The seesaw mechanism for masses of three light and three heavy Majorana neutrino fields.

Peter Minkowski

Albert Einstein Center for Fundamental Physics - ITP, University of Bern

Abstract

The reasons for nonvanishing light neutrino masses brought with them the need for an explanation of their smallness, relative to masses of charged fermion fields in the standard model. The associated ideas and arguments will be presented and compared with the gradual clarification of light neutrino and antineutrino oscillations as derived from the solar neutrino deficit, the antineutrino long baseline reactor experiments and the atmospheric deficit of muon neutrinos and antineutrinos produced by cosmic ray collisions in the earth’s atmosphere. The name for the so derived theoretical explanation: ”seesaw mechanism” is due to Tsutomu Yanagida.
List of contents

1 Remembering the beginnings of cognition of neutrino physics 3
2 One standard model family of quarks, antiquarks and leptons 5
 in a left chiral Majorana basis
1 - Remembering the beginnings of cognition of neutrino physics

Figure 1: Wolfgang Pauli (1900–1958) in Vienna 1933.

Fig. 1: Wolfgang Pauli in 1933 in Vienna, photograph by the courtesy of Rudolf Mössbauer.
The way I learned about the 'beginnings' was, that Wolfgang Pauli in 1930 wrote a letter to the participants of a meeting on nuclear physics in Tübingen in Germany.

Brief an die Gruppe der "Radioaktiven" 1930

Physikalisches Institut
der Eidg. Technischen Hochschule
Zürich

Zürich, 4. Dez. 1930

Liebe Radioaktive Damen und Herren!

Nun handelt es sich später darum, welche Kräfte auf die Neutonen wirken. Das wahrscheinlichste Modell für das Neutron scheint mir aus wellenmechanischen Gründen dieses zu sein, daß das ruhende Neutron ein magnetischer Dipol von einem gewissen Moment μ ist. Die Experimente verlangen wohl, daß die ionisierende Wirkung eines solchen Neutrons nicht größer sein kann als die eines γ-Strahls, und dann darf μ wohl nicht größer sein als \(μ \leq (10^{-13}) \). Ich traue mir persönlich aber nicht, etwas über diese Idee zu publizieren, und wende mich erst vertrauensvoll an euch, liebe Radioaktive, mit der Frage, wie es um den experimentellen Nachweis eines solchen Neutrons stände, wenn dieses ein ebensolches oder etwa 10mal größeres Durchdringungsvermögen besitzen würde wie ein γ-Strahl. . . .

W. Pauli

1Heute Paulisches Ausschließungsprinzip
2Heute Neutrinos
Here I follow a presentation in Venice, in 2005 at a workshop: 'Neutrino telescopes in Venice' [1-2005].

The time gap illustrates that frail plants may grow slowly.

Neutrino oscillations

a historical overview and its projection

Peter Minkowski

ITP, University of Bern, Switzerland

Venice, 22. February 2005

These ideas developed first over the time of my stay at Caltech 1973-1976, when we collaborated with Harald Fritzsch and Murray Gell-Mann on unifying charge-like gauge theories beyond the standard model.
Topics

1 Base fermions and scalars in SO10
 neutrinos are unlike charged fermions - Ettore Majorana

2 Neutrino 'mass from mixing' in vacuo and matter
 neutrinos oscillate like neutral Kaons (yes, but how ?) - Bruno Pontecorvo

3 Some perspectives
Charged fermions are not like neutrinos [1]

We shall consider - 'pour fixer les idees' - 3 fermion families in the (left-) chiral basis, forming a substrate for the local gauge group

$$\text{SL (2,C) [or SO (1,3)]} \times \text{SO10}$$

$$\begin{pmatrix}
 u^1 & u^2 & u^3 \\
 d^1 & d^2 & d^3
\end{pmatrix}
\begin{pmatrix}
 v \\
 l^-
\end{pmatrix}
\begin{pmatrix}
 u^\dagger & u^\dagger & u^\dagger \\
 d^\dagger & d^\dagger & d^\dagger
\end{pmatrix}
$$

$\gamma_\gamma$$

$F = e, \mu, \tau$ \quad \rightarrow Fig. 1

Key questions → why 3? why SO10?

I shall cite two sentences from ref. [1-2-1937]:

"Per quanto riguarda gli elettroni e i positroni, da essa (via) si può veramente attendere soltanto un progresso formale ...
Vedremo infatti che è perfettamente possibile costruire, nella maniera più naturale, una teoria delle particelle neutre elementari senza stati negativi."

("As far as electrons and positrons are concerned from this (path) one may expect only a formal progress ... We will see in fact that it is perfectly possible to construct, in the most general manner, a theory of neutral elementary particles without negative states.”)

... upon normal ordering.
But the real content of the paper by E. M. (1937) is in the formulae, exhibiting the 'oscillator decomposition' of spin 1/2 fermions as seen and counted by gravity, 1 by 1 and doubled through the 'external' SO2 symmetry associated with electric charge.

