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§1. Introduction

Lie groupoids （Lie 亜群） a generalization of Lie groups

Lie algebroids （Lie 亜代数） a generalization of Lie algebras

History

• Lie groups became very important for physical theories in this

100 years, for example, a gauge symmetry, isospin, the Poincaré

group, etc. Weyl, Wigner, Gell-Mann, Yang-Mills, etc.

• Many physical theories have generalized structures, Baez, Lauda ’09

• understood as a Lie groupoid and a Lie algebroid. Ehresmann

’58, Pradines ’67
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§2. Lie groupoids and Lie algebroids

Groupoids

A groupoid G is a set of arrows on a manifold M . It is denoted by

G ⇒M .

For each arrow g ∈ G, s tg

a source map s : G →M a target map t : G →M

We consider a product gh of two elements of a set G only in a

special case. A multiplication gh is defined only on elements such

that s(g) = t(h).
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s(h) t(h) = s(g) t(g)
h g

1, Require associativity (gh)k = g(hk).

2, The identity 1x satisfies s(1x) = t(1x) = x ∈M .

s = t

3, An inverse g−1 is the reversed arrow.

s(g) = t(g−1) t(g) = s(g−1)
g−1
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If M = {pt.}, G is a group.

Lie groupoid

If all operations are smooth, a groupoid is called a Lie groupoid.
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If M = {pt.}, G is a group.

Lie groupoid

If all operations are smooth, a groupoid is called a Lie groupoid.

Lie algebroid

is an infinitesimal object of a Lie groupoid.
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Two operations for ei ∈ Γ(E), F ∈ C∞(M) :

A Lie bracket: [e1, e2], [ea, eb] = f cab(x)ec,

and

A bundle map (the anchor map): ρ : E → TM ,

ρ(ea)F (x) = ρia(x)
∂

∂xiF (x),

satisfying the following properties:

1. [ρ(e1), ρ(e2)] = ρ([e1, e2]),

2. [e1, F e2] = F [e1, e2] + (ρ(e1)F )e2,

3. [[e1, e2], e3] + (1, 2, 3 cylcic) = 0.
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Local coordinate expression

ρma
∂ρib
∂xm

− ρmb
∂ρia
∂xm

+ ρicf
c
ab = 0,

ρm[a

∂fdbc]

∂xm
+ fde[af

e
bc] = 0.
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§3. (Quasi-)Lie algebroids in physical theories

Example 1. Wilson Lines
Wilson loops on a fixed point x0:

W (Cx0) = Tr

(
P exp i

∮
x0

Aµdσ
µ

)
,

consist of a group, but Wilson lines

W (L) = Tr

(
P exp i

∫ b

a

Aµdσ
µ

)
,

consist of a groupoid, called a fundamental groupoid.
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Example 2. Poisson Bracket

{f(x), g(x)}P.B. =
1

2
πij(x)

∂f

∂xi
∂g

∂xj

has a structure of a Lie algebroid on T ∗M .

A Lie bracket is a Koszul bracket:

[β(1), β(2)]π = Lπ♯β(1)β
(2) − Lπ♯β(2)β

(1) − dxπ(β
(1), β(2)).

for example, [df, dg]π = dπ(df, dg) for β(1) = df , β(2) = dg.
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The anchor map

ρ(β) = π♯β = πij(x)βi
∂

∂xj

cf.) A Nambu bracket Nambu ’73

{f1, f2, · · · , fn}

has an algebroid structure.

11



Example 3. Gravitational Theory
A simplest example is a two dimensional gravity theory with a

dilaton:

S =
1

2

∫
Σ

d2σ
√
−g(φR− V (φ)),

where φ is a scalar field. We rewrite the action to the Einstein-Cartan

form by introducing a zweibein eµ
a, a spin connection ωµ

ab = ωµϵ
ab

and an auxiliary scalar field ϕa.

S =

∫
Σ

d2σ

(
−1

2
ϵµνφRµν −

1

2
ϵµνϕaTµν

a − eV (φ)

)
,
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where Rµν = ∂µων−∂νωµ, and Tµν
a = ∂µeν

a+ωµϵ
abeνb−(µ↔ ν).

