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Abstract

In this lecture the general discussion of the seesaw mechani sm will be complemented

illustrating the difficulties of gaining a profound extensi on of knowledge from the experimental

information behind the presently observed neutrino flavor o scillation patterns, without at the

same time beeing driven to relatively large violations of le ptonic numbers, not observed so far.
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1-1 There does not exist a symmetry – within the standard mode l including gravity

and containing only chiral spin 1
2

16 families of SO (10) –

which could enforce the vanishing of neutrino mass(es) .

The divergence of the current associated to the global charg e B - L for three standard model families of

15 base fields – in the left chiral basis removing – to infinite m ass – the 16-th components (N )

pertaining to one full 16-representation of SO (10) [ spin (10) ]

0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

= ( f ) γ̇

(1)

and admitting a gravitational background field is in this min imal neutrino flavor embedding anomalous ,

i.e. the global symmetry is broken by winding gravitational fields [1-2001] . →
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a2

j ̺ (B − L )| 3×15 =

P
fam

2
6666666664

1
3

0
B@

(u ∗) α ċ ( σ µ ) α γ̇ (u) γ̇ c − (bu ∗) α c ( σ µ ) α γ̇ (bu) γ̇ ċ

+ (d ∗) α ċ ( σ µ ) α γ̇ (d) γ̇ c −
“

bd ∗
” α c

( σ µ ) α γ̇

“
bd
” γ̇ ċ

1
CA

−
`
e − ´ ∗ α

( σ µ ) α γ̇

`
e − ´ γ̇

+
`
e +

´ ∗ α
( σ µ ) α γ̇

`
e +

´ γ̇

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇

3
7777777775

e µ
̺

g ̺ τ = e µ
̺ η µ ν e ν

τ : metric ; e µ
̺ : vierbein ; ∗ : hermitian operator conjugation

( u ∗ ) α ċ ≡
`
u α̇ c

´ ∗
; η µν = diag ( 1,−1,−1,−1 ) : tangent space metric

c
`

ċ
´

: color and anticolor ; c = 1, 2, 3

(2)

The contribution of charged fermion (pairs) q , bq ; e ∓ can be combined to vector currents – Dirac

doubling – q γ µ q ; e γ µ e with q → u, d, c, s, t, b ; e → e −, µ −, τ − . →
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The anomalous Ward identy for the B - L current ( - density ) defi ned in eq. 2 takes the form

d 4 x
p
| g | D ̺ j ̺ (B − L )| 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a

b = 1
2 π

1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 →

(3)

Before discussing the extension j ̺ (B − L ) | 3×(15) → j ̺ (B − L ) | 3×(16) which renders

the latter current conserved, lets define the quantities app earing in eq. 3 :

`
R a

b

´
̺ τ

= e a
µ e b ν

`
R µ

ν

´
̺ τ

; e b ν = η bb′ e
b′
ν

`
R µ

ν

´
̺ τ

= ( ∂ ̺ Γ τ − ∂ τ Γ ̺ + Γ ̺ Γ τ − Γ τ Γ ̺ ) µ
ν

`
Γ µ

ν

´
τ

: matrix valued (GL ( 4 , R ) ) connection ; minimal here

(4)

→
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For clarity eq. 3 is repeated below

d 4 x
p
| g | D ̺ j ̺ (B − L )| 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a

b = 1
2 π

1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 →

(3)

In eq. 3 bA (X → λ ) = 1
2
λ / sinh ( 1

2
λ ) denotes the Atiyah - Hirzebruch character or bA−

genus [2-1966] with its integral over a compact , euclidean s ignatured closed manifold M 4 , capable of

carrying on SO4 - spin structure , becomes the index of the ass ociated elliptic Dirac equationZ
bA (X E ) = n R − n L = integer(5)

In eq. 5 n R,L denote the numbers of right - and left - chiral solutions of th e Dirac equation on M 4 . The

index E → X E shall indicate the euclidean transposed curvature 2 - form , and is adapted here to

physical curved and uncurved space time . →
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For the latter case the first relation in eq. 3 yields the integ rated form – in the limit of infinitely heavy

N F ( eq. 1 ) –

∆ R−L n ν =

Z
d 4 x

p
| g | D µ j

B − L (15)
µ = 3 ∆ n ( bA )

3 = number of families = odd ; m ν F
→ 0

(6)

In eq. 6 ∆ R−L n ν denotes the difference of right - chiral ( bν ) a and left - chiral ( ν ) flavors between

times t → ±∞ .

Here a subtlety arises precisely because the number of families on the level of G SM is odd , and the

light neutrino flavors are not ’Dirac - doubled’ , which accor ding to eq. 6 could potentially lead to a

change in fermion number being odd , which violates the rotat ion by 2 π symmetry , equivalent to bΘ 2

`
CPT 2

´
, unless b

∆ n ( bA ) = even (
√

for dim = 4 mod 8 )(7)
→

a bν α ≡ ε α β ( ν ∗ ) γ ; ε = i σ 2 ; ( 2nd Pauli matrix ) stands for the left-chiral neutrino

fields transformed to the right-chiral basis .
b

The obviously nontrivial relation between the compact Eucl idean - and noncompact asymptotic and

locality restricted form of the index theorem involves not c learly formulated boundary conditions .

– p. 9
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We now turn to the SO (10) inspired cancellation of the gravit y induced anomaly, giving rise to the

completion of neutrino flavors to 3 families of 16-plets , som etimes called ’right-handed’ neutrino flavors,

denoted N in the left-chiral basis in eq. 1 [3-2007]

0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

= ( f ) γ̇

(1)

j ̺ (B − L )| 3×15 → j ̺ (B − L )| 3×16
(8)

d 4 x
p
| g | D ̺ j ̺ (B − L )| 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a

b = 1
2 π

1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 →

(3)

→
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j ̺ (B − L )| 3×15 → j ̺ (B − L )| 3×16 =

P
fam

2
66666666664

1
3

0
B@

(u ∗) α ċ ( σ µ ) α γ̇ (u) γ̇ c − (bu ∗) α c ( σ µ ) α γ̇ (bu) γ̇ ċ

+ (d ∗) α ċ ( σ µ ) α γ̇ (d ) γ̇ c −
“

bd ∗
” α c

( σ µ ) α γ̇

“
bd
” γ̇ ċ

1
CA

−
`
e − ´ ∗ α

( σ µ ) α γ̇

`
e − ´ γ̇

+
`
e +

´ ∗ α
( σ µ ) α γ̇

`
e +

´ γ̇

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇ + (N ) ∗ α ( σ µ ) α γ̇ (N ) γ̇

| {z }

3
77777777775

e µ
̺

g ̺ τ = e µ
̺ η µ ν e ν

τ : metric ; e µ
̺ : vierbein ; ∗ : hermitian operator conjugation

( u ∗ ) α ċ ≡
`
u α̇ c

´ ∗
; η µν = diag ( 1,−1,−1,−1 ) : tangent space metric

c
`

ċ
´

: color and anticolor ; c = 1, 2, 3

D ̺ j ̺ (B − L ) | 3×(16) = 0 →
(9)
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Let me illustrate the triple-doubling inherent in the elimi nation of the anomaly in the covariant divergence

of j ̺ (B − L )| 3×15 in eq. 2 as seen through the left-chiral basis , repeating onl y the ν , N
components of the B - L current in eq. 9

j ̺ (B − L )| 3×16 =

P
fmlies

2
664

· · ·

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇ + (N ) ∗ α ( σ µ ) α γ̇ (N ) γ̇

| {z }

3
775

ν γ̇
F N γ̇

F

B − L −1 +1

; F = 1, 2, 3 family

(10)
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1-2 There does not exist a symmetry – within the standard mode l including gravity and containing only

chiral 16 families of SO (10) – enforcing the vanishing of neu trino mass(es), yet there exist chiral

extensions, which accomplish this .

Here I briefly describe one such extension. It consists of rep lacing in each family the SO (10) induced

N F flavors by four alternative ( sterile ) X J = 2,3,4,5 ; F flavors, singlets under the electroweak

gauge group with genuinely chiral B - L charges, changing the structure in eq. 10 to

j ̺ (B − L )| 3×16 =

P
F

2
6664

· · ·

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇ +
5X

J=2

(χ) J (X J ) ∗ α ( σ µ ) α γ̇ (X J ) γ̇

| {z }

3
7775

ν γ̇
F = X γ̇

1,F X γ̇
2,F X γ̇

3,F X γ̇
4,F X γ̇

5,F

B − L

= (χ) J

−1 −5 −9 7 8

;
F = 1, 2, 3 family

J = 1, 2 · · · , 5

(11) →
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The genuinely chiral couplings (χ) J=1,···,5 = [−1 , −5 , −9 ; 7 , 8 ] for neutrino flavors as

shown in eq. 11 with 5 chiral base flavors merit some comments :

1) a sequence of charges (χ) J , J = 1, · · · , N with respect to the left-chiral basis – to be specific –

shall be called genuinely chiral , if none of the charges vanishes and no pairs of opposi te charge

[± (χ) ] are admitted.

2) the absence of an anomaly of the associated chiral current , of the form given for neutrino flavors in

eqs. 2 , 8 and 11 including also gravitational fields leads in 4 dimensions to the two conditions

P N
J (χ) J = 0 ,

P N
J [ (χ) J ] 3 = 0(12)

3) there does not exist a genuinely chiral set { (χ) J , J = 1, · · · , N } for N < 5 .

For N = 3,4 it is equivalent to show that the two equations

A + B = C + D , A 3 + B 3 = C 3 + D 3 →

A = x − a , B = x + a , C = x − b , D = x + b→

x a 2 = x b 2 →
n

x = 0 or x 6= 0 ; b = ± a

(13)

have no solution, satisfying the conditions for genuine chi rality .

→
– p. 14
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4) There are infinitely many solutions for N ≥ 5 , with chiral charges relatively irrational as well as

rational . For integer values and N = 5 with the norm | (χ) | =
P | (χ) J | the solution with

smallest norm is unique up to an overall change of sign a

(χ) J = [−1 , −5 , −9 ; 7 , 8 ](14)

Some conclusions from sections 1-1 and 1-2 .

C1) The oscillation phenomena indicate clearly , that a genuinely chiral extension of B - L to a

conserved, global symmetry, generating a continous U1 - group of tranformations, is not involved.