The left chiral notation shall be

\[
(f \, k) \, \hat{\gamma}_{F} ; \hat{\gamma} = 1, 2 : \text{spin projection}
\]

(1)

\[
F = I, II, III : \text{family label}
\]

\[
k = 1, \cdots, 16 : \text{SO10 label}
\]

\[\text{[2]}\] P. A. M. Dirac, Proceedings of the Cambridge Philosophical Society, 30 (1924) 150. Paul Dirac shall be excused for starting the count at 2 for 'elettrone e positrone'.
Let's call the above extension of the standard model the 'minimal nu-extended SM'.

\[
\begin{pmatrix}
\bullet & \bullet & \bullet & \nu & | & \mathcal{N} & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \ell & | & \widehat{\ell} & \bullet & \bullet & \bullet
\end{pmatrix}^\gamma
\]

\[F = e, \mu, \tau\]

(2)

\[
\begin{pmatrix}
\nu & \mathcal{N} \\
\ell & \widehat{\ell}
\end{pmatrix}^\gamma
\]

\[F = e, \mu, \tau\]

\[\to\]

The right-chiral base fields are then associated to

\[
(f^*_k)^\alpha = \varepsilon^{\alpha\gamma} \left[(f^*_k)^\gamma \right]^* F
\]

(3)

\[
(\varepsilon = i \sigma_2)^{\alpha\gamma} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

The matrix \(\varepsilon \) is the symplectic \((Sp(1)) \) unit, as implicit in Ettore Majorana’s original paper [1].

The local gauge theory is based on the gauge (sub-) group

(4)

\[
SL(2,C) \times SU3_c \times SU2_L \times U1_Y
\]

... why 'Natures way ... our way' ? why 'tilt to the left' ? we sidestep a historical overview here!
On the apparent likeness of local gauges and their underlying physics

’natures way ... our way’

Peter Minkowski
Institute for Theoretical Physics, University of Bern

adapted and extended from: Miami, December 2005

→ Beijing, September 2007
1 a) Yukawa interactions and mass terms

The doublet(s) of scalars are related to the 'tilt to the left'.

\[
\begin{pmatrix}
\nu & N \\
\ell & \hat{\ell}
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
\varphi^0 & \Phi^+ \\
\varphi^- & \Phi^0
\end{pmatrix} = z
\]

(5)

The green entries in eq. (4) denote singlets under SU\(_2^L\).

The quantity \(z\) is associated with the quaternionic or octonionic structure inherent to the \((2, 2)\) representation of SU\(_2^L \otimes SU^2^R\) (beyond the electroweak gauge group) \[4\].

The Yukawa couplings are of the form (notwithstanding the quaternionic or octonionic structure of scalar doublets)

\[
\mathcal{H}_Y = \left[(\varphi^0)^*, (\varphi^-)^* \right] \lambda_{F'} F \times \\
\times \left\{ \varepsilon_{\dot{\gamma}\dot{\delta}} \mathcal{N}_{F'}^{\dot{\gamma} \dot{\delta}} \begin{bmatrix} \nu^\dot{\gamma} \\ \ell^\dot{\gamma} \end{bmatrix}_F \right\} + \text{h.c.}
\]

\[\mathcal{N}^{\dot{\gamma} F'} = \varepsilon_{\dot{\gamma}\dot{\delta}} \mathcal{N}^{\dot{\gamma} \dot{\delta}}_{F'} \quad ; \quad \varepsilon_{\dot{\gamma}\dot{\delta}} = \varepsilon_{\dot{\gamma}\dot{\delta}} = \varepsilon_{\gamma\delta}\]

The only allowed Yukawa couplings by $SU_2_L \otimes U_1 \gamma$ invariance are those in eq. (6), with arbitrary complex couplings $\lambda_{F'} F$.
Spontaneous breaking of $SU_2 \otimes U_1$ through the vacuum expected value(s)

\[
\langle \Omega | \begin{pmatrix} \varphi^0 & \Phi^+ \\ \varphi^- & \Phi^0 \end{pmatrix} (x) | \Omega \rangle =
\]

(7)

\[
= \langle z(x) \rangle = \begin{pmatrix} v_{ch} (v_{ch}^{u}) & 0 \\ 0 & v_{ch} (v_{ch}^{d}) \end{pmatrix}
\]

\[
v_{ch} = \frac{1}{\sqrt{2}} \left(\sqrt{2} G_F \right)^{-1/2} = 174.1 \text{ GeV}
\]

independent of the space-time point x^a.

\footnote{The implied parallelizable nature of $\langle z(x) \rangle$ is by far not trivial and relates in a wider context including triplet scalar representations to potential (nonabelian) monopoles and dyons. (no h.o.)}
induces a neutrino mass term through the Yukawa couplings $\lambda_{F'F}$ in eq. (6)

$$F' \mathcal{N} \nu_F = \mathcal{N} \gamma_{F'} \nu_{F'} = \nu_{F'} \mathcal{N} \gamma_{F'}$$

(8)

$$\mu_{F'F} = \nu_{ch} \lambda_{F'F}$$

$$\rightarrow \mathcal{H}_\mu = F' \mathcal{N} \mu_{F'F} \nu_F + h.c. = \nu^T \mu^T \mathcal{N} + h.c.$$

The matrix μ defined in eq. (8) is an arbitrary complex 3×3 matrix, analogous to the similarly induced mass matrices of charged leptons and quarks. In the setting of primary SO10 breakdown, a general (not symmetric) Yukawa coupling $\lambda_{F'F}$ implies the existence in the scalar sector of at least two irreducible representations $(10) \oplus (126)$\(^a\), yet the complex selfdual 126 is special.

