranformations on

G = M

d c = a . d τ ω . a −1
˛̨
M

; d c = d τ
“
ω

′

( a ; ω )
”

ω
′ ν ( a , ω ) = Ad ( a ) ν µ ω

µ ; ν , µ = 1 , · · · , G → ω
′

= Ad ( a ) ω

Ad ( b )Ad ( a ) = Ad ( b . a ) |M ; A =
˘ S

a ∈ G Ad ( a )
¯

(20)

The real matrices Ad ( h ) depend on the coordinates chosen on M and are for general choices not

unitary, i.e. not orthogonal , but depend continuously on th e coordinates h . The condition that G be

semi-simple implies

Det Ad ( h ) = 1 ∀ h ∈ G(21)

At this point we extend the order of differentials to 2 which a llows to introduce the Lie algebra .

To this end we use the exponential mapping for the operator va lued quantities defined on the second line

of eq. 19 ordering them as a pair

bω (k) = ( ω ν ) (k)
bI ν , k = 1, 2 ; bI ̺ ∈ T (1)(22)

We associate an initially finite ’time like’ quantity τ 1 with bω (1) and a first order differential d τ 2 with

bω (2) →
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and consider the equivalence exponential mapping and the di fferential equation with respect to τ 1 ,

valid for finite τ 1

bΩ ( τ 1 ) = exp ( τ 1 bω (1) )
`
¶ + d τ 2 bω (2)

´
exp (− τ 1 bω (1) )

d

d τ 1

bΩ ( τ 1 ) = exp ( τ 1 bω (1) ) d τ 2

ˆ
bω (1) ) , bω (2)

˜
exp (− τ 1 bω (1) )

ˆ
bω (1) , bω (2)

˜
= bω (1) bω (2) − bω (2) bω (1)

(23)

In eq. 23 the operator valued commutator
ˆ

bω (1) , bω (2)

˜
naturally appears .

Next we let also τ 1 become infinitesimal τ 1 → d τ 1 and expand bΩ ( d τ 1 ) up to second order in

the differentials d τ k ; k = 1, 2

bΩ ( dτ1 ) =

8
>>>><
>>>>:

“
¶+ dτ1 bω (1) + 1

2
(dτ1) 2 bω 2

(1)

”
×

×
`
¶ + dτ2 bω (2)

´
×

×
“
¶ − dτ1 bω (1) + 1

2
(dτ1) 2 bω 2

(1)

”

9
>>>>=
>>>>;

=

8
<
:

¶+

dτ1 dτ2
ˆ

bω (1), bω (2)

˜

9
=
;

(24)

The absence of a term ∝ (dτ1)2 on the right hand side of eq. 24 is due to the exponential mappi ng . →
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It follows that the finite commutator
ˆ

bω (1) , bω (2)

˜
upon the combined exponential mapping, defined

in eq. 25 below, generates a commuting one parameter family o f transformations . by the semi-simple

condition on G a one parameter commutative subgroup of G

T ( ϑ ) = T h ( ϑ ) = exp
`
ϑ

ˆ
bω (1) , bω (2)

˜ ´
; h( ϑ ) ∈ G ∀ ϑ with

h( ϑ 1 + ϑ 2 ) = h ( ϑ 1 ) . h ( ϑ 2 ) = h ( ϑ 2 ) . h ( ϑ 1 )
(25)

The Lie algebra relation follows, first on the level of all tra nsformation groups T F defined in section 1 a
ˆ

bω (1) , bω (2)

˜
= ω ̺

(1)
ω σ

(2)

h
bI ̺ , bI σ

i
; bI ̺ , bI σ ∈ T (1) ↔ eq. 19

↓
h

bI ̺ , bI σ
i

= f χ̺ σ bI χ

f χ̺ σ = − f χσ ̺ : structure constants of G ; χ , ̺ , σ = 1 , · · · , G

(26)

Clearly, in order to implement the operator relations on the level of T G L (R) to the coordinate

multiplication as given by the functions @ ( b ; a ) = b . a for b , a ∈ G as defined in eq. 9 at least

twofold partial differentiability of @ is necessary . →
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This further becomes threefold partial differentiability to safeguard the operator Jacobi identity a

necessary condition to ensure regular convergence of neste d exponential mappings of all allowed

transformation groups T Fh
bI α ,

h
bI β , bI γ

i i
+ ( αβγ → γαβ ) + ( αβγ → βγα ) = 0 ∀ α, β, γ

−→ f σ α ̺ f
̺
β γ

+ f σ γ ̺ f
̺
α β

+ f σ β ̺ f
̺
γ α = 0

f σ α γ
.
= ( ξ α ) σγ

(27)

With the matrix substitutions ( ξ α ) σγ → ξ α ; σ , α , γ = 1 , · · · , G the relation on the

second line of eq. 27 can be cast into the form“ ˆ
ξ α , ξ β

˜
= f χα β ξ χ

” σ

γ
∼

h
bI α , bI β

i
= f χα β

bI χ ↔ eq. 26(28)

The equivalence relation in eq. 28 ξ α ∼ bI α allows to reconstruct the adjoint representation A

defined in eqs. 20 - 21 by the finite dimensional exponential ma ppings

(Ad ( h ( τ ; ω ) ) = exp ( τ ω α ξ α ) ) σ γ ; h ( τ ; ω ) ∈ G

h ( τ 1 + τ 2 ; ω ) = h ( τ 1 ; ω ) . h ( τ 2 , ω )

ω ∈ tangent space of G at e

(29)

→
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Coordinates on G , for compact, semi-simple G can be chosen such, that all finite dimensional

representations D ( G ) are unitary, unimodular as shown ( e.g. ) in refs. [11-1951-1 961] , [15-2010] .

From the present (sub-) perspective we then infer from eq. 29

h = h ( τ ; ω ) → Ad ( h ) (Ad ( h ) ) T = ¶ G×G −→

( ξ α ) γ
β

= − ( ξ α ) β γ ; ( ξ α ) γ
β

= f γ
α β

(30)

In eq. 30 T denotes matrix transposition.