C2) On the other hand the binary code of a ( minimally) suppose d unifying gauge group SO or spin (10)

could, if B - L is not gauged, equivalently generate a global symmetry of the vect orlike nature. The

latter however would allow neutrino mass through the ( elect roweak doublet-singlet ) pairing

−LM = µ F G N F
γ̇ ν γ̇ G + h.c. ; F,G = 1, 2, 3 family(15)

without symmetry restrictions on the mass matrix µ F G in eq. 15 .
→

a
It is due to Paul Frampton , on a beautiful morning in 1993 , alo ng the coastal range above the

mediterranean sea near Cassis, France .

– p. 15
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C3) Then however the question arises, why the mass matrix µ , involving the scalar doublet(s) within

the electroweak gauge group, also generating masses of char ged spin 1
2

fermions, gives rise to

very small physical neutrino masses. Thus we follow the hypothesis that SO (10) is gauged and

that it is the large mass scale of the gauge boson associated with B - L in particul ar, which

distinguishes neutrino flavors [4-1975], [5-1975], [6-197 6] .

2-1 The Majorana logic [7-1994] and mass from mixing –

setting within the ’tilt to the left’ or ’seesaw’ of type I ( · · · )
Within the subgroup decompositions of SO (10) the ’tilt to th e left’ does not appear obvious

spin (10)
ւ ց

spin (6) ≡ SU4 × spin (4) ≡ SU2 L × SU2 R

lepton number as 4th color [8-1974]

↓ ↓
SU3 c × U1 B − L × SU2 L × U1 I 3 R

ց ւ
SU3 c × U1 Q e.m.

Q e.m. / e = I 3 L + I 3 R + 1
2

(B − L )

(16) →

– p. 16
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In eq. 16 the conserved charge-like gauges are marked in red.

The large scale breaking of gauged B - L or ’tilt to the left’ was not assumed essential in refs. [4 -1975] -

[6-1976] and brings about a definite ’mass from mixing’ scena rio [9-1977] , [10-1979/80] to which we turn

below.

The Majorana logic characterized by N F

Here we consider the alternative subgroup decomposition

spin (10) → SU5 × U1 J 5
(17)

Among the 3 generators of spin (10) commuting with SU3 c , I 3 L , I 3 R , B −L and forming part of

the Cartan subalgebra of spin (10) there is one combination, denoted J 5 in eq. 17, commuting with its

largest unitary subgroup SU5 .

The 16 representation in the left-chiral basis displays the charges pertinent to J 5 normalized to integer

values modulo an overall sign – as in the discussion of genuinely chiral U1-charges in eq. 1 4 – but here

referring to N = 16

While the Majorana logic indeed opens a ’path’ to trace the or igin of the ’tilt to the left’ , the origin of three

families remains unexplained at this stage. →

– p. 17
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Fig B1 : The complex and real Majorana representations

MajCR ( p , q ) ←→

– p. 18
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The associative Clifford algebras { Γ p , q ; C } ⊃
˘

Γ ep , eq ; R
¯

are constructed in sections

4-1a → 4-1c , 4-2 and Appendices A , B forming the complementary mate rial to the present outline .

p , q denote time like ( p ) and spacelike ( q ) dimensions of spac e-time .

Fig. B1 shows the repartition of real ( Maj-r ) and complex ( Ma j-c ) character of irreducible

associative , real ( Majorana ) Clifford algebras with their characteris tic mod 8 property relative to q - p

[11-1982].

These representations form the roots of the ’Majorana logic ’ discussed below . →

– p. 19
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( f ) γ̇ =

0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

J 5 →

0
B@

1 1 1 −3 | 5 1 1 1

1 1 1 −3 | 1 −3 −3 −3

1
CA

(18)

The assignment of J 5 − charges in eq. 18 follows from the fermionic oscillator repr esentation of the

spin (2n) associated Γ algebra through n such oscillators and the associated embed ding

spin (10) ⊃ SU5 [12-1974] for n = 5 here [13-1980]

n
a s , a

†
t

o
= δ st ; s, t = 1, 2 · · · , n ; { a s , a t } = 0 =

n
a †

s , a
†
t

o
→

J n =
P n

s=1

0
@ a †

s a s

− a s a
†
s

1
A = 2 bn − n ¶ 2 n × 2 n ; bn =

P n
s=1 a

†
s a s

(19)

→

– p. 20
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The eigenvalues (X) and multiplicities (#) of J n

(X) n n− 2 n− 4 · · · −n+ 2 −n

(#)

0
@ n

0

1
A

0
@ n

1

1
A

0
@ n

2

1
A · · ·

0
@ n

n− 1

1
A

0
@ n

n

1
A

(20)

The orthogonal series for n even ↔ real ( spin (8) , spin(12) · · · ) has another decompostion within the

associated Γ algebra , than the one with n odd ↔ complex ( spin (10) , spin (14) · · · ) . We give here

the explicit numbers according to eq. 20 for n = 5 , i.e. spin (1 0)

(X) 5 3 1 −1 −3 −5

(#)

0
@ 5

0

1
A

0
@ 5

1

1
A

0
@ 5

2

1
A

0
@ 5

3

1
A

0
@ 5

4

1
A

0
@ 5

5

1
A

SU5 {1} {5} {10}
˘
10

¯ ˘
5

¯ ˘
1

¯

(21)

The subset of states in blue in eq. 21 (X) = { 5 , 1 , −3 } forms the 16 representation of spin 10,

while those in red (X) = { 3 , −1 , −5 } the complex conjugate 16 . →

– p. 21
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This opens the ’path’ of linking the ’tilt to the left’ with a s ubstructure based on the primary in strength

breakdown of the local gauged chargelike symmetry associat ed with

J 5 = −4 I 3 R + 3 (B − L )(22)

J 5 as defined through integer eigenvalues (X) given in eqs. 18 and 21 is normalized differently from

the other Cartan subalgebra charges I 3 L , I 3 R , B − L
|Q C | 2 =

P
{16} (Q C ( f ) ) 2 , | I 3 L | 2 = 2 , | I 3 R | 2 = 2

|B − L | 2 = 16
3

, | J 5 | 2 = 80

(23)

The consequence as far as neutrino-mass and mixing is concer ned follows from identifying the J 5

direction with a major axis of primary spontaneous gauge-sy mmetry breaking , bringing about the

’tilt to the left’ from eq. 15 →

– p. 22
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HM = µ F G N F
γ̇ ν γ̇ G + h.c.+HM

HM = 1
2
M F G N F

γ̇ N γ̇ G + h.c. ; F,G = 1, 2, 3

M F G = M G F : complex arbitrary otherwise ; |M | ≫ | µ |

(24)

It is the primary breakdown along the direction of J 5 which contrary to all ’mirror complexes’ brings on

the level of (pseudo-) scalar fields to the foreground the com plex bosonic 126 and 126 representations of

SO10
HM ←−

“
Φ 126 F G

”ξ
( f a 16 F ) γ̇ ( f b 16 G ) γ̇ C

0
@ 126

ξ

16

a

16

b

1
A + h.c.

“
Φ 126 F G

”ξ
: (pseudo-) scalar fields in the 126 representation of SO (10)

(25)

In eq. 25 C

0
@ 126

ξ

16

a

16

b

1
A denotes the coupling coefficients, projecting the

symmetric product of two 16-representations of spin (10) to the 126 representation of SO (10) . →

– p. 23
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The 126 complex representation of SO (10) is singled out by the value of J 5 of 10 = 2 × 5N N .

The relatively complex conjugate representations 126 ⊕ 126 are contained in the real , reducible

fivefold antisymmetric tensor representation of SO (10) dec omposing into the irreducible pair upon the

duality conditions

t [ A 1 A 2 ··· A 5 ] ; A 1 ··· 5 = 1, 2, · · · , 10

t [ A π 1
A π 2

··· A π 5 ] = sgn

0
@ 1 2 · · · 5

π 1 π 2 · · · π 5

1
A t [ A 1 A 2 ··· A 5 ]

1
5!
ε A 1 ··· A 5 B 1 ··· B 5

t
[ B 1 B 2 ··· B 5 ]
± = (± i ) t [ A 1 A 2 ··· A 5 ]

±

ε A 1 ··· A 5 A 6 ··· A 10
= sgn

0
@ 1 2 · · · 10

π 1 π 2 · · · π 10

1
A ε A π 1

··· A π 5
A π 6

··· A π 10

ε 1 2 ··· 10 = 1

(26)

→

– p. 24
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Within the complex spin (2ν = 4τ + 2) , τ = 2, 3, · · · series – τ = 2 ↔ spin (10) – the

relatively complex conjugate spinorial pair of representa tions with dimension 4 τ ← 16(64, · · ·) and

the complex selfdual-antiselfdual pair of representation s with dimension

1
2

0
@ 4 τ + 2

2 τ + 1

1
A ← 126 (11.12.13 = 1716, · · ·) are intrinsically related for τ = 2, 3, 4, · · · .

Some conclusions and questions from section 2-1 .

Q1) Is it enough to consider the primary breakdown and its cha racteristic, the ’tilt to the left’

concerning 3 families, as due essentially to spin (10) , which is the lowest simple spin group along

the complex orthogonal chain ?

It has been argued interestingly by Feza Gursey and collabor ators [14-1975], that it is the chain of

exceptional groups which encode intrinsically the number 3 , which in turn underlies the 3 as the

number of (left-chiral) families as well as the strong inter action gauge group SU3 c .

A1) I think the answer is to the affirmative, since all higher g auge groups , including the exceptional

chain and especially E8 , but also spin (14) , (18) do not explain the #3 of families , rather generate

together with even the apparently correct 3 families – for E8 – also mirror families – 3 for E8 , and

powers of 2 for the orthogonal chain with τ ≥ 3 .

→
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A1) continued

The tentative conclusion remains, that the structure of fam ilies has to be explained outside

spin (10) and also outside larger unifying gauge groups containing spin (10) , whereas the origin of

neutrino mass is layed out by the lowest member of the complex orthogonal chain → spin (10) .

C4) The two apparently different phenomena of a) ’tilt to the left’ and b) baryon number violation are

intrinsically associated with the unusual sequence of (pseudo)scalar fields generating primary

breakdown . We use the notation ( eq. 17 )

spin (10) → SU5 × U1 J 5
→ SU3 c × SU2 L × U1 Y = G s.m.