\(^a\) key question \rightarrow a ’drift’ towards unnatural complexity ? It becomes even worse including the heavy neutrino mass terms : 256 (complex) scalars.

neutrinos oscillate like neutral Kaons (yes, but how ?) - Bruno Pontecorvo

The special feature, pertinent to (electrically neutral) neutrinos is, that the \(\nu - \) extending degrees of freedom \(\mathcal{N} \) are singlets under the whole SM gauge group \(G_{SM} = SU_3^c \otimes SU_2^L \otimes U_1^Y \), in fact remain singlets under the larger gauge group \(SU_5 \supset G_{SM} \). This allows an arbitrary (Majorana-) mass term, involving the bilinears formed from two \(\mathcal{N} \)-s.

In the present setup (minimal \(\nu \)-extended SM) the full neutrino mass term is thus of the form

\[\rightarrow \]

\(a \) We will come back to the clearly original idea in 1957 of Bruno Pontecorvo [12] - but let me first complete the 'flow of thought' embedding neutrino masses in SO10.
\[\mathcal{H}_M = \frac{1}{2} \begin{bmatrix} \nu \end{bmatrix} M \begin{bmatrix} \nu \\ \mathcal{N} \end{bmatrix} + h.c. \]

\[M = \begin{pmatrix} 0 & \mu^T \\ \mu & M \end{pmatrix} ; \quad M = M^T \rightarrow M = M^T \]

Again within primary SO10 breakdown the full \(M \) extends the scalar sector to the representations \((10) \oplus (120) \oplus (126)\) \(^a\).

\(^a\) It is from here where the discussion – to the best of my knowledge – of the origin and magnitude of the light neutrino masses (re-) started in 1974 as documented on the next slide.

and for 'our world, tilted to the left'

Correct derivations were subsequently documented in [8] - [11]

We resume the discussion of the mass term in eq. (9). Especially the \(0\) entry needs explanation. It is an exclusive property of the minimal \(\nu\)-extension assumed here.

Since the ’active’ flavors \(\nu_F\) all carry \(I^w_{3w} = \frac{1}{2}\) terms of the form

\[
\frac{1}{2} F' \nu [\chi F' F] \nu_F = \frac{1}{2} \nu^T [\chi] \nu ; \chi = \chi^T \in 126
\]

(10)

cannot arise as Lagrangean masses, except induced by an \(I^w\)-triplet of scalars, developing a vacuum expected value independent from the doublet(s) \(\Delta\). However the heavy nu-flavor mass term

\[
\frac{1}{2} F' \mathcal{N} [X F' F] \mathcal{N}_F = \frac{1}{2} \mathcal{N}^T [X] \mathcal{N} ; \quad X = X^T \in 126
\]

(11)

from ”The apprentice magician” by Goethe: ’The shadows I invoked, I am unable to get rid of now!’

key questions \(\rightarrow\) quo vadis? is this a valid explanation of the ’tilt to the left’? no, at least insufficient!
20) Neutrino oscillations - historical overview

The idea that light neutrinos have mass and oscillate goes back to Bruno Pontecorvo, but starting with (para-) muonium - antimuonium oscillations [12] - like $K^0 \leftrightarrow \overline{K}_0$ [13].

Assuming CP conservation there are two equal mixtures of $\mu^- e^+$ and $\mu^+ e^-$ with opposite CP values \pm (at rest and using a semiclassical description of quantum states)

$$| (e\mu) \pm ; \tau = 0 \rangle = \frac{1}{\sqrt{2}} \left(| (e^- \mu^+) \rangle \mp | (e^+ \mu^-) \rangle \right)_{\tau=0}$$

$$| (e^+ \mu^-) \rangle = \hat{C} | (e^- \mu^+) \rangle$$

(12)

\[a \ [12] \ Bruno \ Pontecorvo, \ "Mesonium \ and \ antimesonium", \ JETP \ (USSR) \ 33 \ (1957) \ 549, \ english \ translation \ Soviet \ Physics, \ JETP \ 6 \ (1958) \ 429. \]

\[b \ [13] \ Murray \ Gell-Mann \ and \ Abraham \ Pais, \ Phys. \ Rev. \ 96 \ (1955) \ 1387, \ introducing \ \tau. \]
For the leptonium case the rest system is a good approximation. The evolution of the CP \pm states is then characterized by

$$\hat{m}_\alpha = m_\alpha - \frac{i}{2} \Gamma_\alpha; \quad \alpha = \pm \quad \text{with}$$

$$\left| (e^{-\mu^+}) \right> = \left| 1 \right> \rightarrow \tau$$

$$\frac{1}{\sqrt{2}} \left(\left| + ; \tau = 0 \right> e^{-i \hat{m} + \tau} + \left| - ; \tau = 0 \right> e^{-i \hat{m} - \tau} \right)$$

$$\left| (e^{+\mu^-}) \right> = \left| 2 \right> \rightarrow \tau$$

$$\frac{1}{\sqrt{2}} \left(- \left| + ; \tau = 0 \right> e^{-i \hat{m} + \tau} + \left| - ; \tau = 0 \right> e^{-i \hat{m} - \tau} \right)$$

(13)