The identifications in the relations on the second line of eq. 30 justify the substitutions – after unitarity of

all finite dimensional representations of G is achieved –

( ξ α ) γ
β
→ ( ξ α ) γ β and f γ

α β
→ f γαβ(31)

With the substitutions defined in eq. 31 we rewrite eq. 30

( ξ α ) γ β = − ( ξ α ) β γ ←→ f γαβ = − f βαγ

− f γβα

(32)

The commutator definition in eq. 26 yields the second relatio n for the structure constants in eq. 32 .

As a consequence of the two independent antisymmetry condit ions for the structure constants f αβγ
the latter are totally antisymmetric with respect to their t hree indices . →
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Recapitulation of characteristics of the Lie algebra and ad joint representation ( eqs. 30 - 32 )

The orthogonal, adapted adjoint representation is rewritt en in 3 equations below, using the (standard)

symbols or definitions

( ξ α ) γ β
.
=

`
ad (α)

´
γ β

= f γαβ

ad ( ω ) = ω ̺ ad (α) ; ω =
`
ω 1 , · · · , ω G

´
∈ tangent space of G at e

bω = ω ̺ bI ̺ ; bω ∈ T (1) relative to general T G as defined in eq. 19

D : d ( ω ) = ω ̺ d (̺) ∈ Lie (D ) d ̺ → d (̺) from eq. 2

d ( ω ) = ( d ( ω ) ) rs ; r, s = 1 , · · · , dim (D )

(33)

Lie algebra relations depend for all representations on the universal structure constants of G
ˆ
ad (α) , ad (β)

˜
= f αβ γ ad (γ) ,

ˆ
d (α) , d (β)

˜
= f αβ γ d (γ)h

bI α , bI β
i

= f αβγ bI γ

f αβγ : totally antisymmetric with respect to αβ γ

(34)

→
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Respective exponential mapping on the adjoint representat ion A , on a general finite dimensional

unitary representation D as well as on all operator valued transformation group repre sentation T G

determine on G a commuting one parameter family of group elements h ( τ ; ω ) ∈ G
8
>>><
>>>:

A

D

T G

9
>>>=
>>>;

h ( τ ; ω ) ←

8
>>><
>>>:

exp ( τ ad ( ω ) ) = Ad ( h ( τ ; ω ) )

exp ( τ d ( ω ) ) = D ( h ( τ ; ω ) )

exp ( τ bω ) = T h ( τ ; ω )

9
>>>=
>>>;

h ( τ 1 + τ 2 ; ω ) = h ( τ 1 ; ω ) . h ( τ 2 ; ω )

(35)

The construction of this family – h ( τ ; ω ) ∈ G – indicated as h ( τ ; ω ) ← in eq. 35 corresponds

to a system of G first order differential equations with respe ct to τ , subject of the subsection 1 b-2

below .

We recall that up to this point threefold partial differenti ability is required as regularity condition on the

group transformation functions ( b . a ) ν = @ ν
`
b 1 , · · · b G ; a 1 , · · · , a G

´
.

This ends the present subsection ( 1 b-1 ) .
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1 b - Killing fields on the group fibre manifold G with transformation group(s) T G L(R) – continued

An excellent exposition can be found in ref. [10-1941-1986] .

Here we follow the thread laid out in ref. [15-2010] starting from eqs. 9 , 10 defining the action of

T a ∈ T G L on the group manifold G , repeated below

T a ∈ T G L ; a , h = ( a ν ) , ( h ν ) ; ν = 1, · · · , G ∈ G →

T a h = a . h = @ ( a ; h ) ←→ ( a . h ) ν = @ ν ( a χ ; h ̺ )

T b ( T a h ) = ( T b T a ) h = @ ( b ; @ ( a ; h ) )

@ ( b ; @ ( a ; h ) ) = b .@ ( a ; h ) = b . ( a . h ) = ( b . a ) . h

(36)

The differential quotient in eq. 19 for T (1) ( T G L ) defines left multiplication Killing fields on G

ω = ( ω ν ) ∈ G −→ d τ ω ∈ G |M ; d τ ω −→ T d τ ω ∈ T G L

T d τ ω − ¶

d τ

˛̨
˛̨
˛̨
˛̨
dτ→0

−→ bω = bω
`
T (1)

´
= ω ν bI ν ; bI ̺ ∈ T (1) ( T G L )

bω → ω ∈ Lie ( G ) |
M (1) ( e )

“
bI ̺ h

” χ
=

`
u (̺)

´ χ
( h ) = ∂ a ̺ @ χ ( a ; h ) | a = 0

(37)

→
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We use up to second order differentials as given in eq. 22 in th e left multiplication order

bω (k) = ( ω ν ) (k)
bI ν , k = 1, 2 ; bI ̺ ∈ T (1) ( T G L )

d τ 2 ω (2) = d τ 2 ( ω ν ) (2) → d τ 1 ω (1) = d τ 1 ( ω ν ) (1)

(38)

The last relation in eq. 36 then becomes , upon identifying th e first order differentials

b ↔ d b ; a ↔ d a

@ ( b ; @ ( a ; h ) ) = b .@ ( a ; h ) −→ b = d τ 2 ω (2) ; a = d τ 1 ω (1)

( b . a . h ) ν = @ ν
“
d τ 2

`
ω (2)

´ β
; h α + d τ 1 ω

χ

(1)

`
u (χ) ( h )

´ α ”

= h ν + d τ 1 ω χ
(1)

u ν
(χ)

( h )

+ d τ 2 ω
χ

(2)
u ν

(χ)

“
h + d τ 1 ω

ψ

(1)
u (ψ) ( h )

”

= h ν +
`
d τ 1 ω (1) + d τ 2 ω (2)

´ χ
u ν

(χ)
( h )

+
“
d τ 2 d τ 1 ω

χ

(2)
ω ψ

(1)