[16] = {1} +5 + {10} +1 +
˘
5

¯
−3

ˆ
16

˜
= {1} −5 +

˘
10

¯
−1

+ {5} +3

˘
5

¯
−3

=
i `

3 , 1
´

+ 1
3

h

−3
+

i
( 1 , 2 ) − 1

2

h
−3

(27)

→
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C) continued

(p)scalar SO (10)
representation

active
components

induced
(a)symmetries

preserved
gauge
group

[ 126 ]
Cˆ

126
˜

C

9
=
; → { 1 } +10˘

1
¯

−10

P : ’tilt to the left’

NN mass , B − L
CP ↓

SU5

[ 45 ]
R

o
ր→ { 24 } 0 ↓˜

( 1 , 1 ) 0

ˆ
0

B , L , l CP G s.m.

[ 10 ]
R

o
ր→

i
( 1 , 2 ) − 1

2

h
−3i `

1 , 2
´

+ 1
2

h

+3

Nν mass ↑
qq mass CKM

CP ↑

SU3 c×
U1 e.m.

(28)
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2-2 Mass from mixing for light ν flavors or ’seesaw’

Having outlined the ’fault-lines’

Fig F1 : Fault-lines of a quartz crystal ( and carved lizard ) [ f1] ←→

→
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of primary and secondary breakdown of charge-like gauge int eractions , let me turn to some general

consequence for neutrinos, light and heavy . To this end we ta ke up eq. 24 repeated below

HM = µ F G N F
γ̇ ν γ̇ G + h.c.+HM

HM = 1
2
M F G N F

γ̇ N γ̇ G + h.c. ; F,G = 1, 2, 3

M F G = M G F : complex arbitrary otherwise ; |M | ≫ | µ |

(24)

As the (p)scalar
ˆ
126 , 126

˜
representations are singled out through their major role in the primary

breakdown along the J 5 direction ( eq. 28 ) we locate the SU2 L × U1 Y →
i

( 1 , 3 ) −1

h
−6

triplet therein ( seesaw of type II [f2] ) . The complete decom position of all f × f
′

couplings is given

in Appendix E , from which we display eq. 141 as eq. 30 below . Th e two relatively hermitian conjugate

triplets and their e.m. charges are

[ 126 ] ⊂
`
T 0 , T − , T −− ´

↔
“
T

0
, T

+
, T

++
”
⊂

ˆ
126

˜

T = T ∗
(29)

→
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[126]
˘
15

¯
−6

i`
6 , 1

´
+ 2

3

h

−6
+

i`
3 , 2

´
− 1

6

h

−6
+

i
(1 , 3) − 1

h
−6

[126] [120] {45} −2
c.c. l

[120]
˘
45

¯
+2

2
66666664

0
B@

i
(6 , 1) + 1

3

h
2
+

i`
3 , 3

´
+ 1

3

h

2

1
CA +

0
B@

i
(8 , 2) − 1

2

h
2
+

i
(1 , 2) − 1

2

h
2

1
CA +

i
(3 , 2) + 7

6

h
2

+
i
(3 , 1) − 4

3

h
2

+
i`

3 , 1
´

+ 1
3

h

2

3
77777775

[126]
˘
50

¯
+2

2
666666664

0
B@

i
(6 , 3) + 1

3

h
2
+

i`
3 , 1

´
+ 1

3

h

2

1
CA +

i
(8 , 2) − 1

2

h
2

+
i
(3 , 2) + 7

6

h
2

+
i`

6 , 1
´
− 4

3

h

2
+

i
(1 , 1) +2

h
2

3
777777775

(30)

→
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We complete the classification of the [ 126 ] (p)scalar multiplet ( eq. 140 , Appendix E )

[10] [120] {5} −2

i
(3 , 1) − 1

3

h
+3

+
i`

1 , 2
´

+ 1
2

h

+3

[10] [126] [120]
˘
5

¯
+2

i`
3 , 1

´
+ 1

3

h

−3
+

i
(1 , 2) − 1

2

h
+3

[126] {1} +10

˜
(1 , 1) 0

ˆ
+10

[126] [120] {10} +6

i
(3 , 2) − 1

6

h
+6

+
i`

3 , 1
´
− 2

3

h

+6
+

i
(1 , 1) + 1

h
+6

[120]
˘
10

¯
−6

i`
3 , 2

´
+ 1

6

h

−6
+

i
(3 , 1) + 2

3

h
−6

+
i
(1 , 1) − 1

h
−6

(31)

While a direct ν ν mass term could be induced by a small vacuum expected value

〈Ω | T 0 |Ω 〉 → H νν = 1
2
m F G ν F

γ̇ ν γ̇ G + h.c.(32)

we do not consider this (p)scalar hierarchy of v.e.v. in the f ollowing – by hypoythesis, that primary and

e.w. breaking is associated with one (p)scalar v.e.v for one representation of SO (10) :

[ 126 ] , [ 45 ] , [ 10 ] respectively . →
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2-2a ’Mass from mixing’ only [9-1977] , [10-1979/80]

The mass matrix for the 6 neutrino flavors forming 3 families o f [ 16 ] spin (10) representations, whence

considered in the left-chiral basis takes the reduced form ( eq. 24 )
`
ν 1,2,3 = ν F=1,2,3 , ν 4,5,6 = N F=1,2,3

´ γ̇

H M = 1
2
ν j

γ̇ M jk ν
γ̇ k + h.c. ; j , k = 1, · · · , 6

M =

0
@ 0 µ T

µ M

1
A

µ ↔ y F G 〈 Ω | ϕ ∗
0 [ 10 ] |Ω 〉 N F

γ̇ [ 16 ] ν γ̇ G [ 16 ]

M ↔ Y F G 〈Ω | φ ∗
0 [ 126 ] |Ω 〉 N F

γ̇ [ 16 ] N γ̇ G [ 16 ]

y

Y
↔

2
4 [ 10 ]

ˆ
126

˜

3
5 ( [ 16 ] × [ 16 ] ) s

(33)

The 0 3× 3 entry in M is the consequence of our hypothesis H νν = 0 in eq. 32 . This is

potentially fruitful ground for applying discrete symmetr ies to the (p)scalar self interactions . →
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Fig F2 :

Chiral fermionic structure ensures positive physical eige nvalues, for arbitrary complex µ and

symmetric but otherwise arbitrary M . This would similarly g uarantee positive masses for scalars, for

(p)scalar mass from mixing, only in a supersymmetric setting .

I proceed reviewing properties of mixing and the mass relation following from the structure of M as

defined in eq. 33 . →
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’seesaw’ ր
ւ

The relative ’size’ of µ and M defines the ’mass from mixing’ situation and segregates 3 hea vy neutrino

flavors from the 3 light ones :

ւ || µ || ≪ ||M || ր

|| µ || 2 = tr µ µ † , ||M || −2 = tr M −1 M −1

(34)

Diagonalization of M
We use the generic expansion parameter ϑ = || µ || / ||M || ≪ 1 – and determine →
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a unitary 6 × 6 matrix U with the property a

M = UM diag U
T → M diag =

M diag (m 1 , m 2 , m 3 ; M 1 , M 2 , M 3 )

0 ≤ m 1 ≤ · · · ≤ M 3 , m 3 ≪ M 1

and U = TU 0 ; T −1M T −1 T = M bl.diag. →

=

0
B@
M 1 0

0 M 2

1
CA = U 0M diag U

T
0

(35)

The matrix T in eq. 35 describes the mixing of light and heavy flavors, dete rmined from a 3 × 3

submatrix t .

T =

0
B@

`
1 + t t †

´−1/2 `
1 + t t †

´−1/2
t

−t †
`

1 + t t †
´−1/2 `

1 + t † t
´−1/2

1
CA(36)

→
a

To account for inverted hirarchy , the order of the light mass es can be accordingly permuted.

– p. 35



f9

The upper left 3 × 3 block of T ( eq. 36 )
`

1 + t t †
´−1/2

causes the ( 3 × 3 ) mixing matrix

governing oscillations of light (anti)neutrino’s to devia te from unitarity , i.e. it becomes subunitary, but by

a tiny amount since as we will discuss below

|| t || 2 =
P 3

kl=1 | t kl | 2 = O
`

10 −21
´

(37)

The matrix t in eq. 36 is reduced to diagonal form through two unitary 3 × 3 matrices u and w a

t = u ( tan a diag )w −1 ; a diag = a diag ( a 1 , a 2 , a 3 )

0 ≤ a k ≤ π / 2 ; a k ≪ π / 2 for ϑ = || µ || / ||M || ≪ 1

(38)

t is determined from the quadratic equation

t = µ T M −1 − t µ t M −1(39)

which can be solved recursively →
a

In eq. 38 a diag defines the three (real) heavy-lightmixing angles a 1,2,3 , which without loss of

generality can be chosen in the first quadrant, but which are s mall for ϑ = || µ || / ||M || ≪ 1
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setting

t n+1 = µ T M −1 − t n µ t n M −1 ; t 0 = 0 , t 1 = µ T M −1 ,

t 2 = t 1 − µ T M −1 µ µ † M
−1

M −1 , · · ·

lim n → ∞ t n = t

(40)

The sequence defined in eq. 40 is convergent for ϑ = || µ || / ||M || < 1 .

u , w in eq. 38 contain all 9 CP violating phases, pertaining to T .

t = u ( tan a diag ) w −1 defined in eq. (39) and its determining equation, repeated be low

t = µ T M −1 − t µ t M −1(39)

lead to block diagonal form of M bl.diag. .

M bl.diag. = T −1M T −1 T ; M bl.diag. =

0
B@
M 1 0

0 M 2

1
CA(41)

(M 1 , M 2 ) ( eq. 41 ) →
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become a

M 1 =
`

1 + t t †
´−1/2 ˆ

− t µ − µ T t T + t M t T
˜ `

1 + t t †
´−1/2 T

M 2 =
`

1 + t † t
´−1/2 ˆ

µ t + t † µ T + M
˜ `

1 + t † t
´−1/2 T

→ M 1 = − tM 2 t T

(42)

It follows from the assumptions detailed in footnote a , that Det t 6= 0 and hence the heavy-light

mixing angles a 1,2,3 > 0 defined in eq. 38 are strictly bigger than 0.

The lowest approximation, t → t 1 and and M 2 → M , yields the first nontrivial approximation of

the light neutrino mass matrix in second order mixing

M 1 ∼M (2)
1 = − µ T M −1 µ(43)

Remaining dagonalization of M bl.diag.