This reconstructs to
\[|1\rangle \rightarrow \tau \quad E_+ (\tau) |1\rangle - E_- (\tau) |2\rangle \]

\[|2\rangle \rightarrow \tau \quad -E_- (\tau) |1\rangle + E_+ (\tau) |2\rangle \]

\[E_{\pm} (\tau) = \frac{1}{2} \left(e^{-i \hat{m} + \tau} \pm e^{-i \hat{m} - \tau} \right) \]

and leads to the transition relative probabilities indeed identical to the \(K^0 \rightarrow |1\rangle \); \(\overline{K}_0 \rightarrow |2\rangle \) system.

\[dp_1 \leftarrow 1 = dp_2 \leftarrow 2 = | E_+ (\tau) |^2 d\tau \]

\[dp_2 \leftarrow 1 = dp_1 \leftarrow 2 = | E_- (\tau) |^2 d\tau \]

\[| E_{\pm} (\tau) |^2 = \]

\[= \frac{1}{2} e^{-\frac{1}{2} (\Gamma_+ + \Gamma_-) \tau} \left(\cosh \frac{1}{2} \Delta \Gamma \tau \pm \cos \Delta m \tau \right) \]
The term $\cos \Delta m \tau$ in eq. (14) indeed signals $(e\hat{\mu}) \leftrightarrow (\hat{e}\mu)$ oscillations, with

$$\Delta m = m_+ - m_-; \quad \Delta \Gamma = \Gamma_+ - \Gamma_-$$

$$\Delta m = O \left[\left(\frac{\alpha m e m \nu e \nu_\mu}{\nu^2} \right)^2 m_\mu \right] \sim 4 \cdot 10^{-41} \text{ MeV}$$

$$\tau_{osc} = \left(\frac{2\pi}{\Delta m} \right) \sim 10^{20} \text{ sec} = 3.3 \cdot 10^{12} \text{ y}$$

(16)

"Erstens kommt es anders, zweitens als man denkt."

\[a \]

Not only this is clearly unobservable, but eq. (14) ignores CP violation, and details of neutrino mass and mixing, which induces Δm in eqs. (14-15).
From mesonium to neutrino’s \[14 \] \footnote{Bruno Pontecorvo, ”Inverse \(\beta \) processes and nonconservation of lepton charge”, JETP (USSR) 34 (1957) 247, english translation Soviet Physics, JETP 7 (1958) 172.}

What is to be remembered from ref. \[14 \] is the idea of neutrino oscillations, expressed in the corrected sentence:

”The effects due to neutrino flavor transformations may not be observable in the laboratory, owing to the large \(R \), but they will take place on an astronomical scale.”

The \((\mathcal{V} - A \)) \times (\mathcal{V} - A)\) form of the Fermi interaction \[15 \] \footnote{Richard Feynman and Murray Gell-Mann, ”Theory of Fermi interaction”, Phys.Rev.109 1. January (1958) 193, and E. C. G. Sudarshan and Re. E. Marshak in Proc. of Padova-Venice Conferenc, on ’Mesons and recently discovered particles’, 1957, p. V-14 . , which subsequently clarified the structure of neutrino emission and absorption, was documented almost contemporaneously.}
\[\Delta m \tau \text{ from rest system to beam system} \]

There is time dilatation from rest system to beam system, and also we express time in the beam system by distance (\(c = 1 \))

\[
\begin{align*}
\tau & \rightarrow \frac{d}{\gamma \beta} ; \quad \gamma^{-1} = \sqrt{1 - v^2} ; \quad \beta = v \\
\end{align*}
\]

(17)

Then we replace \(\Delta m \), for 12 beam oscillations

\[
\begin{align*}
\Delta m &= \frac{\Delta m^2}{2 \langle m \rangle} ; \quad \Delta m^2 = m_1^2 - m_2^2 \\
\langle m \rangle &= \frac{1}{2} (m_1 + m_2)
\end{align*}
\]

(18)

\[^a \text{[16]} \text{ In notes to Jack Steinberger, lectures on ”Elementary particle physics”, ETHZ, Zurich WS 1966/67, not documented some mimeographed versions may exist at the ITP-ETHZ, (again zigzag in time).} \]

\[^b \text{key question → which } v? \]
Thus we obtain, for any 12 oscillation phenomenon

\[\Delta m^2 \tau = \frac{\Delta m^2}{2 \langle m \rangle \beta \gamma} \; d \; ; \; \langle m \rangle \beta \gamma = \langle p \rangle \] (19)

It is apparently clear that \(\langle m \rangle \beta \gamma = \langle p \rangle \) represents the average beam momentum, yet this is not really so. Lets postpone the questions (which \(\langle p \rangle \) - which \(d \) ?). From eq. (18) it follows

\[\Delta m^2 \tau = \frac{\Delta m^2}{2 \langle p \rangle} \; d \rightarrow \cos \left(\frac{\Delta m^2}{2 \langle p \rangle} \; d \right) \] (20)

The oscillation amplitude in vacuo (eq. 19) is well known, yet it contains 'subtleties'.

→
\[\Delta m^2 d / (2 \langle p \rangle) : \text{what means what?} \]

The \textit{semiclassical} intuition from beam dynamics and optical interference is obvious. A well collimated and within \(\Delta |\vec{p}| / |\langle \vec{p} \rangle| \rightarrow '\text{monochromatic}' \) beam is considered as a classical line, lets say along the positive z-axis, defining the mean direction from a definite production point \(\vec{x} = 0 \) towards a detector, at distance \(d \).