This action is invariant under the following transformation:

δωµ = ∂µt+ ϵbcc
beµ

c∂V (φ)

∂φ
,

δeµ
a = −tϵabeµb + ∂µc

a + ωµϵ
abcb,

δφ = −ϵabcaϕb,
δϕa = −tϵabϕb + ϵabc

bV (φ).

This is a Lie groupoid (local gauge) symmetry. NI, Izawa ’93
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Example 4. T-duality

An open string with a NS B-field

S =
1

2

∫
Σ

d2σ(GIJ(ϕ)∂
µϕI∂µϕ

J +BIJ(ϕ)ϵ
µν∂µϕ

I∂νϕ
J),

where H ≡ dB is an NS 3-form on a target space.

The Buscher rule in the T-duality ϕ0 → ϕ̃0:

G̃00 =
1

G00
, G̃0a =

B0a

G00
, G̃ab = Gab −

1

G00
(G0aG0b −B0aB0b),

B̃0a =
G0a

G00
, B̃ab = Bab −

1

G00
(G0aB0b −G0bB0a),
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There exists a local algebroid symmetry under the T-duality, which

is the Courant algebroid on TM ⊕ T ∗M . Courant ’90, Liu, Weinstein,

Xu ’96, Roytenberg ’01

Dorfman bracket

[X + ξ, Y + η]D = [X,Y ] + LXη − iY dξ + iXiYH,

for X,Y ∈ TM and ξ, η ∈ T ∗M .

the anchor map ρ : X + ξ → X

metric ⟨X + ξ , Y + η⟩ = iXη + iY ξ

• The T-duality is an isomorphism of the Courant algebroid

structure. Cavalcanti, Gualtieri ’11

15



cf.) Double field theory Hull, Zwiebach ’09
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Example 5. 2D N = (2, 2) supersymmetric sigma
model

N = (1, 1) superfield: ΦI ≡ ϕI + θ+ψI
+ + θ−ψI

− + θ−θ+F I

2D manifest N = (1, 1) SUSY sigma model

S =
1

2

∫
Σ

d2σd2θ(GIJ(Φ) +BIJ(Φ))D+Φ
ID−Φ

J ,

where H ≡ dB. This has a manifest N = (1, 1) supersymmetry

δ1Φ
I = ϵ+1D+Φ

I + ϵ−1D−Φ
I.
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Find another supersymmetry such that

δ2Φ
I = ϵ+2 J

I
+J(Φ)D+Φ

J + ϵ−1 J
I
−J(Φ)D−Φ

J .

δ1 and δ2 are N = (2, 2) SUSY if and only if (G,H, J) consist of a

bi-Hermitian structure. Gates, Hull, Roček ’84

A bi-Hermitian structure is equivalent to a generalized Kähler

structure, which is a Dirac structure of the Courant algebroid.
Gualtieri ’04

A Dirac structure D is a subbundle of TM ⊕ T ∗M such that

⟨D ,D⟩ = 0, [ΓD,ΓD]D ⊂ ΓD, rankD =
1

2
rank(TM ⊕ T ∗M).
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Example 6. Topological Sigma Models

3D Chern-Simons theory
on a three dimensional manifold X with the Lie group G.

S =
k

4π

∫
X

tr(A ∧ dA+
2

3
A ∧A ∧A).

is generalized to a gauge theory with a groupoid structure.