We go back to eq. 35 U = T U 0 : U 0 diagonalizes the remaining 3× 3 blocks . U 0 is determined

modulo diagonal (orthogonal , 6 × 6) matrices I = I diag →
a

In the scenario adopted here, we further assume Det M 6= 0 and Det µ 6= 0.
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as shown in eq. 44 representing the discrete abelian group ( Z 2 ) ⊗ 6

T −1M T −1 T = M bl.diag. ; M bl.diag. =

0
B@
M 1 0

0 M 2

1
CA

U 0 =

0
B@

u 0 0

0 v 0

1
CA ∼ U 0 I ; I = I diag (± 1 , · · · , ± 1 )

M 1 = u 0 m diag (m 1 , m 2 , m 3 ) u T
0

M 2 = v 0 M diag (M 1 , M 2 , M 3 ) v T
0

; M 1 = − tM 2 t T

(44)

3-1 Generic mixing and mass estimates

We introduce the arithmetic mean measure for 3 × 3 matrices A , not to be confused with the norms

|| . || defined in eq. 34

|A | = |Det A | 1/3(45)

Eq. 42 then implies
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|M 1 | / | M 2 | = | t | 2

|M 1 | =
˛̨
m diag

˛̨
= (m 1 m 2 m 3 ) 1/3

|M 2 | =
˛̨
M diag

˛̨
= (M 1 M 2 M 3 ) 1/3

(46)

We consider the arithmetic mean of the light and heavy neutri no masses and the coorresponding ’would

be’ masses if µ and µ T would be the only parts of the full 6 × 6 mass matrix M
m = (m 1 m 2 m 3 ) 1/3 , M = (M 1 M 2 M 3 ) 1/3

µ = u µ µ diag ( µ 1 , µ 2 , µ 3 ) v −1
µ ; µ = ( µ 1 , µ 2 , µ 3 ) 1/3

(47)

Then beyond eq. 46 there is one more (exact) relation

bt = ( tan a 1 tan a 2 tan a 3 ) 1/3 = | t |

| µ | 2 = |M 1 | | M 2 | → m / µ = bt , m /M = bt 2

or equivalently m = bt µ
ր

ւ M = bt −1 µ

(48)

→
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The estimates below are based on the assumption that the scal ar doublets (2) are part of a complex

(p)scalar multiplet in [ 10 ] of SO10 .

It follows that at the unification scale we have

µ = µ T = µ u(49)

We shall use the relation at a scale near 100 GeV

µ ∼ 1
3

( µ u )(50)

The factor 1
3

accounts for the color rescaling reducing the (colored) up- quark mass matrix from the

unification scale down to 100 GeV .

Using the definitions in eq. 47 and the quark masses m u ∼ 5.25 MeV ,m c ∼ 1.25 GeV and

m t ∼ 172.5 GeV

µ u = (m u m c m t ) 1/3 ∼ 1 GeV → µ ∼ 1
3

GeV(51)

Further lets approximate the mass square differences obtai ned from the combined neutrino oscillation

measurements by

∆m 2
1 2 ∼ 10 −4 eV 2 , ∆m 2

2 3 ∼ 2.5 10 −2 eV 2(52)

→
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Finally ’pour fixer les id ées’ I set the lowest light neutrino mass ∼ 1 meV and assume hierarchical (123)

light masses. This implies

m 1 ∼ 1 meV , m 2 ∼ 10 meV

m 3 ∼ 50 meV → m ∼ 8 meV

(53)

and

bt = m / µ ∼ 2.5 10 −11 , bt 2 ∼ 6.0 10 −22

M = µ / bt ∼ 1.4 10 10 GeV
(54)
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CQO Conclusions , questions and outlook

C5 The origin of neutrino mass can indeed be understood withi n the specific structure of spin (10) as

charge-like gauge group . Boson fields appear to correspond t o the full set of local

f ( x ) f
′
( x ) binary products with f , f

′ ⊂ [ 16 ] ⊕
ˆ
16

˜
.

This brings us to a starting point along the path of unificatio n of gravitational and charge like

gauge groups
G 0 = spin ( 1 , 3 ) ⊗ spin ( 0 , 10 )

↓ ↓
gauging

orientation

gauging

charges

space-time
VV 1

3 × VV 0
10

(55)

Q1 Is the geometric association of spin ( 0 , 10 ) in eq. 55 indicating internal space-like coordinates

extending the geometric origin of spin ( 1 , 3 ) from space-time ? a

Q2 What is the nature of coordinates in extended space-time ? →
a

I cite here just one reference : Élie Cartan, ’Sur une classe remarquable d’espaces de Riema nn’,

Bull. Soc. Math. de France, 54 (1926) 214 , and 55 (1927) 114 , [ h1] .
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Q2 continued

proposed structures for general (
VV |X ) , within superstring theories

X ⊂ VV ր
ց

8
>>>>>>><
>>>>>>>:

x µ , ϑ α , ϑ γ̇

base superspace

x µ : c-numbers

ϑ , ϑ : Grassmann variables

bx µ , bf A , bf ∗B

target superspace

bx µ : bosonic q-numbers

bf A , bf ∗B : fermionic q-numbers

(56)

but the question addressed is more general and may not necess arily concern a space

(
VV |X ) , endowed with a supersymmetric structure .

Outlook The pathways of nature , entangled indeed

make tremble the doubtful who may not proceed

yet build on assurance acquired to feed

the hope to discover those road signs to read.

Thank you

- - - - - - -
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Complementary material to

’The origin of neutrino mass’
stations along the path of cognition

Contribution to – Discrete’08 –
Symposium on the Prospects in the Physics of Discrete Symmet ries

11.-16. December 2008, IFIC, Valencia, Spain
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4-1 From Lorentzian ( p , q ) to conformal groups [1-a]

M µν ∼ i ( x µ ∂ ν − x ν ∂ µ ) ; ∂ α x β = η αβ

˛̨
p time , q space

[M µν , M στ ] = i

8
<
:

+ η µτ M νσ − η µσ M ντ

− η ντ M µσ + η νσ M µτ

9
=
; → Lie ( SO ( p , q ) )

(57)

Given an associative ( p , q ) Clifford algebra Γ

{ γ µ , γ ν } = 2 η µν ¶ → σ µν = i
2

[ γ µ , γ ν ]

s µν = 1
2
σ µν → s µν ∼ M µν → spin ( p , q ; Γ )

[ s µν , s στ ] = i

8
<
:

+ η µτ s νσ − η µσ s ντ

− η ντ s µσ + η νσ s µτ

9
=
;

(58)

Completing the conformal Lie algebra with conformal infinit esimal boosts

K µ ∼ i
`

2 x µ x α ∂ α − x 2 ∂ µ
´

; D ∼ i x α ∂ α(59)
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with the commutation relations

[K µ , K ν ] = 0 ; [ P µ , K ν ] = 2 i ( η µ ν D − M µν )

[K µ , K ν ] = −

8
><
>:

4
ˆ
x µ x α ∂ α , x ν x β ∂ β

˜
− 2

ˆ
x 2 ∂ µ , x ν x β ∂ β

˜

+
ˆ
x 2 ∂ µ , x 2 ∂ ν

˜
− 2

ˆ
x µ x α ∂ α , x 2 ∂ ν

˜

9
>=
>;

= −

8
>>>><
>>>>:

4
`
x µ x α

ˆ
∂ α , x ν x β ∂ β

˜
−

ˆ
x ν x β ∂ β , x µ x α

˜
∂ α

´

− 2
`
x 2

ˆ
∂ µ , x ν x β ∂ β

˜
−

ˆ
x ν x β ∂ β , x

2
˜
∂ µ − µ ↔ ν

´

+
`
x 2

ˆ
∂ µ , x 2 ∂ ν

˜
−

ˆ
x 2 ∂ ν , x 2

˜
∂ µ

´

9
>>>>=
>>>>;

= −

8
><
>:

− 2
`
− x 2 x ν ∂ µ − µ ↔ ν

´

+ 2
`
x 2 x µ ∂ ν − µ ↔ ν

´

9
>=
>;

= 0

(60)
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[ P µ , K ν ] = −
ˆ
∂ µ , 2 x ν x α ∂ α − x 2 ∂ ν

˜

= −

8
><
>:

[ ∂ µ , 2 x ν x α ] ∂ α

−
ˆ
∂ µ , x 2

˜
∂ ν

9
>=
>;

= − 2 ( η µν x α ∂ α + x ν ∂ µ − x µ ∂ ν )

= 2 i ( η µν D − M µν )

(61)

This can be completed to the Lie algebra of SO ( 2 0 , 5 , 4 1 ··· 4 ) using a dummy mass scale m

µ = 0 · · · 3 :

8
><
>:

M µ 4 = 1
2

`
m −1P µ − mK µ

´

M µ 5 = 1
2

`
m −1P µ + mK µ

´

9
>=
>;

[M µ 4 , M ν 5 ] = 1
4
{ [ P µ , K ν ] + µ ↔ ν } = i η µν D

= − i η µν M 45

→

M 45 = −D

(62)
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For completeness we also verify the commutation rules

ˆ
M µ 4 (5) , M ν 4 (5)

˜
= ∓ 1

4

8
><
>:

[ P µ , K ν ]

[K µ , P ν ]

9
>=
>;

= ∓ 1
4

( [ P µ , K ν ] − µ ↔ ν )

= ± i M µν = i

0
B@
− η 44

− η 55

1
CA M µν

√
(63)

as well as
ˆ
M µ 4 (5) , M 4 5

˜
= − 1

2

ˆ `
m −1 P µ ∓ mK µ

´
, D

˜

= 1
2

8
>>>><
>>>>:

ˆ
m −1 ∂ µ , x β ∂ β

˜

∓
ˆ
2mx µ x α ∂ α , x β ∂ β

˜

±
ˆ
mx 2 ∂ µ , x β ∂ β

˜

9
>>>>=
>>>>;

(64)
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ˆ
m −1 ∂ µ , x β ∂ β

˜
= 1m −1 ∂ µ

ˆ
2mx µ x α ∂ α , x β ∂ β

˜
= 2m

8
><
>:

x µ x α
ˆ
∂ α , x β ∂ β

˜

+
ˆ
x µ x α , x β ∂ β

˜
∂ α

9
>=
>;

= 2m
˘
x µ x α ∂ α − xβ

`
∂ β x µ x α

´
∂ α

¯

= (− 1 ) 2mx µ x α ∂ α

ˆ
mx 2 ∂ µ , x β ∂ β

˜
= m

8
><
>:

x 2
ˆ
∂ µ , x β ∂ β

˜

+
ˆ
x 2 , x β ∂ β

˜
∂ µ

9
>=
>;

= (− 1 )mx 2 ∂ µ

(65)

Commutation with x β ∂ β returns the mass dimension . Thus eq. 64 becomes →
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ˆ
M µ 4 (5) , M 4 5

˜
= 1

2

8
><
>:

m −1 ∂ µ

±
`

2mx µ x α ∂ α − mx 2 ∂ µ
´

9
>=
>;

= − i 1
2

˘
m −1 P µ ± mK µ

¯

= − i M µ 5 (4) = i

0
B@

η 44 M µ 5

− η 55 M µ 4

1
CA

√

(66)

4-1a Details of Lorentzian ( p , q ) × P µ → conformal ( p + 1 , q + 1 ) - extension

for the Majorana setting : p = 1 , q = 3

It becomes clear from the derivations in section 4-1 that the extension from the motion group in

d = p + q dimensions with p time- and q space-signatures follows the s ame rules for all p , q .