But the associated operators for a single beam quantum

\begin{equation}
\hat{p}_z, \hat{z} \rightarrow \Delta \hat{p}_z \Delta \hat{z} \geq \frac{1}{2}
\end{equation}

are subject to the uncertainty principle (using units \(\hbar = 1 \)).

The same is true for energy and time. Yet we are dealing

\[a \]

– or any similar definition of beam momentum spread –
in oscillations – with single quantum interference – and thus the spread from one beam quantum to the next is only yielding a ’good guess’ of the actual expectation values, e.g. appearing in eq. (20). The quantity $\langle p \rangle$ in the expression for the phase

$$
\Delta m^2 d / \left(2 \langle p \rangle \right)
$$

essentially presupposes the single quantum production wave function, e.g. in 3 momentum space in a given fixed frame, propagating from a production time t_P to a specific detection space-time point x_D and characterized accounting for all quantum mechanical uncertainties by the distance d. In this framework $\langle p \rangle$ stands for the so evaluated single quantum expectation value \(^a\).

\(^a\) This was the content of my notes in ref. [16] (1966). h.o.
This was implicit in refs. (e.g.) \[5\] − \[7\], and became obvious in discussing matter effects, specifically for neutrino oscillations (e.g. in the sun).

Coherence and decoherence in neutrino oscillations (h.o.)

The ensuing is an *incomplete* attempt of a historical overview, going zigzag in time, starting with ref. \[17\].

Just mention is due to two papers: Shalom Eliezer and Arthur Swift \[18\] and Samoil Bilenky and Bruno Pontecorvo \[19\],

where the phase argument $\Delta m^2 d / (2 \langle p \rangle)$ appears correctly.

\[a\] Carlo Giunti, ”Theory of neutrino oscillations”, hep-ph/0409230, in itself a h.o.

Also in 1976 a contribution by Shmuel Nussinov [20] appeareda.

Matter effects - MSW for neutrinos [21]b, [22]c

The general remark hereto is
"Every conceivable coherent or incoherent phenomenon involving photons, is bound to happen (and more) with neutrinos."

a refraction, double refraction, Čerenkov radiation, \ldots [23]d.

The forward scattering amplitude and refractive index relation is
(a semiclassical one)

b Lincoln Wolfenstein, ”Neutrino oscillations in matter”, Phys.Rev.D17 (1978) 2369.

d see e.g. Arnold Sommerfeld, ”Optik”, ”Elektrodynamik”, ”Atombau und Spektrallinien”, Akademische Verlagsgesellschaft, Geest und Ko., Leipzig 1959.
plane wave distortion in the z-direction

\[f_0 \equiv f_{\text{lab}}^{\text{forward}} = \left(\frac{8\pi m_{\text{target}}}{T_{\text{forward}}} \right)^{-1} \]

\[\text{Im} f_0 = \left(\frac{k_{\text{lab}}}{4\pi} \right) \sigma_{\text{tot}} ; \quad k_{\text{lab}} \rightarrow k \]

\[e^{ikz} \rightarrow e^{in kz} = e^{ikz} e^{i\left(\frac{2\pi}{k} \right) \rho_N f_0 z} \]

\[= e^{ikz} e^{i\left[\left(\frac{2\pi}{k^2} \right) \rho_N f_0 \right] z} \]

\[n = 1 + \left(\frac{2\pi}{k^2} \right) \rho_N f_0 ; \quad \langle v \rangle_{\text{mat.}} \sim 1 / \left(\text{Re } n \right) \]

\[\rho_N = \text{mean number density of (target-) matter} \]
\[T = \text{invariantly normalized (elastic-) scattering amplitude} \]

(23)

\[a \quad \text{key question} \rightarrow \text{which is the fully quantum mechanical description ?} \]
for neutrinos a at low energy:

$$\mathcal{H}_\nu \sim 2\sqrt{2} G_F \left(\begin{array}{c}
\bar{\nu}_\alpha \gamma^\mu_L \nu_\beta \bar{\ell}_\beta \gamma_\mu L \ell_\alpha \\
+ \bar{\nu}_\alpha \gamma^\mu_L \nu_\alpha j_\mu n (\ell, q) \varrho \\
+ \frac{1}{4} \bar{\nu}_\alpha \gamma^\mu_L \nu_\alpha \bar{\nu}_\beta \gamma^\mu_L \nu_\beta \varrho
\end{array} \right)$$

(24)

$\alpha, \beta = I, II, III$ for family; ϱ: e.w. neutral current parameter

The second and third b terms on the r.h.s. of eq. (23) – in matter consisting of hadrons and electrons – do not distinguish

b the latter induces – tiny – matter distortions on relic neutrinos , maybe it is worth while to work them out ?
between neutrino flavors. So the relative distortion of ν_e – by electrons at rest – is

$$\Delta_e \mathcal{H}_\nu \rightarrow \sqrt{2} G_F \nu_\beta^* \nu_\beta \langle e^* e \rangle_e$$

(25)

$$= \left(\sqrt{2} G_F \varrho_{n_e} \right) \nu_\beta^* \nu_\beta$$

$$K_e = \sqrt{2} G_F \varrho_{n_e}; \quad (K_e \rightarrow -K_e \text{ for } e^- \rightarrow e^+)$$