”
u ̺

(ψ)
( h ) ∂ ξ ̺ u ν

(χ)
( ξ )

˛̨
˛
ξ = h

(39)

→
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We rewrite the last relation in eq. 39 to render the structure of sequential differential orders, denoted

[ . ] 0,1,··· , up to second order more transparent

`
b ∼ d b = d τ 2 ω (2)

´ β
,

`
a ∼ d a = d τ 1 ω (1)

´ α
; β ,α = 1 , · · · , G

( b . a . h ) ν = ( b . a . h ) ν0 + ( b . a . h ) ν1 + ( b . a . h ) ν2 + · · ·

( b . a . h ) ν0 = h ν

( b . a . h ) ν1 =
`
d τ 1 ω (1) + d τ 2 ω (2)

´ χ
u ν

(χ)
( h )

( b . a . h ) ν2 = d τ 2 d τ 1

`
ω (2)

´ β `
ω (1)

´ α
L ν

β α ( h )

L ν
β α ( h ) =

`
u (α)

´ ̺
∂ ξ ̺

`
u (β)

´ ν
( ξ )

˛̨
ξ = h

(40)

It follows from eq. 40 that the zeroth and first orders of ( b . a . h ) ν are symmetric under the exchange

ω (2) ↔ ω (1) , whereas the second order is not .

We further note the relation

X ν
̺ β = ∂ ξ ̺

`
u (β)

´ ν
( ξ )

˛̨
ξ = h

= ∂ ξ ̺ ∂ ξ β @ ν ( ξ )
˛̨
˛
ξ = h

= X ν
β ̺

X ν
̺ β = X ν

̺ β ( h )

(41)

→
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From eq. 40 we infer the Lie algebra relation for T G L

L ν
β α ( h ) − L ν

α β ( h ) = f γ
βα

`
u (γ) ( h )

´ ν
−→

`
u (α) ( ξ )

´ ̺
∂ ξ ̺

`
u (β) ( ξ )

´ ν
− ( α ↔ β ) = f γβα

`
u (γ) ( ξ )

´ ν

upon the substitutions : h → ξ ; f γ
βα
→ f γβα

(42)

We assume that coordinates on G are adapted such that the structure constants allow the subs titution

f γ
βα
→ f γβα in eq. 42 and become totally antisymmetric – as discussed in s ubsection 1 b-1

previously ( eqs. 30 - 32 ) .

The induced representation [12-1953] operating on a collec tion of functions ϕ ( ξ ) ; ξ ∈ G

relative to T G L shall be denoted ◮ T G L and the transformations forming the induced

representation as ◮ T a

◮ T a ∈◮ T G L ←→ T a ∈ T G L ; a , ξ ∈ G →

◮ T a ϕ ( ξ ) = ϕ ( a −1 . ξ ) ; with the multiplication

◮ T b ( ◮ T a ϕ ) ( ξ ) = ϕ
`
a −1 . b −1 . ξ

´
= ϕ

`
( b . a ) −1 . ξ

´
= ◮ T b . a ϕ ( ξ )

−→ ◮ T b ◮ T a = ◮ T b . a(43)

→
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Then , using eq. 37 to define

bω = bω
`

◮ T (1) ( ◮ T G L )
´

= ω ν bI ν ; bI ̺ ∈◮ T (1) ( ◮ T G L )(44)

we obtain bI ̺ as a derivation with respect to the Killing fields pertaining to T G L multiplied with −1

bI ̺ = −
`
u (̺) ( ξ )

´ ν
∂ ξ ν ;

h
bI α , bI β

i
= f αβγ bI γ

h
bI α , bI β

i
=

h `
u (α)

´ ̺ `
∂ ξ ̺

`
u (β)

´ ν ´
− ( α ↔ β )

i
∂ ν

(45)

In eq. 45 the derivation operators are implied to act from the left on a function ϕ ( ξ ) , which is

suppressed for simplification of notation .

The expression in brackets in the last relation in eq. 45 agre es with the one derived with respect to

T G L given in eq. 42 , verifying the universal nature of the struct ure constants .

The collection of functions ϕ ( ξ ) is understood to form the Hilbert space over the left and righ t

invariant Haar measure [7-1933] with respect to T G L & Rn S
ϕ ϕ ( ξ )

o
∼ H ( G ) = L 2 [ G ; ( d µ ) Haar ( ξ ) ) ]

allowing both induced representations : ◮ T G L and ◮ T G R

L → R : u (̺) → v (̺) with
`
v (̺) ( ξ )

´ ν
= − ∂ a ̺ @ ν ( ξ , a ) | a=0

(46)

In eq. 46 v (̺) denote the Killing vector fields pertaining to T G R . →
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Invariance of the Haar measure [7-1933] with respect to T G L & R

( d µ ) Haar ( ξ ) = ( d µ ) Haar ( a . ξ ) = (d µ ) Haar ( ξ . b) ; a , b ∈ G(47)

sets the stage for the operators T a ∈◮ T G L & R to become unitary ones in H as defined in

eq. 46 and in turn through the invere exponential mapping usi ng eq. 44 and the definitions in eq. 35

T h ( τ ; ω ) = exp ( τ bω ) ∈ ◮ T G L or R

bω = ω ν bI ν ; bI ν ∈ ◮ T (1) ( ◮ T G L or R ) −→

T h T
†
h

= ¶ |H ; bI ν = − bI †
ν , with † : self adjoint conjugation in H

(48)

In eq. 48 self adjoint conjugation refers to the hermitian sc alar product in H

ζ , ϕ ∈ H : 〈 ζ , ϕ 〉 =

Z
( d µ ) Haar ( ξ ) [ ζ ∗ ( ξ ) ϕ ( ξ ) ](49)

Distinguishing explicitely T a L and T a R , bI ν L and bI ν R as defined for the induced respective

representations in H , eq. 48 is extended below to include their Lie algebra relati ons

T h L T
†
h L

= T h R T
†
h R

= ¶ |H ; bI ν L = − bI †
ν L ; bI ν R = − bI †

ν Rh
bI α K , bI β K

i
= f αβγ bI γ K ; K = L,R ;

h
bI α L , bI β R

i
= 0

(50)

In eqs. 43 - 50 the properties of the induced representations , denoted ◮ T G L & R , relevant for the

following are made explicit. →
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The apparent digression from the derivation of the differen tial equations determining the abelian one

parameter subgroups as shown in eq. 35 in subsection 1 b-1 serves to make intrinsic use of the theorem

by Peter and Weyl [6-1927] , which holds precisely for the ind uced representations ◮ T G L & R .