The extended group structure becomes simple and forms the co nformal group SO ( p + 1 , q + 1 ) .

For the corresponding Γ− algebra extension we discuss here just the characteristic M ajorana setting

inherent to p = 1 , q = 3 , illustrating the induced extension : s pin ( p , q ) → spin ( p + 1 , q + 1 ) .

It will become clear only after the above comparison of exten sions , that they are not in any way related.

→
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To study the Majorana representations of signatured (and as sociative) Clifford algebras ( eq. 58 ) it is

necessary to adopt a real form of the Dirac equation , i.e. to p ass from the matrices and conventions

γ µ → Γ µ = i γ µ and η µν → − η µν , which satisfy the relations

η µν = diag ( 1 p−times 1 ; − 1 q−times − 1 )

{ γ µ , γ ν } = 2 η µν ¶

{ Γ µ , Γ ν } = 2 (− η µν ) ¶ ; Γ µ = i γ µ

− η µν = diag (− 1 p−times − 1 ; 1 q−times 1 )

(67)

The full Γ algebra over the complex numbers is the same for all space-ti me signatures. It shall be

denoted { d Γ ; C } and identified with its unique – modulo (inner) automorphism s – irreducible matrix

representation.

dim { d Γ ; C } = 2 [ d
2 ] ; d = p + q ;

h
d
2

i
=

8
><
>:

d
2

for d even

d−1
2

for d odd

(68)

If within { d Γ ; C } and given p , q signatures the Γ µ matrices ( eq. 67 ) can be chosen real, we deal

with a Majorana representation, discussed for p = 1 , q = 3 in ap pendix A. →
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Equipped with the Majorana representation { Γ p=1 , q=3 ; R } we extend it to { Γ p=2 , q=4 ; R }
below , keeping in mind that there is no Majorana representat ion for general p , q values. Also care must

be taken in the numbering of coordinates beyond the four pert aining to d = 1 + 3 . We continue the

enumeration of space-time dimensions, always starting wit h extended time followed by extended

3-space, using red color for the time-like dimension number s and signatures , as follows

x 0 = t , x k, k = 1, 2, 3 · · · q ; x q+r , r = 1, · · · , p − 1 ; for p=2 , q=4 →

x 0 x 1 x 2 x 3 x 4 ; x 5

+ − − − − +

(69)

In order to distinguish the space-time dimensionality and i ts associated Γ− algebra we shall use ( or

substitute ) the notation

Γ µ → d Γ µ ; d = p + q , µ = 0, 1 · · · d− 1(70)

Thus Γ 5, γ 5 R(L) ( eq. 90 ) for general d , p , q and general basis become

d Γ d+1 = d ( Γ 0 Γ 1 · · · Γ d−1 )(71)

In the product in eq. 71 the prefix d is not repeated for brevity .
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4-1b Product representation for the Clifford algebra
˘

d 1+d 2
Γ ; C

¯
[2-a]

We consider two Clifford algebras corresponding to even dimensions d 1 , d 2 respectively

d 1 = 2 ν 1 : d 1

`
Γ 0 , · · · Γ d 1−1

´

d 2 = 2 ν 2 : d 2

`
Σ 0 , · · · Σ d 2−1

´

9
>=
>;
D = d 1 + d 2

dim
n

d j
Γ ; C

o
= 2 ν j = N j ; j = 1, 2

(72)

Then we construct the direct product representation of {D Γ ; C } in the following way ( two ways )

D Γ α = d 1
Γ α ⊗ ¶ N 2×N 2

; α = 0, · · · d 1 − 1

D Γ d 1+β = d 1
Γ d1+1 ⊗ d 2

Σ β ; β = 0, · · · d 2 − 1

D Γ D+1 =
`

d 1
Γ d 1+1

´ 1 + d 2 ⊗
`

d 2
Γ d 2+1

´
(73)

As long as we work over the field C , signatures i.e. the value of the squares →
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( D Γ x ) 2 = − η xx | no sum ¶ = ( D σ x ) ¶ ; x = 0 , · · · , D − 1

( D Γ D+1 ) 2 = ( D σ D+1 ) ¶ ; ( D Γ D+1 ) = ( D σ D+1 ) | Π

{ ( D σ x ) = ± 1 | x = 0 , · · · , D − 1 , D + 1 }

(74)

are immaterial . Nevertheless the ’straight’ product defini tion of d Γ d+1 for d even in eq. 71 implies ,

always within even D = d 1 + d 2 , d 1 , d 2 , by eqs. 72 , 73 , recursively

( D σ D+1 ) | Π =
`

d 1
σ d 1+1

´ `
d 2

σ d 2+1

´
(75)

The suffix Π of the signature ( D σ D+1 ) | Π in eqs. 74 and 75 shall indicate that this quantity

depends on the chosen form of the product representation .

It becomes obvious that if the d σ x parities are assigned the direct product composition , as de fined in

eq. 73 , this may not be compatible from d 1 & d 2 to D ↔ d 1 ⊗ d 2 .

To this end we compute , for generic even d , the quantities d σ d+1 for any one of assigned parities

d σ x for x = 0 · · · d − 1 , maintaining the ’strict’ product representation of d Γ d+1 as defined in

eq. 71 →
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“ Q d−1
x=0 ( d Γ x )

” 2
=

“ Q
x ( d Γ x ) 2

”
σ rev ( d )

σ rev ( d ) = (− 1 ) 1+2+···+d−1 = (− 1 ) ν ; d = 2 ν

(76)

Hence , continuing to work over C , we can upon multiplication and/or rearrangement in orderi ng of

individual d Γ x ; x = 0 , · · · d− 1 elements with appropriate powers of i , assign arbitrary

signatures and d σ x parities , yielding a signature ( p , q ) ; p + q = d →

d σ d+1 ( p , q ) = (− 1 )
1
2

(p − q) = (− 1 )
1
2

(q − p) = d σ d+1 ( q , p )(77)

It is the symmetry with respect to exchange of p ↔ q signatures, which renders the direct product ,

defined in eq. 73 nonsymmetric yet consistent with eq. 75. However the assigned d 1,2
σ x parities or

signatures are not directly transferred to the ordered prod uct {D Γ y ; y = 0 , · · · D − 1 }

D σ α =
`

d 1
σ α

´
for α = 0 , · · · d 1 − 1

D σ α =
`

d 1
σ d 1 + 1

´
( p 1 , q 1 )

`
d 2

σ α
´

for α = d 1 , · · · D

→ ( p , q ) (D ) | Π =

8
><
>:

( p 1 + p 2 , q 1 + q 2 ) for q 1 − p 1 = 0 mod 4

( p 1 + q 2 , q 1 + p 2 ) for q 1 − p 1 = 2 mod 4

(78)
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4-1c Reduction of a Majorana representation { Γ p , q ; R } → { Γ p−1 , q−1 ; R }

Given a Majorana representation { Γ p , q ; R } with p , q ≥ 1 we single out the last two real matrices

for each signature respectively , using here the reordered n umbering
n

Γ −
1 , · · · , Γ −

p ; Γ +
1 , · · · , Γ +

q

o
(79)

n
Γ −

p , Γ +
q

o
;

 “
Γ −

p

” 2
,

“
Γ +

q

” 2
ff

= ( ¶ ) 2 ν×2 ν { −1 , +1 } ; 2 ν = p + q

(80)

Next we consider the product

Π = Γ −
p Γ +

q with ( Π ) 2 = −
“

Γ −
p

” 2 “
Γ +

q

” 2
= + ( ¶ ) 2 ν×2 ν

→ Pr ± = 1
2

( ¶ 2 ν×2 ν + Π ) ;

8
><
>:

Pr 2
± = Pr ± , P r ± Pr ∓ = 0

Pr + + Pr − = ¶ 2 ν×2 ν

9
>=
>;

(81)

As a consequence of the real nature of the matrices Γ p , q the projectors Pr ± defined in eq. 81 are real

symmetric and thus hermitian matrices , projecting on two or thogonal subspaces S ± of dimension

2 ν − 1 respectively . Furthermore these projectors commute with t he remaining Γ matrices →
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n
Γ −

1 , · · · , Γ −
p−1 ; Γ +

1 , · · · , Γ +
q−1

o

h
Pr ± , Γ −

k

i
= 0 , k = 1 , · · · , p− 1

h
Pr ± , Γ +

j

i
= 0 , j = 1 , · · · , q − 1

(82)

It follows that the projected matrices

bΓ −
k = Γ −

k Pr ± , k = 1 , · · · , p− 1

bΓ +
j = Γ +

j Pr ± , j = 1 , · · · , q − 1

(83)

form – for either sign of Pr ± separately – irreducible representations over R

→ { Γ p−1 , q−1 ; R } with bp = p− 1 , bq = q − 1 ; bp + bq = 2 ( ν − 1 ) .
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4-2 The two base sets of Majorana representationsn
Γ p=2ν − , q=0 ; R (−)

o
and

n
Γ p=0 , q=2ν + ; R (+)

o

We give the case p = 2 ν − = d − ; q = 0 a label (−) and conversely q = 0 ; q = 2 ν + the

label (+) . It now follows from eq. 109

p = d − q = 0 M (−) = 4 M d −

(1)
+ 4 M d −

(2)

p = 0 q = d + M (+) = 4 M d +

(3)
+ 4 M d +

(2)

d ± = 2 ν ± even

(84)

From eq. 126 we obtain

4 M 2ν
(l)

= 2 ν−1
`

2 ν−1 + F [ 2 ν − 2 (l) ]
´

(85)

Combining eqs. 84 and 85 we obtain →
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M (∓) = 1
2

2 ν

2
64 2 ν +

8
><
>:

F ( 2 ν − 2 ) + F ( 2 ν − 4 ) for (−)

F ( 2 ν − 6 ) + F ( 2 ν − 4 ) for (+)

9
>=
>;

3
75

= 1
2

2 ν [ 2 ν − 1 ]

ν → ν ∓ respectively

(86)

The quantities M (∓) represent the number of antisymmetric 2 ν × 2 ν matrices forming the full

Clifford algebras
n

Γ p=2ν − , q=0 ; R (−)
o

and
n

Γ p=0 , q=2ν + ; R (+)
o

.