The spinor field equation in the above semiclassical approximation in (chiral) basis becomes – suppressing all indices – and allowing for an \vec{x} dependent electron density a

a My former collaborator Emilio Torrente-Lujan, now at Murcia, Spain, was working in Bern and later on this.
\[(i \partial_t - \kappa) \nu = \mathcal{M}^\dagger \tilde{\nu}; \quad i \partial_t \to E\]

\[(i \partial_t + \kappa) \tilde{\nu} = \mathcal{M} \nu\]

\[\kappa = K_e P_e - \frac{1}{i} \vec{\sigma} \vec{\nabla} \mathcal{Q}; \quad \nu = \nu_f^\beta; \quad \tilde{\nu} = \varepsilon_{\alpha \beta} \left(\nu_f^\beta \right)^*\]

\[f = 1, \ldots, 6; \quad P_e = \delta_{ef} \delta_{ef'}; \quad \mathcal{Q} = \delta_{ff'}; \quad \mathcal{M} = \mathcal{M}_{ff'}\]

\[(\nu, \tilde{\nu}) (t, \vec{x}) : \text{fields}; \quad \ast : \text{hermitian conjugation}\]

\[K_e = K_e (\vec{x}) = \sqrt{2} G F \rho_{n_e} (\vec{x})\]

Here we substitute fields by wave functions
(\nu, \bar{\nu}) \rightarrow e^{-iEt} (\nu, \bar{\nu})(E, \vec{x}) \left| a \right.

(27)

\rightarrow (E - \kappa) \nu = \mathcal{M}^\dagger \bar{\nu}; (E + \kappa) \bar{\nu} = \mathcal{M} \nu

From eq. (26) we obtain the 'squared' form

\[(E^2 - \kappa^2 - \mathcal{M}^\dagger \mathcal{M}) \nu = [\kappa, \mathcal{M}^\dagger] \bar{\nu} \]

\[(E^2 - \kappa^2 - \mathcal{M} \mathcal{M}^\dagger) \bar{\nu} = [\mathcal{M}, \kappa] \nu \]

\[[\mathcal{M}, \kappa] = K_e [\mathcal{M}, P_e]; [\kappa, \mathcal{M}^\dagger] = [\mathcal{M}, \kappa]^\dagger \left| b \right. \]

\[\kappa^2 = -\Delta - 2P_e K_e \frac{1}{i} \vec{\sigma} \vec{\nabla} - P_e \vec{\sigma} \left(\frac{1}{i} \vec{\nabla} K_e \right) + P_e K_e^2 \]

(28)

\(a \) The quantities \(\bar{\nu}(E, \vec{x}) \) are not related to complex conjugate entries for \(\nu(E, \vec{x}) \).

\(b \) The purple quantities in eq. (27) give (e.g. in the sun) negligible effects for the light flavors \(\rightarrow 0 \) but for neutron stars this is different.
In eqs. (26-27) the mainly neutrinos have negative helicity, which can be specified precisely if the purple quantities are ignored, whereas the mainly antineutrinos carry positive helicity, in the ultrarelativistic limit \(p = |\vec{p}| \gg |m| \).

\[
(29) \quad \kappa^2 \rightarrow p^2 \pm 2p \ K_e \ P_e : \quad \begin{aligned}
+ & \text{ for neutrinos} \\
- & \text{ for antineutrinos}
\end{aligned}
\]

The mass diagonalization yields correspondingly for the mixing in vacuo approximatively

\[
(30) \quad \mathcal{M}^\dagger \mathcal{M} \rightarrow \overline{u} \ m_{\text{diag}}^2 \overline{u}^{-1} ; \quad \mathcal{M} \mathcal{M}^\dagger \rightarrow u \ m_{\text{diag}}^2 \ u^{-1}
\]

In eq. (29) the red quantities refer to the three light flavors \(^a \)

\(^a \) So for real (i.e. orthogonal) \(u \), neutrinos distorted by electrons react identically to antineutrinos relative to positrons – what is the effect of CP violation? A tribute is due to Andrei Sakharov.
FIG. 1. The masses of two flavors of neutrinos as a function of density. The curves nearly cross at one point. The electron-antineutrino mass $\bar{\nu}_e$ is also shown.

From Hans Bethe, ref. [24], with apologies to Mikheyev and Smirnov and many.
(Further) references to the ⊙ LMA solution

(31) \[\Delta m^2 \odot = 7.9 \times 10^{-5} \text{eV}^2 \; \; ; \; \; \tan^2 \theta \odot = 0.40 \; \; ; \; \; \theta \sim 32.3^\circ \]

(32) \[\Delta m^2 \odot = \left(7.9 \pm 0.5 \right) \times 10^{-5} \text{eV}^2 \; \; ; \; \tan^2 \theta \odot = 0.40 \pm 0.09 \]

\[\text{See also many refs. cited therein, (no h.o.) ; and more recent ones updating till 2011 .} \]
Figure 1. The 90%, 95%, 99% and 99.73% C.L. allowed regions in the $\Delta m^2_{21}-\sin^2 \theta_{12}$ plane, obtained in a 3-ν oscillation analysis of the solar neutrino, KL and CHOOZ data [15].
Experimental references to the ⊓ LMA solution

reaction: $\nu_e \odot + ^{37}Cl \rightarrow ^{37}Ar + e^-$

J.N. Abdurashitov, V.N. Gavrin, S.V. Girin, V.V. Gorbachev, P.P. Gurkina, T.V. Ibragimova, A.V. Kalikhov, N.G. Khairnasov, T.V. Knodel, I.N. Mirnov, A.A. Shikhin, E.P. Veretenkin, V.M. Vermul, V.E. Yants, G.T. Zatsepin, Moscow, INR

T.J. Bowles, W.A. Teasdale Los Alamos

J.S. Nico, NIST, Wash., D.C.

reaction: $\nu_e \odot + ^{71}Ga \rightarrow ^{71}Ge + e^-$

See also many refs. cited therein, (no h.o.) : and more recent ones updating till 2011.