Now these representations were constructed with the regula r representation of finite groups as

guideline, the latter yielding in a clear deductive way to a c omplete reduction involving all irreducible

linear representations of the finite group G finite in question with the dimension of the group beeing

equal to the multiplicity of its appearances within the regu lar representation. So a similar construction

was sought and found for compact semi-simple Lie groups, ind eed analogous to the regular

representation in what the theorem of Peter and Weyl asserts : the reprentations ◮ T G L & R , for G

a compact semi-simple Lie group can be fully reduced with res pect to finite dimensional irreducible

representations, if each simple factor subgroup and in this way all such representations are recovered

with each representation appearing with a multiplicity equ al to its dimension , allowing both T G L and

T G R to be represented – commuting according to eq. 50 .

This property is thus characteristic or self consistent for complete connections within the ordered

sequence of fibre manifolds considered here, as discussed in subsection 1a-1 , to which we will return in

the next section .

1 b-2 – construction of one parameter abelian subgroups on G

We return to the construction of one parameter abelian subgr oups of G using the transformation group
T G L to be specific , using the notions introduced in eqs. 35 and 37 . →
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The exponential mapping induced by the left multiplication operators T a ∈ T G L

bω = ω ̺ bI ̺ ; bω , bI ̺ ∈ T (1) ( T G L ) −→

exp ( τ bω ) e = h ( τ ; ω ) ∈ G with e = unit element ∈ G
(51)

defines a set of one parameter abelian subgroups of G with the initial condition

h ( τ ; ω ) | τ=0 = e(52)

which involves higher order differentials than third for th e group multiplication functions as specified in

eqs. 9 and 10

( b . a ) ν = @ ν
`
b 1 , · · · b G ; a 1 , · · · , a G

´
(53)

Using the first order differentials ( eqs. 39 - 41 ) we infer the system of differential equations

d

d τ
h ν ( τ ; ω ) = ω ̺

ˆ
∂ a ̺ @ ν ( a , h ( τ , ω ) | a = 0

˜

= ω ̺
h
u ν

(̺)
( h ( τ ; ω ) )

i

u ν
(̺)

( 0 (↔ e ) ) = δ ν
(̺)

; h ν ( τ = 0 ; ω ) = 0 (↔ e )

(54)

In eq. 54
ˆ
∂ a ̺ @ ν ( a , ξ ) | a = 0

˜
= u ν

(̺)
( ξ ) denote the Killing vector fields on G generated

by the first order differentials T (1) ( T G L ) as defined in eqs. 36 and following . →
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We rewrite the differential equation ( eq. 54 ) suppressing t he argument ω of the one parameter family

coordinates h ν ( τ ; ω ) , which plays a parametric important role, for simplicity of notation

h ν ( τ ; ω ) → h ν ( τ ) −→

d

d τ
h ν ( τ ) = ω ̺ u ν

(̺)
( h ( τ ) ) ;

d

d τ
h ν ( 0 ) = ω ν ; h ν ( 0 ) = 0

(55)

Conversely let h ν ( τ ) satisfy the differential equations and initial conditions in eq. 55 .

Then we consider the function associated with the group prod uct p ( τ , ϑ ) ∼ ( h ( τ ) . h ( ϑ ) )
p ν ( τ , ϑ ) = @ ν ( h ( τ ) ; h ( ϑ ) ) −→

2
4 p ν ( τ + d τ , ϑ )

− p ν ( τ , ϑ )

3
5

= @ ν ( d τ ω ; p ( τ , ϑ ) )

= d τ ω ̺ u ν
(̺)

( p ( τ , ϑ ) )

= d τ ω ̺ u χ

(̺)
( h ( τ ) ) ∂ a χ @ ν ( a ; h ( ϑ ) ) | a=h ( τ )

(56)

→
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Eq. 56 gives rise to the differential equations for p ν ( τ , ϑ ) ( = ( h ( τ ) . h ( ϑ ) ) ν )

d

d τ
p ν ( τ , ϑ ) = ω ̺ u ν

(̺)
( p ( τ , ϑ ) )

= ω ̺ u χ

(̺)
( h ( τ ) ) ∂ a χ @ ν ( a ; h ( ϑ ) ) | a=h ( τ ) −→

d

d τ
p ν ( 0 , ϑ ) = ω ̺ u ν

(̺)
( h ( ϑ ) ) ; p ( 0 , ϑ ) = h ( ϑ )

(57)

We compare differential equations and initial conditions f or p ν ( τ , ϑ ) in eq. 57 with the ones for

q ν ( τ , ϑ ) = h ν ( τ + ϑ )

d

d τ
q ν ( τ , ϑ ) = ω ̺ u ν

(̺)
( q ( τ , ϑ ) )

d

d τ
q ν ( 0 , ϑ ) = ω ̺ u ν

(̺)
( h ( ϑ ) ) ; q ( 0 , ϑ ) = h ( ϑ )

(58)

which are both identical . It follows →
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by the uniqueness of solutions to a system of first order diffe rential equations subject to the same initial

conditions

p ( τ , ϑ ) = q ( τ , ϑ ) ←→ h ( τ ) . h ( ϑ ) = h ( τ + ϑ )

in the domain of validity of solutions to eqs. 55 - 58 .
(59)