Comparing the two relations for M (∓) in eq. 86 it follows using the labels p ( = 2ν − ) forn
Γ p=2ν − , q=0 ; R (−)

o
and q ( = 2 ν + ) for

n
Γ p=0 , q=2ν + ; R (+)

o
→
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F ( p − 2 ) + F ( p − 4 ) = − 1 for (−) → p = 6 , 8

F ( q − 6 ) + F ( q − 4 ) = − 1 for (+) → q = 2 , 8

(87)

In order to illustrate the solutions to eq. 87 I display the fu nction F ( j ) ; j = even from eq. 125 below

F ( j ) = F (− j ) = F ( j + 8 )

j −6 −4 −2 0 2 4 6 8

F 0 −1 0 1 0 −1 0 1

(88)

→
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Fig 2 : The complex and real Majorana representations

MajCR ( p , q ) ←→
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Appendix A : The Majorana representation of { Γ p , q ; R } for p = 1 , q = 3

If for a given signature p , q a Majorana representation over t he real numbers { d Γ ; C } exists, this

representation shall be denoted { Γ p , q ; R } .

For p = 1 , q = 3 the (left- and right-) chiral basis over the field C corresponds to the Γ µ matrices

Γ
(χ)
µ =

0
B@

0 i σ µ

i eσ µ 0

1
CA ;

σ µ = ( σ 0 ; σ k )

eσ µ = ( σ 0 ; − σ k )

; k = 1, 2, 3

σ 0 = ¶ 2×2 ; σ 1 =

0
B@

0 1

1 0

1
CA ; σ 2 =

0
B@

0 −i

i 0

1
CA ; σ 3 =

0
B@

1 0

0 −1

1
CA

Γ µ ≡ η µν Γ ν , Γ 5 = Γ 0 Γ 1 Γ 2 Γ 3 , Γ 2
5 = − ¶ 4×4 | p=1q=3 ; in any basis

(89)

In the chiral basis we have

Γ
(χ)
5 = i

0
B@
¶ 0

0 − ¶

1
CA = i γ 5 R = − i γ 5 L(90)

→

– p. 63



A2

In the Majorana basis Γ
(Maj)
5 is real , antisymmetric.

In the chiral basis the substrate of the spinor (a 4-dimensio nal column ’vector’) is of the form

0
B@

ϕ α

eε γ̇δ̇ ( ψ δ ) ∗

1
CA

(χ)

; α,δ ,
γ̇,δ̇ = 1, 2 ; eε γ̇δ̇ = −

0
B@

0 1

− 1 0

1
CA

with the (Majorana-) reality condition φ α = ψ α

(91)

We introduce two component and 2 by 2 matrix notation

( ϕ δ , ψ δ ) → ϕ , ψ ; eε γ̇δ̇ → eε ≡ ε −1 = − ε

ε = i σ 2 =

0
B@

0 1

− 1 0

1
CA

(92)

→
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The representation for a spinor ( eq. 91 ) in the chiral basis b ecomes

0
B@

ϕ

ε −1 ψ ∗

1
CA

(χ)

; with the Majorana condition ϕ = ψ(93)

The Majorana basis obtains whence ϕ , ψ in eqs. 91 , 93 are identified and then decomposed into real

and imaginary parts (component by component)

ϕ = ψ = x + i y ; x = 1
2

( ϕ + ϕ ∗ ) ; y = 1
2i

( ϕ − ϕ ∗ )(94)

The action of Γ
(χ)
µ ( eq. 89 ) then becomes

Γ
(χ)
µ

0
B@

x + i y

ε −1 (x − i y)

1
CA =

0
B@

i σ µ ε −1 (x − i y)

i eσ µ (x + i y)

1
CA =

0
B@

x
′

+ i y
′

ε −1
“
x

′ − i y
′
”

1
CA

µ
(95)

→
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Thus we obtain , working out the action of Γ
(χ)
µ ( eq. 95 ) separately for each µ

0
B@

x
′

+ i y
′

ε −1
“
x

′ − i y
′
”

1
CA

0

=

0
B@

ε −1 ( y + i x )

(− y + i x )

1
CA

x
′

0 = − ε y

y
′

0 = − ε x
→ Γ

(Maj)
0 =

0
B@

0 − ε

− ε 0

1
CA

x
′

1 = σ 3 y

y
′

1 = σ 3 x

→ Γ
(Maj)
1 =

0
B@

0 σ 3

σ 3 0

1
CA

x
′

2 = x

y
′

2 = − y
→ Γ

(Maj)
2 =

0
B@
¶ 0

0 − ¶

1
CA

x
′

3 = − σ 1 y

y
′

3 = − σ 1 x

→ Γ
(Maj)
3 =

0
B@

0 − σ 1

− σ 1 0

1
CA

(96)

→
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The Majorana representation of { Γ p=1 , q=3 ; R } constructed in eq. 96 allows inner automorphisms

Γ
′

µ = R Γ
(Maj)
µ R −1 ; R : real 4×4 , {R |Det R = 1 } ≃ SL ( 4 , R )

dim ( SL ( 4 , R ) ) = 15

(97)

forming the special linear (real, simple, noncompact) grou p in 4 dimensions .

We include Γ
(χ)
5 ( eq. 90 ) and transform it to the Majorana representation, us ing eq. 95

Γ
(χ)
5

0
B@

x+ iy

ε −1 (x− iy)

1
CA =

0
B@

i (x + i y)

−i ε −1 (x− iy)

1
CA =

0
B@

x
′

+ i y
′

ε −1
“
x

′ − iy ′
”

1
CA

5

=

0
B@

−y + i x

ε −1 (−y − ix)

1
CA

x
′

5 = − y

y
′

5 = x

→ Γ
(Maj)
5 =

0
B@

0 − ¶

¶ 0

1
CA

(98)
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Appendix B : The Majorana representation { Γ p , q ; R }
counting of ( p ) antisymmetric real Γ x matrices

Lets first reorder the usual numbering of Γ matrices such that for signature ( p , q ) we have

0 → 1 , · · · , p − 1 → p ; p → 1 , · · · , p + q − 1 → q

“
Γ −

r

”
= (− 1 ) ¶ 2 ν×2 ν ; r = 1 , · · · , p ; d = 2 ν = p + q

“
Γ +

s

”
= ( + 1 ) ¶ 2 ν×2 ν ; s = 1 , · · · , q

(99)

Given a Majorana representation the first level Γ + matrices can be brought to symmetric , the Γ −

matrices to antisymmetric form .

The level λ product of Γ matrices is thus of the form

Π λ
̺σ =

“
Γ −

r 1
· · · Γ −

r ̺

” “
Γ +

s 1
· · · Γ +

r σ

”
; 1 ≤ r 1 · · · ≤ r ̺ ≤ p

1 ≤ s 1 · · · ≤ s σ ≤ q

λ = ̺ + σ ; 0 ≤ λ ≤ d

(100)

→
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The signature of any member of Π λ
̺σ is

sig
`

Π λ
̺σ

´
= s ( λ ; ̺ , σ ) = (− 1 ) ̺ (− 1 )

1
2

λ (λ−1)

λ = ̺ + σ ; 0 ≤ λ ≤ d ; 0 ≤ ̺ ≤ p ; 0 ≤ σ ≤ q

(101)

The factor (− 1 )
1
2

λ (λ−1) segregates λ into the four classes mod 4

(− 1 )
1
2

λ (λ−1) =

8
>>>>>>>>><
>>>>>>>>>:

+ 1 for λ =

8
><
>:

4m + 0 → (λ) 0

4m + 1 → (λ) 1

− 1 for λ =

8
><
>:

4m + 2 → (λ) 2

4m + 3 → (λ) 3

m = 0 , 1 · · · ; 0 ≤ λ ≤ 2 ν

(102)

The signature s ( λ ; ̺ , σ ) defined in eq. 101 then separates the (integer) indices furth er →
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s ( λ ; ̺ , σ ) =

8
>>>>>>>>><
>>>>>>>>>:

+ 1 for ̺ =

8
><
>:

even & (λ) 0 & 1

odd & (λ) 2 & 3

− 1 for ̺ =

8
><
>:

even & (λ) 2 & 3

odd & (λ) 0 & 1

(103)

Hence the power M of the set S − = { ̺ , σ | s ( λ ; ̺ , σ ) = −1 } is the number of

antisymmetric 2 ν × 2 ν matrices

M =
P

S −

0
B@

p

̺

1
CA

0
B@

q

σ

1
CA = 2 ν−1 ( 2 ν − 1 ) ; p + q = 2 ν

S − =

8
>>>><
>>>>:

̺ even &(λ) 2 & 3

∪

̺ odd &(λ) 0 & 1

9
>>>>=
>>>>;

; λ = ̺ + σ ; 0 ≤ ̺ ≤ p ; 0 ≤ σ ≤ q

(104)

→
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Eq. 104 only holds provided a Majorana representation { Γ p , q ; R } exists , thereby yielding a

nontrivial condition . We illustrate this for p = 2 , q = 0

q = 0 → λ = ̺ →

̺ even &(λ) 2 & 3 → ̺ = 2

̺ odd &(λ) 0 & 1 → ̺ = 1 → M = 3

ν = 1 → 2 ν−1 ( 2 ν − 1 ) = 1 6= M

(105)

The set S − defined in eq. 104 can also be classified according to the mod 4 c lasses of

̺ , σ ; (̺) , (σ) separately →
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S − =

8
>>>>>>>>>><
>>>>>>>>>>:

(̺) (σ) (̺) (σ)

0 2 0 3

1 0 1 3

2 0 2 1

3 1 3 2

(106)

Hence the calculation of M involves a selected sum over the pa ir of mod 4 class sums

̺ = 4 r + (̺) , σ = 4 s + (σ) ; r , s = 0 , 1 · · ·

M p q
(̺) (σ)

=
P

r,s

0
B@

p

4 r + (̺)

1
CA

0
B@

q

4 s + (σ)

1
CA

with

8
><
>:

4 r + (̺) ≤ p

4 s + (σ) ≤ q

(107)

The double sums for M p q
(̺) (σ)

in eq. 107 factorize →
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M p q
(̺) (σ)

= M p
(̺)

M q
(σ)

M n
(τ)

=
P 4 u + (τ) ≤ n

u=0

0
B@

n

4 u + (τ)

1
CA

M n
(τ)

= 0 for n < (τ)

(108)

If the condition(s) 4 u + (τ) ≤ n cannot be satisfied, i.e. for n < (τ) the mod 4 sum M n
(τ)

has

to be set to zero , as indicated in eq. 108 .