M. Balata, M. Sann, F.X. Hartmann, Gran Sasso

E. Bellotti, C. Cattadori, O. Cremonesi, N. Ferrari, E. Fiorini, L. Zanotti, Milan U. and INFN, Milan

M. Altmann, F. von Feilitzsch, R. Mössbauer, S. Wanninger, Munich, Tech. U.

G. Berthomieu, E. Schatzman, Cote d’Azur Observ., Nice

I. Carmi, I. Dostrovsky, Weizmann Inst.

C. Bacci, P. Belli, R. Bernabei, S. d’Angelo, L. Paoluzi, Rome U., Tor Vergata and INFN, Rome

reaction: \(\nu_e \odot + ^{71}Ga \rightarrow ^{71}Ge + e^- \) like SAGE.

K.S. Hirata, K. Kihara, Y. Oyama, KEK, Tsukuba
Masatoshi Koshiba, Tokai U., Shibuya
K. Nishijima, T. Horiuchi, Tokai U., Hiratsuka
K. Fujita, S. Hatakeyama, M. Koga, T. Maruyama, A. Suzuki, Tohoku U.
M. Mori, Miyagi U. of Education
T. Ishizuka, K. Miyano, H. Okazawa, Niigata U.
T. Hara, Y. Nagashima, M. Takita, T. Yamaguchi, Osaka U.
S. Tasaka, Gifu U.
E. Ichihara, S. Miyamoto, K. Nishikawa, INS, Tokyo.

reaction: $\nu_e \odot + e^- \rightarrow \nu_e + e^-$

M. Goldhaber, Masatoshi Koshiba, J.G. Learned, S. Matsuno, R. Nambu, L.R. Sulak, Y. Suzuki, R. Svoboda, Y. Totsuka, R.J. Wilkes

Reactions:

\[\nu_e \odot + e^- \rightarrow \nu_e + e^- \]
\[\nu_{e,\mu} + H_2O \rightarrow e^\pm, \mu^\pm + X \]
\[\bar{\nu}_{e,\mu} \]

8B solar neutrino flux:

\[5.05 \left(1 \pm 0.20 \right) \cdot 10^{-6} \text{ / cm}^2 \text{ / s for BP2000} \]
\[5.82 \left(1 \pm 0.23 \right) \cdot 10^{-6} \text{ / cm}^2 \text{ / s for BP2004} \]

"Wer zählt die Seelen, nennt die Namen, die gastlich hier zusammenkamen.

"Who counts the souls, relates the names, who met in piece here for the games."

Friedrich Schiller
Figure 11. Allowed parameter region obtained by using only Super-K and SNO. The flux constraint from the solar model calculation is not used.

Art McDonald, A. Hamer, J.J. Simpson, D. Sinclair, David Wark · · ·

(33) \[\Delta m^2_{\odot} = \left(7.1^{+1.0}_{-0.6} \right) \cdot 10^{-5} \text{ ev}^2 ; \ \vartheta_{\odot} = \left(32.5^{+2.4}_{-2.3} \right)^\circ \]

reactions:

- \(\nu_{e\odot} + d \rightarrow p + p + e^- \) (CC)
- \(\nu_{x\odot} + d \rightarrow p + n + \nu_x \) (NC)
- \(\nu_{x\odot} + e^- \rightarrow e^- + \nu_x \) (ES)
Reference(s) to $\bar{\nu}_e \leftrightarrow \bar{\nu}_x$ oscillations

21.

T. Araki, K. Eguchi, P.W. Gorham, J.G. Learned, S. Matsuno, H. Murayama, Sandip Pakvasa, A. Suzuki, R. Svoboda, P. Vogel \ldots \leftarrow a

reaction: $\bar{\nu}_e \odot + p \rightarrow e^- + n$ from ~ 20 reactors

leading to the present best estimates (ref. [26]) for 3 flavor oscillations:

\begin{align}
\Delta m^2_\odot &= \left(7.9 \pm 0.5 \right) \cdot 10^{-5} \text{eV}^2; \quad \tan^2 \vartheta_\odot = 0.40 \pm 0.09 \\
|\Delta m^2_{23}| &= \left(2.1 \pm 2.1 \right) \cdot 10^{-3} \text{eV}^2; \quad \sin^2 2\vartheta_{23} = 1.0 - 0.15 \\
\sin^2 \vartheta_{13} &\leq 0.05 \quad \text{at} \quad 99.73\% \text{ C.L.}
\end{align}

\[(34) \]
KamLAND uses a range of L and it cannot assign a specific L to each event. Nevertheless the ratio of detected/expected for L/E (or $1/E$) is an interesting quantity, as it decouples the oscillation pattern from the reactor energy spectrum.