From the structure of all one parameter families h ν ( τ ; ω ) and the first order differentsal equations

they satisfy – eqs. 55 - 59 – at least for small values of τ it follows that first in the neighbourhood of the

unit element group elements can be uniquely parametrized by the tangent vectors

ω = ( ω 1 , · · · , ω G ) and using these ’normal’ coordinates the convolution funct ions

@ ν ( ω (1) ; ω (2) ) =
`
h ( ω (1) ) . h ( ω (2) )

´
once threefold differentiability is assumed –

become (real -) analytic functions of the special tangent ve ctor variables ω (1) , ω (2) through the

exponential mapping

@ ν ( ω (1) ; ω (2) ) =

P ∞
m1 ···mG ; n1 ··· nG=0

“
am1,···,mG ; n1,···,nG

”
×

×
“
ω1

(1)

”m1
· · ·

“
ωG

(1)

”mG
“
ω1

(2)

”n1
· · ·

“
ωG

(2)

”nG
: convergent in a neighbourhood of e

(60)

From here G emerges as its universal covering group .

This ends the present subsection ( 1 b-2 ) and section ( 1 b ) .

– p. 30



28

1 c - Complete connections : regularity conditions from the f ull collection of fibre manifolds
as defined in subsection ( 1 a-1 )

With the complete structure of analytic coordinates and the property of universal covering group with

respect to ’path homotopy’ of semisimple compact Lie groups G fully specified

in sections ( 1 a ) , ( 1 b ) and subsections ( 1 b-1 ) , ( 1 b-2 )
and the selction of graded fibre manifolds in subsection ( 1 a-1 )

we return to the properties of complete connections , introd uced at the beginning of section 1 . The

words used in modern mathematics to describe complete conne ctions are : connections regular for the

complete ring of representations of G [18-1968] .

In the following G shall be generically a compact simple Lie group, specificall y SU3 c and D a

general irreducible representation of G

G =

8
<
:

compact simpe Lie group

SU3 c specifically
; D = D | G ∈ R = R| G

R = complete ring generated by finite dimenional, unitary , irre ducible representations of G

(61)

Following the notation of eqs. 1 - 6 →
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we denote by Lie (D ) a basis of antihermtian dim (D ) × dim (D ) matrices satisfying the Lie

algebra commutation relations pertaining to D

( d r (D ) ) αβ → d r (D ) → d r = − d †
r ; r = 1 , · · · , dim G ∈ Lie (D )

[ d p , d q ] = f pqr d r : f pqr =

8
<
:

real, totally antisymmetric

structure constants of G

α , β = 1 , · · · , dim (D )

(62)

Now lets assume the situation as defined in eq. 51 , where the on e parameter subgroup

h ( τ ; ω ) ∈ G was constructed through the exponential mapping

bω = ω r bI r ; bω , bI r ∈ T (1) ( T G L ) ;
h

bI p , bI q
i

= f pqr bI r

−→ exp ( τ bω ) e = h ( τ ; ω ) ∈ G with e = unit element ∈ G
(63)

of which the tangent vector at e is ω = ( ω1 , · · · , ω G ) , as shown again in eq. 63 , with the

transformation group T G L , i.e. left multiplication on G . Then the finite transformation matrix

D ( h ( τ ; ω ) ) ∈ D is obtained through the exponential mapping

D ( h ( τ ; ω ) ) = exp ( τ ω r d r ) ∈ D ∀ D ∈ R(64)

This anchors the meaning of eqs. 3 - 6 as is necessary to analyz e complete connections , next . →
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1 c-1 – Complete connections in detail

At this stage we come back to the connection one form as defined in eq. 2 , expanding on the regularity

conditions implied by the adopted complete fibre manifolds – in subsection 1 a-1 – as they give rise to

the complete ring of representations ∪ D = R , defined in eq. 61
`
W (1) (D )

´
αβ

= W r
µ ( x ) ( d r (D ) ) αβ d x µ

W r
µ ( x ) : real ; r = 1, · · · , G = dim ( G )

`
W (1) (D )

´
αβ

→ α , β = 1 , · · · , D = dim (D )

W (1) (D ) → W (1) ( | D
´

; D ∈ R ( unrestricted )

( d r (D ) ) αβ → d r (D ) → d r ∈ Lie (D )

(65)

The brackets around D specifying the chosen representation forming the connecti on 1-form

W (1) ( | D
´

in eqs. 2 and 65 shall indicate that this suffix may be suppress ed in the following for

simplicity of notation.

The argument x and the differentials d x µ ; µ = 0, 1, 2, 3 refer to 1 + 3 dimensional uncurved

space-time as base-space of the connection 1-form . Eventua lly the base space can be continued to its

Euclidean version . The conditions in eq. 65 define a complete classical connection together with its

regularity conditions . →
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In order to maintain exact local gauge invariance , imposed h ere, complete connections are understood

to form a collection of such, denoted C

C =
S
W

`
W (1)

´
complete connections(66)

invariant under local gauge transformations to which we tur n next.

Let F ( x ) be a classical field quantity – with arbitrary spin, untouche d by charge like gauges –

transforming according to the local irreducible represent ation Ω ( x ) ∈ D ( G )

Ω ( x ) : F ( x ) → F Ω ( x ) = Ω ( x ) F ( x )

F α → F Ω
α = Ω αβ F β ; Ω ∈ D

(67)

In eq. 67 and subsequently we use matrix notation and also sup press the local argument x , whenever

clarity of notation allows .