The factorized forms thus yield for M ( eq. 104 )

M =

2
6666666664

M p
(0)

“
M q

(2)
+ M q

(3)

”

+M p
(1)

“
M q

(0)
+ M q

(3)

”

+M p
(2)

“
M q

(0)
+ M q

(1)

”

+M p
(3)

“
M q

(1)
+ M q

(2)

”

3
7777777775

(109)
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Appendix C: mod 4 sums of binomials and powers of 2

Pascal’s triangle [11-1982]

The mod 4 sums of binomial coefficients M n
(τ)

defined in eq. 108 shall be endowed with the prefix 4 for

clarity of notation

M n
(τ)
→ 4 M n

(τ)
=

P 4 u + (τ) ≤ n
u=0

0
B@

n

4 u + (τ)

1
CA ; (τ) = 0, 1, 2, 3(110)

The periodicity structure { mod 4 } can be mapped on the powers of the fourth roots of 1 (over C )

r (τ) = i (τ) = exp
`

2π
4

(τ)
´

; (τ) = 0, 1, 2, 3 →

k : r (τ) →
`
r (τ)

´ k
=

`
r (τ)

´ (k)
= x (τ) (k) ; (τ) , (k) = 0, 1, 2, 3

x (τ) (k) = ( i ) (τ) (k) = ( i ) ( (τ) (k) )

(111)

I display the mod 4 multiplication table for the quantity ( (τ) (k) ) below →
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(k) 0 1 2 3

(τ)

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

→ x (τ) (k) =

0
BBBBBBBB@

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

1
CCCCCCCCA

(112)

It follows that the inverse matrix to x (τ) (k) denoted y (k)(τ) filters out the mod 4 sums in

conjunction with any generating function given by a power se ries G ( z ) =
P ∞

k=0 G k z
k

y
(k

′
) (τ)

x (τ) (k) = δ
(k

′
) (k)

y (k) (τ) = 1
4

0
BBBBBBBB@

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

1
CCCCCCCCA

= 1
4

( i ) − (k) (τ)
(113)

→

– p. 75



C3

mod 4 filtering

Let me define the following set of generating functions assoc iated with a given generating function

G ( z )

G ( z ) =
P ∞

k=0 a k z
k →

G (τ) ( z ) = G
`
i (τ) z

´
; (τ) = 0, 1, 2, 3

G (τ) ( z ) =
P ∞

k=0 i
(τ) (k) a k z

k

(114)

In eq. 114 the quantities x (τ) (k) = ( i ) (τ) (k) defined in eq. 111 appear , multiplying the k-th

not the (k)-th term in the power series for G (τ) ( z ) . It follows using y , the inverse of x defined in

eqs. 111 , 113 , setting

eG (l) ( z ) =
P

(τ) y (l) (τ) G (τ) ( z ) ; k = 4 u + (k) ; u = 0, 1, · · ·

eG (l) ( z ) =
P

u

P
(k) a 4 u + (k) z

4 u + (k)
“ P

(τ) y (l) (τ) x (τ) (k)

”

=
P

u

P
(k) a 4 u + (k) z

4 u + (k) δ (l) (k)

=
P

u a 4 u + (l) z
4 u + (l) ; (l) = 0, 1, 2, 3

(115)

→
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Before generating the mod 4 sums of binomial coefficient we ha ve to settle a subtle case in the definition

of 4 M 0
(0)

which occurs through the properties of the set S − defined in eq. 104 arising when either p

or q is 0 ( but not both )

4 M 0
(0)

= 1 , 4 M 0
(k)

= 0 for (k) > 0(116)

With the case n = 0 given in eq. 116 we can use for n ≥ 1 as generating function for the mod 4 sums

of binomial coefficients the generating polynomial

G ( n ; z ) = ( 1 + z ) n

=
P n

k=0 a
n
k z

k ; a n
k =

0
B@

n

k

1
CA

; n ≥ 1

(117)

The base functions G (τ) in eq. 114 thus become →

– p. 77



C5

G (0) ( n ; z ) = ( 1 + z ) n

G (1) ( n ; z ) = ( 1 + i z ) n

G (2) ( n ; z ) = ( 1 − z ) n

G (3) ( n ; z ) = ( 1 − i z ) n

4 M n
(l)

=
P

(τ) y (l) (τ) Y
n

(τ)
; Y n

(τ)
= G (τ) ( n ; z = 1 )

(118)

With y determined in eq. 111 it remains to calculate the const ants Y defined in eq. 118

Y n
(0)

= 2 n , Y n
(1)

= ( 1 + i ) n

Y n
(2)

= 0 , Y n
(3)

= ( 1 − i ) n =
“
Y n

(1)

” ∗(119)

It is the the powers ( 1 ± i ) n for odd (τ) within the mod 4 logic , which bring about the mod 8

dependence inherent to Majorana representations , for even d = p + q = 2 ν . →
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n = 8 u + {n} ; {n} = 0, 1 · · · 7 , u = 0, 1 · · ·

( 1 + i ) n = 2 4u ( 1 + i ) {n}

{n} 0 2 4 6

“
1√
2

(1 + i)
” {n}

1 i −1 −i

{n} 1 3 5 7

“
1√
2

(1 + i)
” {n}

1√
2

(1 + i) 1√
2
(−1 + i) 1√

2
(−1− i) 1√

2
(1− i)

(120)

→
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Pascals triangle

0
@ n

k

1
A for n = 1, 2, · · · , 16

Fig 3 : Pascal’s triangle
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Appendix D: mod 4 sums of binomials and powers of

2
1
2 and i

1
2 ≡ exp

`
2π
8
i

´

It is through the generating polynomials that half-integer powers of 2 ( and i ) enter . We rewrite eq. 119

and use y in the form given in eq. 113

Y n
(0)

= 2 n , Y n
(1)

=
“

2
n
2

” “
i

n
2

”

Y n
(2)

= 0 , Y n
(3)

=
“

2
n
2

” “
i −

n
2

”
=

“
Y n

(1)

” ∗

i
n
2 = i

{n}
2 ; {n} = n mod 8 ; y (l) (τ) = 1

4
( i ) − (l) (τ)

(121)

This yields the characteristic sums

Y n (l) = 1
4

P
(τ) ( i ) − (l) (τ) Y n

(τ)
= 2 n−2 + 1

4
∆ n (l)

∆ n (l) = 2
n
2

“
( i ) − (l) ( i )

n
2 + ( i ) − 3 (l) ( i ) − n

2

”

= 2
n
2

“
( i ) − (l) ( i )

n
2 + ( i ) (l) ( i ) − n

2

”

( i ) − 3 (l) = ( i ) (l)

(122)

→
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Eq. 122 yields

∆ n (l) = ( 2 )
n
2

+1 ℜ
“

( i )
n
2

− (l)
”

( i )
n
2

− (l) =
“

( i ) [ n
2 ] − (l)

”
8
><
>:

1 for n even

i
1
2 for n odd

ˆ
n
2

˜

(123)

We thus rewrite the quantities Y n (l) in eq. 122

4 M n
(l)
≡ Y n (l) = 2 n−2 + 2 [ n

2 ] −1 F ( n − 2 (l) ) ; n ≥ 1

F ( n − 2 (l) ) = ℜ
`

exp
`
i 2π

8
( n − 2 (l) )

´ ´
×

8
><
>:

1 for n even

√
2 for n odd

F → F ( j ) ; j = 0 , ± 1 , ± 2 · · · with j → n − 2 (l)

(124)

The function F ( j ) defined in eq. 124 over the signed integers j takes only intege r values

{ F } = { 0 , ± 1 } →
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F ( j ) = F (− j ) = F ( j + 8 )

j −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

F 1 0 −1 −1 −1 0 1 1 1 0 −1 −1 −1 0 1 1

(125)

F can be visualized as projection on the real axis of a side-ce ntered quadrangle in the complex plane ,

with the side centers forming an inscribed quadrangle rotat ed by 45 degrees , as shown in figure 1 below.

We collect the formulae determining the mod 4 sums of binomia l coefficients ( eqs. 116 , 124 )

4 M 0
(0)

= 1 , 4 M 0
(l)

= 0 for (l) > 0

4 M n
(l)
≡ Y n (l) = 2 n−2 + 2 [ n

2 ] −1 F ( n − 2 (l) ) ; n ≥ 1

with F ( j ) defined in eq. 125

(126)

Care must be taken if using eq. 126 for n = 1 and 2 whenever (l) > n . →
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Fig 1 : The side-centered quadrangle(s) associated

with the function F ( j ) ←→
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Appendix E: The spin (10) product representations`
16 ⊕ 16

´
⊗

`
16 ⊕ 16

´

We follow the spin (10) decomposition discussed in section 2 -1 ( eq. 17 repeated below )

spin (10) → SU5 × U1 J 5
(17)

Further let us denote representations of spin (10) as oppose d to those pertaining to SU5 and associated

J 5 quantum number by

spin (10) : [dim] ; SU5 × U1 J 5
: {dim} J 5

(127)

Thus eq. 21 translates to

[16] = {1} +5 + {10} +1 +
˘
5

¯
−3

ˆ
16

˜
= {1} −5 +

˘
10

¯
−1

+ {5} +3

(128)

In turn SU5 representations shall be decomposed along the st andard model gauge group

SU3 c ⊗ SU2 L ⊗ U1 Y , where Y denotes the electroweak hypercharge
`

with a factor 1
2

included
´

Y = Q e.m. / e − I 3 L(129)

→
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{dim} → P ˜
(dimSU3 c , dimSU2 L) Y

ˆ
(130)

The brackets on the right hand side of eq. 130 are reversed in o rder not to confuse spin (10) - and

standard model representations.