Courant sigma model NI ’02, Roytenberg ’06

S =

∫
X

−bi ∧ dϕi +
1

2
⟨A ∧ dA⟩+ ρia(ϕ)bi ∧Aa +

1

3!
Habc(ϕ)A

a ∧Ab ∧Ac.
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where ϕi is a scalar field and bi =
1
2bµνidσ

µ ∧ dσν. This action is

gauge invaraint under the following gauge transformation:

δϕi = −ρia(ϕ)ϵ(1)a,

δAµ
a = ∂µϵ

(2)a + kabρib(ϕ)ϵ
(3)
µi + kabHbcd(ϕ)Aµ

cϵ(1)d,

δbµν,i = ∂µϵ
(3)
νi − ∂νϵ

(3)
µi +

∂ρja
∂ϕi

(ϕ)(bµν,jϵ
(2)a −Aµ

aϵ
(3)
νj +Aν

aϵ
(3)
µj )

+
∂Habv

∂ϕi
(ϕ)Aµ

aAν
bϵ(1)c,

if and only if a target space is the Courant algebroid.
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There exists a Wilson surface observable:

W (Σ) = Tr

(
P exp

i

2

∫
Σ

bµνdσ
µ ∧ dσν

)
.

This shows that the corresponding groupoid is a 2-groupoid from

the physical argument! Mehta, Tang ’10, Li-Bland, Ševera ’11, Sheng, Zhu

’11

We find that the Courant algebroid is a Lie 2-algebroid.
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Example 7. Current Algebras

In 2D, S1 ×R, {xI(σ), pJ(σ′)} = δIJδ(σ − σ′).

We consider currents

J0(f)(σ) = f(x(σ)), J1(u,α)(σ) = αI(x(σ))∂σx
I(σ) + uI(x(σ))pI(σ),

{J0(f)(σ), J0(f ′)(σ
′)}P.B. = 0,

{J1(u,α)(σ), J0(f ′)(σ
′)}P.B. = −uI ∂f

′

∂xI
(x(σ))δ(σ − σ′),

{J1(u,α)(σ), J1(u′,α′)(σ
′)}P.B. = −J1([(u,α),(u′,α′)]D)(σ)δ(σ − σ′)

+⟨(u, α), (u′, α′)⟩(σ′)∂σδ(σ − σ′),
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where f(x(σ)) is a function, α(x) = αI(x)dx
I is a 1-form and

u(x) = uI(x)∂I is a vector field.

[(u, α), (u′, α′)]D : Dorfman bracket on TM ⊕ T ∗M .

⟨(u, α), (u′, α′)⟩ = iu′α+ iuα
′ : scalar product on TM ⊕ T ∗M .

This has the structure of the Courant algebroid.
Alekseev, Strobl ’05,

• Higher dimensional generalized current algebras have structures

of Lie n-algebroids. NI, Koizumi ’13, NI, Xu ’13

• Analysis of flux vacua, T-duality, p-branes from algebroid current

algebras Halmagyi ’09, Jurco, Schupp, Vysoky ’14, et.al.
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Example 8. String Field Theory

Gauge symmetry in the BV master equation Hata, Zwiebach ’93

The quantum master equation:

2iℏ∆W − {W,W} = 0.

has a gauge symmetry under W ′ = eδ
(q)
Ξ W . W ′ satisfies the

quantum master equation,

2iℏ∆W ′ − {W ′,W ′} = 0,

W ′ = ead
(q)
Ξ W = −iℏ∆Ξ+ · · ·+W +{W,Ξ}+ 1

2{{W,Ξ},Ξ}+ · · · .
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Example: String Theory

D-brane DBI actions Asakawa, Muraki, Sasa, Watamura ’14

Example: Higher gauge theory, 6D

A higher gauge theory, a gerbe, Lie 2-algebra, semi-strict Lie

algebras, crossed modules are (quasi-)Lie algebroids.

Example: Integrable systems, Solvable models
Quantum groups, Hopf algebras

Example: Supergravity

Symmetry and compactefied spaces on flux vacua
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§8. Future Problems

Mathematics

(A compact connected semi-simple Lie group corresponds to a

compact semi-simple Lie algebra.)

• There is no ’one to one’ correspondence of Lie groupoids and Lie

algebroids. The Lie’s 3rd theorem does not hold for a Lie algebroid.

Crainic, Fernandes ’01

• Classification theory like A to G series by the Dynkin diagram is

unknown.

Physics can propose proper frameworks and ideas for the above
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problems.

Physics

• Quantization of (quasi-)lie groupoid and nonperturbative analysis

of gauge theories, string and M-theories.
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Thank you!
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