Then the (D adapted ) covariant derivative 1-form is determined from the relatio ns, derivatives meant

to act on F , F Ω from the left

d x µ δ αβ ∂ µ = d x µ ¶ D× D ∂ µ = ∂

Ω : D (1) = ∂ + W (1) → D Ω (1) = ∂ + W Ω (1) with

D Ω (1) F Ω = ΩD (1) F = ΩD (1)
`

Ω −1 F Ω
´

(68)

In eq. 68 the usual derivative symbol d is replaced by ∂ to distinguish it from the matrices d r . →

– p. 34



32

From eq. 68 the inhomogeneous transformation law for connec tions follows

W Ω (1) = Ω
`
∂ + W (1)

´
Ω −1 = ΩD (1) Ω −1(69)

Performing the inverse of the exponential mapping or equiva lently for infinitesimal Ω − ¶ we obtain

δ ω W (1) = −
`
∂ ω +

ˆ
W (1) , ω

˜ ´
in components →

− δ ω W r
µ d r = ∂ µ ω r d r + f pqr W

p
µ ω

q d r ∀ D ∈ R
(70)

Dealing with complete connections, the common factor d r can be projected out and eq. 70 becomes

− δ ω W r
µ = ∂ µ ω r + f rpq W

p
µ ω

q =
“
∂ µ δ rq +

`
W ad

µ

´
rq

”
ω q

`
W ad

µ

´
rq

= W p
µ ( ad p ) rq ; ( ad p ) rq = f rpq

(71)

In turn if we identify ω r ( x ) ∼ F r ∈ Ad ( G ) as a field quantity transforming under the adjoint

representation of G the right hand side of the first relation in eq. 71 represents i ts covariant derivative

for a given connection W (1) with respect to this representation . The above local appare nt reduction

of both gauge connections and field strengths , to allow their full characterization through the adjoint

representation is in particular for complete connections i ncorrect, as a consequence of nonlocal gauge

co- and invariance emerging through finite distance paralle l transport, as discussed in the next

subsection ( 1 c-2 ) . Here we continue defining local field strengths . →
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From a complete connection relative to the irreducible loca l gauge group representation D ( G ) as

defined in eqs. 65 ( - 71 ) the D associated field strengths obtain through the two form

W (2) (D ) → W (2) = ∂ W (1) +
`
W (1)

´ 2

`
W (2)

´
αβ

= 1
2
W r

µν ( d r ) αβ d x µ ∧ d x ν ; d r ∈ Lie (D ) →

W
(2)
µν = ∂ µW

(1)
ν − ∂ ν W

(1)
µ +

h
W

(1)
µ , W

(1)
ν

i

W r
µν = −W r

νµ = ∂ µW r
ν − ∂ ν W r

µ + frpq W
p
µ W

q
ν

W (2) (D ) ≡ B (2) (D ) ; W r
µν ≡ B r

µν
components of field strengths

independent of D

(72)

In the last relation in eq. 72 we have identified the curvature two form and its D − independent

components with the letter B for field strengths pertaining t o charge like gauges. d x µ ∧ d x ν

denotes the antisymmetric de Rham wedge product for (2) → (k)− forms [19-1931] .

We note the local, covariant gauge transformation properti es of F (2) following from eqs. 69 and 72

W (1) → W Ω (1) = Ω
`
∂ + W (1)

´
Ω −1 = ΩD (1) Ω −1

˛̨
D
−→

B (2) → B Ω (2) = ΩB (2) Ω −1
˛̨
D

; Ω ( x ) ∈ D
(73)

→
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The Bianchi identity, only local consequence of a system of l ocal connections and field strengths

In a system as specified in the (sub-) title above one identity follows, generalising the homogeneous

Maxwell equations in QED

B (3) = ∂ B (2) +
ˆ
W (1) , B (2)

˜ ˛̨
D

≡ 0

= ∂ ∂ W (1) +

2
4

ˆ `
∂ W (1)

´
, W (1)

˜
+

ˆ
W (1) ,

`
∂ W (1)

´ ˜

+
h
W (1) ,

`
W (1)

´ 2
i

3
5

←→ B (2) (D ) → W (2) = ∂ W (1) +
`
W (1)

´ 2

(74)

The ( Bianchi - ) identity in eq. 74 holds independently of whe ther other matter fields, e.g. q , q are

included with finite masses or not . However the identity only holds if F (2) (D ) actually derives from

connections , and furthermore if allowed connections do sat isfy regularity conditions, here those

appropriate for complete such .

This ends subsection 1 c-1 and we turn towards nonlocal properties of complete connect ions in the next

subsection 1 c-2 .
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1 c-2 – Parallel transport with complete connections

Here I follow the outline in ref. [20-2004] a .

We first establish the relation of notation between ref. [20- 2004], Appendix A.3 op.cit.: hep-ph/0405032v1,

pp. 42 - 52 , eqs. 93 - 127 , to the present work : subsection 1 c-1 , eqs. 65 - 74 .

In ref. [20-2004] only the adjoint representation is discus sed which implies

present work ref. [20-2004]

D = Ad ( G ) ABC → qpr

1
i
FA=r B=p C=q = f rpq = ( ad p ) rq

(W µ ) A=r B=q =
`
W ad

µ

´
rq

= W p
µ ( ad p ) rq

V µ ( x , D = p ) = −W p
µ ( x )

X ( x , B = r ) = F r ( x )

F [ µν ] ( x , D = r ) = W r
µν ( x )

(75)

a
In ref. [20-2004] I called instead of ’complete connections over the complete ring generate by

finite dimenional, unitary , irreducible representations o f G ’ as defined here in eq. 61 :

’universal bundle’ . However the notion of ’universal bundl e’ in the mathematical literature

is reserved for another structure. I thank Martin Lüscher, for pointing this error out to me .

It applies to my nomenclature , not to the derivations . →
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The identifications in eq. 75 shall suffice here, they allow to deduce all further such.

We return to general complete connections based on a given re presentation D ( G ) as specified in

subsection 1 c-1 .