Then the base 16
`

16
´

decompose to

[16] →

2
666666666666666664

{1} +5 →
n ˜

(1 , 1) 0

ˆ o
+5

{10} +1 →

8
>>>><
>>>>:

i
(3 , 2) + 1

6

h
+

i`
3 , 1

´
− 2

3

h
+

i
(1 , 1) +1

h

9
>>>>=
>>>>;

+1

˘
5

¯
−3
→

8
><
>:

i`
3 , 1

´
+ 1

3

h
+

i
(1 , 2) − 1

2

h

9
>=
>;

−3

(131)

The product representations
`

16 ⊕ 16
´
⊗

`
16 ⊕ 16

´
generate all SO (10) antysymmetric tensor

ones, of which we encountered the fivefold antisymmetric in s ection 2-1 (eq. 26). →
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To elaborate we specify the n-fold antisymmetric tensors ob tained from the 10-representation of SO (10)

[ t 0 ] ∼ 1

[ t 1 ] A ∼ z A ; A = 1, 2, · · · , 10 ↔ [ t 1 ] =
˘

5
¯

2
⊕ { 5 } −2

[ t 2 ] [A 1 A 2] ∼ 1
2

“
z A 1

1 z A 2

2 − z A 2

1 z A 1

2

”

· · ·
[ t n ] [A 1 A 2···A n] ∼ 1

n!

P
sgn

0
@ 1 · · · n

π 1 · · · π n

1
A z

A π1

1 z
A π2

2 · · · z A πn
n

n ≤ 10

(132)

The quantities [ t n ] defined in eq. 132 form irreducible real representations of S O (10) except for n = 5 ,

which is composed of the relatively complex irreducible representations 126 and 126 ( eq. 26 ) .

The tenfold antisymmetric invariant corresponds to [ t n=10 ] . The product of two full Clifford algebras

pertaining to spin (10) contains all [ t n ] ; n = 0 · · · 10 representations exactly once . →
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Treating the n = 5 tensor as one representation – it is reducib le only over C – the dimensions of the

[ t n ] representations follow Pascal’s triangle ( Fig. 3 page C7 ) o f binomial coefficients for N = 10,

whereby n even and odd shall be distinguished

[ t 0 ] [ t 2 ] [ t 4 ] [ t 6 ] [ t 8 ] [ t 10 ]

[ t 1 ] [ t 3 ] [ t 5 ] [ t 7 ] [ t 9 ]

1 45 210 210 45 1

10 120 252 120 10

(133)

This corresponds to the following products of 16 + 16

[16]
ˆ
16

˜

[16] s :
[10] +

[126]
, a : [120]

[1] + [45] +

[210 ]

ˆ
16

˜ [1] + [45] +

[210 ]
s :

[10] +
ˆ
126

˜ , a : [120]

(134)

→
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The correspondence of product representations of the 16 + 16 = 32 associative Clifford algebra

with the sum of antisymmetric tensor ones follows from the co mpleteness of all products of γ matrices

forming the spin (10) algebra i.e. are of dimension

( 32 ) 2 =
`

2 5
´ 2

= 2 10(135)

We proceed to reduce the [16] ⊗ [16] product with respect to J 5 , SU5 and

SU3 c × SU2 L × U1 Y .

The individual products are
`

s (a) : (a)symmetric
´

{1} 5 {10} 1

˘
5

¯
−3

{1} 5 {1}10 s
{10} 6

˘
5

¯
2

{10} 1 {10} 6

0
@

˘
5

¯
2
+

˘
50

¯
2

1
A

s

“ ˘
45

¯
2

”
a

0
@ {5}−2 +

{45}−2

1
A

˘
5

¯
−3

˘
5

¯
2

0
@ {5}−2 +

{45}−2

1
A

“ ˘
15

¯
−6

”
s

“ ˘
10

¯
−6

”
a

(136)

→
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We proceed to decompose the diagonal {SU5} J 5
representations ( eq. 131 )

`
{10} 1 ⊗ {10} 1

´
s

=
˘
5

¯
2

+
˘
50

¯
2

↓

s
i
(3 , 2) + 1

6

h
+1

i`
3 , 1

´
− 2

3

h

+1

i
(1 , 1) +1

h
+1

i
(3 , 2) + 1

6

h
+1

0
B@

i
(6 , 3) + 1

3

h
2
+

i`
3 , 1

´
+ 1

3

h

2

1
CA

0
B@

i
(8 , 2) − 1

2

h
2
+

i
(1 , 2) − 1

2

h
2

1
CA

i
(3 , 2) + 7

6

h
2

i`
3 , 1

´
− 2

3

h

+1

i`
6 , 1

´
− 4

3

h

2

i`
3 , 1

´
+ 1

3

h

2

i
(1 , 1) +1

h
+1

i
(1 , 1) +2

h
2

(137)

→
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“ ˘
5

¯
−3
⊗

˘
5

¯
−3

”
s

=
˘
15

¯
−6

↓

s
i`

3 , 1
´

+ 1
3

h

−3

i
(1 , 2) − 1

2

h
−3

i`
3 , 1

´
+ 1

3

h

−3

i`
6 , 1

´
+ 2

3

h

−6

i`
3 , 2

´
− 1

6

h

−6

i
(1 , 2) − 1

2

h
−3

i
(1 , 3) − 1

h
−6

↓

complex e.w. triplet coupling to

1
2

“
ν ∗

Ḟ

” α “
ν ∗

Ġ

”
α

(138)

Next we assemble the (anti)symmetric products ( [16] ⊗ [16] ) s = [10] ⊕ [126] and

( [16] ⊗ [16] ) a = [120] with respect to SU5 ⊗ U1 J 5
→
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using eq. 136

( [16] ⊗ [16] ) s = [10] ⊕ [126] ↓

=

8
>>>>>>><
>>>>>>>:

2
4 {5} −2 +

˘
5 I

¯
2

3
5

⊕

2
4 {1} 10 +

˘
5 II

¯
2

+ {10} 6 +
˘
15

¯
−6

+ {45} −2 +
˘
50

¯
2

3
5

9
>>>>>>>=
>>>>>>>;

( [16] ⊗ [16] ) a = [120] ↓

=

2
6664

{5} −2 +
˘
5

¯
2

+ {10} 6 +
˘
10

¯
−6

+ {45} −2 +
˘
45

¯
2

3
7775

(139)

The roman indices I,II in eq. 139 indicate that appropriate linear combinations of the two
˘
5

¯
2

representations form parts of [10] and [126] respectively . →
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It remains to decompose the SU5 ⊗ U1 J 5
representations in eq. 139 with respect to

SU3 c × SU2 L × U1 Y . We do this associating according to the product representa tions as they

appear in eq. 139

[10] [120] {5} −2

i
(3 , 1) − 1

3

h
+3

+
i`

1 , 2
´

+ 1
2

h

+3

[10] [126] [120]
˘
5

¯
+2

i`
3 , 1

´
+ 1

3

h

−3
+

i
(1 , 2) − 1

2

h
+3

[126] {1} +10

˜
(1 , 1) 0

ˆ
+10

[126] [120] {10} +6

i
(3 , 2) − 1

6

h
+6

+
i`

3 , 1
´
− 2

3

h

+6
+

i
(1 , 1) + 1

h
+6

[120]
˘
10

¯
−6

i`
3 , 2

´
+ 1

6

h

−6
+

i
(3 , 1) + 2

3

h
−6

+
i
(1 , 1) − 1

h
−6

(140)

→
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[126]
˘
15

¯
−6

i`
6 , 1

´
+ 2

3

h

−6
+

i`
3 , 2

´
− 1

6

h

−6
+

i
(1 , 3) − 1

h
−6

[126] [120] {45} −2
c.c. l

[120]
˘
45

¯
+2

2
66666664

0
B@

i
(6 , 1) + 1

3

h
2
+

i`
3 , 3

´
+ 1

3

h

2

1
CA +

0
B@

i
(8 , 2) − 1

2

h
2
+

i
(1 , 2) − 1

2

h
2

1
CA +

i
(3 , 2) + 7

6

h
2

+
i
(3 , 1) − 4

3

h
2

+
i`

3 , 1
´

+ 1
3

h

2

3
77777775

[126]
˘
50

¯
+2

2
666666664

0
B@

i
(6 , 3) + 1

3

h
2
+

i`
3 , 1

´
+ 1

3

h

2

1
CA +

i
(8 , 2) − 1

2

h
2

+
i
(3 , 2) + 7

6

h
2

+
i`

6 , 1
´
− 4

3

h

2
+

i
(1 , 1) +2

h
2

3
777777775

(141)
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`
{10} 1 ⊗ {10} 1

´
s

=
˘
45

¯
2

↓

a
i
(3 , 2) + 1

6

h
+1

i`
3 , 1

´
− 2

3

h

+1

i
(1 , 1) +1

h
+1

i
(3 , 2) + 1

6

h
+1

0
B@

i
(6 , 1) + 1

3

h
2
+

i`
3 , 3

´
+ 1

3

h

2

1
CA

0
B@

i
(8 , 2) − 1

2

h
2
+

i
(1 , 2) − 1

2

h
2

1
CA

i
(3 , 2) + 7

6

h
2

i`
3 , 1

´
− 2

3

h

+1

i
(3 , 1) − 4

3

h
2

i`
3 , 1

´
+ 1

3

h

2

i
(1 , 1) +1

h
+1

−−

(142)

I end the collection of representation decompositions with the adjoint [45] representation of SO (10) →
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( [10] ⊗ [10] ) a = [45] ↓

a {5} −2

˘
5

¯
+2

{5} −2 {10} −4

8
<
:

{1} 0 ↔ J 5

{24} 0 ↔ adjoint SU5

9
=
;

˘
5

¯
+2

˘
10

¯
+4

(143)

It should be noted that despite coinciding dimensions the fo llowing entities are most distinct

[10] 6= {10} −4 , {10} 6

[45] 6= {45} −2 ; · · ·
(144)
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ed., Plenum Press, New York, 1980 .
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