This shall conclude my – necessarily partial – historical overview. What follows must be cut short.
Mass from mixing \rightarrow the subtle things

key questions \rightarrow which is the scale of M? $O\left(10^{10}\right)$ GeV \rightarrow is there any evidence for this scale today? hardly! \rightarrow and what about susy?
How is the mass matrix of the form in eq. (9) diagonalized exactly?

\[
\mathcal{M} = \begin{pmatrix} 0 & \mu^T \\ \mu & M \end{pmatrix} = U \mathcal{M}_{\text{diag}} U^T = K \mathcal{M}_{\text{bl.diag}} K^T
\]

\[
\mathcal{M}_{\text{diag}} = \mathcal{M}_{\text{diag}} (m_1, m_2, m_3; M_1, M_2, M_3)
\]

(35)

\[
\mathcal{M}_{\text{bl.diag}} = U_0 \mathcal{M}_{\text{diag}} U_0^T; \quad U_0 = \begin{pmatrix} u_0 & 0 \\ 0 & v_0 \end{pmatrix}
\]

\[
U = K U_0 = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}
\]
\[U = K U_0 ; \quad K^{-1} M K^{-1} T = M_{\text{bl.diag.}} = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} \]

\[U = \begin{pmatrix} (1 + t t^\dagger)^{-1/2} u_0 & (1 + t t^\dagger)^{-1/2} t v_0 \\ -t^\dagger (1 + t t^\dagger)^{-1/2} u_0 & (1 + t^\dagger t)^{-1/2} v_0 \end{pmatrix} \]

\[M_1 = -t M_2 t^T ; \quad \begin{bmatrix} M_1 &=& u_0 m_{\text{diag}} u_0^T : \text{light 3} \\ M_2 &=& v_0 M_{\text{diag}} v_0^T : \text{heavy 3} \end{bmatrix} \]

(36)
\[M_1 = -t M_2 t^T; \]

\[
\begin{bmatrix}
M_1 &=& u_0 m \text{ diag } u_0^T \\
M_2 &=& v_0 M \text{ diag } v_0^T
\end{bmatrix} : \begin{array}{l}
\text{light 3} \\
\text{heavy 3}
\end{array}
\]

(37)

In eq. (36) all matrices are \(3 \times 3\), \(t\) describes light - heavy mixing generating mass by mixing.

\(u_0\) (unitary) accounts for light-light mixing and \(v_0\) (unitary) for heavy-heavy (re)mixing.

\(t\) is ’driven’ by \(\mu\) (in \(M \leftarrow \)) and determined

\[\text{\footnotesize This is documented in [36] Clemens Heusch and Peter Minkowski, ”Lepton flavor violation induced by heavy Majorana neutrinos”, Nucl.Phys.B416 (1994) 3.} \]
from the quadratic equation

\[t = \mu^T M^{-1} - t \mu^T t M^{-1}; \text{ to be solved by iteration} \]

\[t_{n+1} = \mu^T M^{-1} - t_n \mu^T t_n M^{-1}; \quad t_0 = 0 \]

\[t_1 = \mu^T M^{-1}, \quad t_2 = t_1 - \mu^T M^{-1} \mu \mu^\dagger M^{-1} M^{-1} \]

\[\cdots ; \lim_{n \to \infty} t_n = t^{a, b} \]

(38)

\[a \] This is essentially different from the mixing of identical SU2_L \times U1 representations, i.e. charged base fermions.

\[b \] Ziro Maki, Masami Nakagawa and Shoichi Sakata, Prog. Theor. Phys. 28 (1962) 870.

→ the PMNS-matrix: The authors assumed (in 1962) only light-light mixing (f)or the I_w triplet scalars in 126, 126 of SO10.
Finally let's turn to the mixing matrix u_{11} (eqs. 34-35)

$$u_{11} = \left(1 + tt^\dagger\right)^{-1/2} u_0 \sim u_0 - \frac{1}{2} tt^\dagger u_0$$

(39)

$$tt^\dagger = O\left(\frac{m}{M}\right) \sim 10 \text{ meV} / 10^{10} \text{ GeV} = 10^{-21}$$

The estimate in eq. (38) is very uncertain and assumes among other things $m_1 \sim 1 \text{ meV}$. Nevertheless it follows on the same grounds as the smallness of light neutrino masses, that the deviation of u_{11} from u_0 is tiny.

"Much ado about nothing", William Sakespeare
3 Some perspectives

1) Neutrino properties are only to a very small extent open (up to the present) to deductions from oscillation measurements.

2) Notwithstanding this, a significant and admirable experimental effort paired with theoretical analysis has revealed the main two oscillation modes. The matter effect due to Mikheev, Smirnov and Wolfenstein demonstrates another clear form of quantum coherence, over length scales of the solar radius.

3) Key questions remain to be resolved: are all (ungauged or gauged) global charge-like quantum numbers violated? (B-L), B, L, individual lepton flavors.
4) SO10 serves fine (together with susy or without it) to guide ideas, but a genuine unification is as remote as the scales and nature of heavy neutrino flavors, to name only these.

5) I do hope, that the ideas of ”seasaw” will continue to reveal new insights, at humanly attainable energy scales. The experimentally interpretable signals may show at the LHC, at neutrino telescopes, at facilities exploiting dedicated neutrino beams or in an unexpected environment. The efforts worldwide and in particular here, in Japan, in the ice of antarctica, at reactors (Kamland) and underground laboratories (Homestake, Kamioka, Snow), were showing the way.

And the quest for unification remains wide open

— Thank you —

References