Parallel transport – a priori along a general curve C – in the base space B = { x } – leads to the

path ordered exponential integral of a given connection 1-f orm denoted W (1)( x )
˛̨
D ( G )

as

defined in eq. 65 out of the collection C of complete connections ( eq. 66 ) denoted U = U αβ ∈ D

U
“
x

C
← y

”
= P exp

„
−

Z

C

W (1) ( x )

«
→ ( U ( x ,C , y ) ) αβ ∈ D ( G )

C = C { x } : x = x ( s ) ; τ ≥ s ≥ 0 ; s : path parameter

x ( s = τ ) = x ; x ( s = 0 ) = y

(76)

In eq. 76 P denotes matrix ordering along the path C since W (1) is matrix valued
`
W (1) (D )

´
αβ

= W r
µ ( x ) ( d r (D ) ) αβ d x µ(77)

However since we consider here classical configurations the quantities W r
µ ( x ) are commuting for

arbitrary x . We will only use straight line curves C , which would leave lo cal field variables commuting

only for space like straight line paths , except for the deriv ation of the differential equation for

U ( x ,C , y ) , which would also be true for noncommuting field variables, n ext . →
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The differential equation derives from the parallel transp ort and has its roots in expanding on the

meaning of eq. 70. We do not explicitely do so here . We assume t hat the general path C , as specified by

the functions x µ ( s ) ( eq. 76 ) , which respect all regularity conditions and are kn own functions also

beyond the specific boundary value τ described in eq. 76 .

Then it follows for τ → τ + d τ

U → U ( τ )

U ( τ ) + d τ
d

d τ
U =

`
¶ − d τ v µ ( τ )W r

µ ( y ( τ ) ) d r
´
U −→

d

d τ
U ( τ ) = − ( v µW µ ) ( τ ) U ( τ ) ;

2
6664

v µ =
d

d τ
x µ ( τ )

W µ = W r
µ d r = W µ ( τ )

3
7775

U ( τ = 0 ) = U y = ¶

(78)

The regularity conditions imposed on complete connections go over →
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to the quantities U ( τ ) → U
“
x

C
← y

”
if and only if all paths are chosen to respect these

conditions forming a network, i.e. the functions x ( s ) are chosen accordingly, e.g. to be real analytic

functions or n-fold differentiable ones of the argument s .

If two paths C 1 and C 2 can be joined without reduction of imposed regularity condi tions individually

to a combined path C2+1 then the associated unitary operators can be combined and ob ey the

composition law

U

„
x 2

C 2← x 1

«
U

„
x 1

C 1← y

«
= U

„
x 2

C 2+1
← y

«
(79)

in a natural way. The best known case, whereby parallel trans port is called holonomy ( whence applied to

a field F β at y ) for a closed path x→ x end = y .

But we leave the paths open and consider a local gauge transfo rmation as defined in eq. 69

W Ω (1) ( x ) = Ω ( x )
`
∂ x + W (1) ( x )

´
Ω −1 ( x ) = ΩD (1) Ω −1 ( x )(80)

Then it follows

U
“
x

C
← y ; W Ω (1)

”
= P exp

„
−

Z

C

W Ω (1)

«

||

Ω ( x ) U
“
x

C
← y ; W (1)

”
Ω −1 ( y )

(81)

→
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The vertical relation in eq. 81 is repeated below

U
“
x

C
← y ; W Ω (1)

”
= Ω ( x ) U

“
x

C
← y ; W (1)

”
Ω −1 ( y )

W Ω (1) ( z ) = Ω ( z )
`
∂ z + W (1) ( z )

´
Ω −1 ( z ) = ΩD (1) Ω −1 ( z )

Ω ( x ) , Ω ( y ) , Ω ( z ) ∈ D ( G ) ∀ D and ∀ complete W (1)
˛̨
D

(82)

The relation on the first line of eq. 82 demonstrates that comp lete connections – by splitting the

arguments of Ω ( x ) from Ω ( y ) for all D ( G ) – allow to reconstruct the full global structure of G.

Hence they do not admit singularities at finite discrete norm al subgroups of G a (semi-) simple compact

group , as e.g. the center Z 3 of SU3 c .

The eventual conflicts with regularity conditions respecte d in lattice formulations of QCD are based on

the properties derived for complete connections, maintain ing associated extended gauge invariance, in

sections 1 a - 3 c and are the subject of the next section 1 d .

This concludes subsection 1 c-2 and section 1 c .
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1 d - Complete connections , regularity conditions in potent ial conflict with lattice QCD –
selected specific points

We shall enumerate specific points below

1) the Bianchi identity ( here defined in eq. 74 ) repeated below

B (3) = ∂ B (2) +
ˆ
W (1) , B (2)

˜ ˛̨
D
≡ 0

= 1
6

0
BBB@

∂ ν B ̺σ + [W ν , B ̺σ ]

+ ∂ σ B ν̺ + [W σ , B ν̺ ]

+ ∂ ̺ B σν + [W σ , B ν̺ ]

1
CCCA

αβ

d x ν ∧ d x ̺ ∧ d x σ

W (1) = W µ d x µ ; B (2) = 1
2
B µν d x µ ∧ d x ν

B (3) = 1
6
B µν̺ d x µ ∧ d x ν ∧ d x ̺

0
BB@

W µ

B µν

B µν̺

1
CCA

αβ

=

0
BB@

W r
µ

B r
µν

B r
µν̺

1
CCA ( d r ) αβ ∈ Lie (D )

(83)

→
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1) (continued)

From eq. 83 we infer

1
2
ε µν̺σ ( ∂ ν B ̺σ + [W ν , B ̺σ ] ) ≡ 0 ; eB µ ν .

= 1
2
ε µν̺σ B ̺σ

−→ ∂ ν eB µ ν +
h
W ν , eB µ ν

i
≡ 0 ∀ D ( G )

(84)

It is worth noting that for the time-space signatures (+−−−) as well as (−+ ++) and

independent of the sign of ε 0123 ± 1 we have contrary to d=4 Euclidean space

ε µν̺σ = − ε µν̺σ −→
eeB µν = −B µν(85)

The structure of eq. 75 implies that the Bianchi identity is i ndeed an identity, provided the field

strengths are derived from a connection , and complete conne ctions then imply regularity

conditions for all Lie algebra valued such associated with a ny one out of all representations

D ( G ) , not to be obstructed by singular connections for which the i dentity may be violated

minimally in one singular point . It is this regularity featu re, which is at least not clearly satisfied in

lattice QCD or versions thereof e.g. without quark flavors. a

→

a
I am indepted to Uwe-Jens Wiese for his patience and many disc ussions, in which he brought

up the question as to fulfilment of Bianchi identities in latt ice QCD .
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2) complete connections and boundary conditions for finite t ime ∆ t = β = 1 / T thermal

path integrals with respect to gauge bosons

Subsection 1 c-2 is conceived particularly to assess the boundary condition s between two

spacelike parallel planes with constant time each, in the re st system of a thermal equilibrium

ensemble, set apart by ∆ t = β = 1 / T with T denoting the temperature, and at finite but

asymptotically large space volume V . The Gibbs potential is then associated with the generating

functional for fixed intensive variables β , χ a = µ a β ; µ a : chemical potentials

Z ( β , µ a , V ) ≃ | V → ∞ tr
`

exp
ˆ
− β H +

P
b χ b N b

˜ ´

with χ a = µ a / T ; Z ∼ e g V ; g = g ( β , χ a ) = β p
(86)

In eq. 86 H , N a ; a = 1, · · · , n fl denote the conserved operators for energy and net charges

respectively , and p the pressure .

Just in order to keep most simple, precise and correct notion s, the number of exactly conserved

charges in the absence of all electroweak interactions and l eptons and scalar elementary fields ,

for n fl of quarks (and antiquarks) with nondegenrate and nonzero ma sses is equal to n fl .

A formally equivalent way to calculate Z as defined in eq. 86 is to use imaginary time and

perform a path integral weighted as exp (− S β ) using the Euclidean form of the time rstricted

action in the associated Euclidean field theory . An excellen t expos é of thermodynamic notions in

the environment →
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of local fields can be found in ref. [21-2002] .

Now we go back to subsection 1 c-2 and recall eq. 82 below

U
“
x

C
← y ; W Ω (1)

”
= Ω ( x ) U

“
x

C
← y ; W (1)

”
Ω −1 ( y )

W Ω (1) ( z ) = Ω ( z )
`
∂ z + W (1) ( z )

´
Ω −1 ( z ) = ΩD (1) Ω −1 ( z )

Ω ( x ) , Ω ( y ) , Ω ( x ) ∈ D ( G ) ∀ D and ∀ complete W (1)
˛̨
D

(87)

The relation on the first line of eqs. 82 , 87 demonstrates that complete connections – by splitting the

arguments of Ω ( x ) from Ω ( y ) for all D ( G ) – allow to reconstruct the full global structure of G.

Hence ensuing regularity conditions, based on the properti es derived for complete connections,

maintaining associated extended gauge invariance can only tolerate periodic connections modulo gauge

transformations , from the space time points x = ( 0 , ~x ) → x + ∆ t = ( ∆ t , ~x )

W (1) ( x + ∆ t ) = W Ω(1) ( x ) = Ω
`
∂ + W (1)

´
Ω −1 ( x )

for a suitably general set of gauge transformations Ω ( x ) ∈ any D ( G )
(88)

W Ω (1) is defined in eq. 69 . The generalized boundary conditions in e q. 88 maintain periodicity of

(fully) gauge invariant local quantities . →
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Furthermore the quantity U
“
x + ∆ t

C
← x ; W (1)

”
transforms under a local gauge

tranformation as
U

“
x + ∆ t

C
← x ; W (1)

”
→

U
“
x + ∆ t

C
← x ; W Ω (1)

”
=

= Ω ( x + ∆ t ) U
“
x + ∆ t

C
← x ; W (1)

”
Ω −1 ( x )

with Ω ( x + ∆ t ) 6= Ω ( x ) for general allowed gauge transformations

(89)

As a consequence what is known as the trace of the Polyakov loo p

Tr U
“
x + ∆ t

C
← x ; W Ω (1)

”
=

= Tr Ω −1 ( x )
“

Ω ( x + ∆ t ) U
“
x + ∆ t

C
← x ; W (1)

” ”

6= Tr U
“
x + ∆ t

C
← x ; W (1)

”
(90)

is not gauge invariant within the conditions imposed by comp lete connections .

The consequences from eqs. 88 - 90 are in conflict with the cond itions imposed on lattice QCD applied to

the thermodynamical environment .
Specific non-complete fiber spaces ( not all manifolds ) were d efined and discussed in ref. [22-1991] .

The general option therein can be adapted to complete connec tions , notwithstanding the alternative

conjectures suggested by the authors . This ends section 1 d a nd all of chapter 1 .
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2 - Outlook

1) Gauge boson pair condensation

Some time ago I set out to study the consequences of gauge boso n pair condensation as a

coherence phenomenon of pairs and eventual multiples of gau ge bosons in QCD [23-2010] ,

[24-1979] . This involved also collaborations with Harald F ritzsch, Luzi Bergamin, Wolfgang Ochs

and Sonia Kabana . With the latter we investigate the phase st ructure of QCD especially at

vanishing chemical potentials [25-2010] and thereby the re levance of respecting regularity

conditions reveals an eventual disagreement with results o f thermal studies in lattice QCD .

2) The study presented here contains recent results as chara cteristic for ’complete connections’ .

3) This part of the discussion is more or less final, but there i s some way to go to an analytical

derivation of the phases of QCD .

— Thank you —

– p. 48



rmain-1

References
[1] Historical and textbook references to ’Continous transfor mation groups and differential geometry’

[1-1893] S. Lie and G. Scheffers, ’Vorlesungen über contin uierliche Gruppen, mit geometrischen und

anderen Anwendungen’, Leipzig 1893 .

[2-1890] W. Killing, ’Die Zusammensetzung der stetigen end lichen Transformationsgruppen’,

Mathematische Annalen 31 (1888) 252-290; 33 (1888) 1-48; 34 (1889) 57-122; 36 (1890) 161-189 .
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