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§1. Introduction

Lie groupoids (Lie # &%) a generalization of Lie groups
Lie algebroids (Lie F{{%k) a generalization of Lie algebras

History

e Lie groups became very important for physical theories in this
100 years, for example, a gauge symmetry, isospin, the Poincaré
group, etc. Weyl, Wigner, Gell-Mann, Yang-Mills, etc.

e Many physical theories have generalized structures, Baez, Lauda '09
e understood as a Lie groupoid and a Lie algebroid. Ehresmann
'58, Pradines '67



§2. Lie groupoids and Lie algebroids

Groupoids

A groupoid G is a set of arrows on a manifold M. It is denoted by
g = M.

/§N

For each arrow g € G, s t

asourcemap s: G — M atarget mapt: g — M

We consider a product gh of two elements of a set G only in a
special case. A multiplication gh is defined only on elements such

that s(g) = t(h).



1, Require associativity (gh)k = g(hk).

2, The identity 1, satisfies s(1,) =t(1,) =z € M.
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3, An inverse g~ !

Is the reversed arrow.



If M = {pt.}, G is a group.
Lie groupoid

If all operations are smooth, a groupoid is called a Lie groupoid.



If M = {pt.}, G is a group.

Lie groupoid

If all operations are smooth, a groupoid is called a Lie groupoid.
Lie algebroid

Is an infinitesimal object of a Lie groupoid.
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Two operations for e; € I'(E), F € C°(M) :
A Lie bracket: |eq, es], lea, ] = fCap(T)e.,
and

A bundle map (the anchor map): p: £ — TM,
pleq) F(x) = pza<$)ai.z’F(37)v

satisfying the following properties:

L. [pler), ple2)] = p([e1, e2)),
2. |e1, Fes] = Flei,es] + (p(e1) F)es,
3. |ler,es],es] + (1,2,3 cylcic) = 0.




Local coordinate expression
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§3. (Quasi-)Lie algebroids in physical theories

Example 1. Wilson Lines
Wilson loops on a fixed point zg:

W(Cy,) =Tr (77 expi]{ Aud0“> ,

0

consist of a group, but Wilson lines

b
W(L)="Tr (77 expi/ Audcr“) ,

consist of a groupoid, called a fundamental groupoid.



Example 2. Poisson Bracket

{f(z),9(x)}pB. = %W”(a:)g;gjj

has a structure of a Lie algebroid on T™ M.

A Lie bracket is a Koszul bracket:
(B, Bx = LysB'? — Liggen B — dam (B, 512)).

for example, [df, dg]. = dn(df,dg) for 1) = df, B®) = dg.
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The anchor map

() = 7t = () i

cf.) A Nambu bracket Nambu '73

{f17f27°” 7fn}

has an algebroid structure.
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Example 3. Gravitational Theory
A simplest example i1s a two dimensional gravity theory with a

dilaton:
1 2
S = 5 | dov—glpR—=V(p)),
>
where ¢ is a scalar field. We rewrite the action to the Einstein-Cartan
form by introducing a zweibein ¢,%, a spin connection w,*’ = w, e’

and an auxiliary scalar field ¢,.

1 1
S = / Ao (——e””soRW — 56" b T} — €V(¢)> »
> 2 2
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This action is invariant under the following transformation:

ow, = Out+ ebccbeﬂcmg—ff),
oe," = —tea’beub + 0,c” + wuea’bcb,
0p = —€"cay,
0 = —teand’ + eanc®V ().

This is a Lie groupoid (local gauge) symmetry. NI, Izawa '93
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Example 4. T-duality
An open string with a NS B-field

g — % /Z P20 (Gry(6)0" 0 0,07 + Bry(6)ed,0'0,87),

where H = dB is an NS 3-form on a target space.

The Buscher rule in the T-duality ¢* — ggo:
1 ~ By, ~ 1

GOO — G—O()j GOa — G()()7 Gab — Gab — G_OO(GOCLGOI) — BOaBOb)a
~ GOa ~ 1
BOa — 9 Bab — Bab — _(GOaBOb — GObBOa)a

Goo Goo
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There exists a local algebroid symmetry under the T-duality, which
Is the Courant algebroid on T'M & T*M. Courant '90, Liu, Weinstein,
Xu '96, Roytenberg '01

Dorfman bracket
X +&Y +np=X,Y]|+ Lxn—iyvdé +ixiyvH,

for X, Y € TM and &,n € T*M.
the anchor map p: X+E&E—X
metric (X +E,Y+n) =ixn+ive

e The T-duality is an isomorphism of the Courant algebroid
structure. Cavalcanti, Gualtieri '11
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cf.) Double field theory

Hull, Zwiebach 09
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Example 5. 2D N = (2,2) supersymmetric sigma
model

N = (1,1) superfield: ®! = ¢! + Hﬂbi + 0yl 4+ 0-0TF!
2D manifest N = (1,1) SUSY sigma model

1
$ = / dod*0(Gr(®) + By (@)D ®' D_o7,
by

where H = dB. This has a manifest N = (1,1) supersymmetry

518! = D, .® 4+ ¢ D_d'.
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Find another supersymmetry such that
029" = e Ji (@)D P’ + e JL (P)D_D7.

01 and 6 are N = (2,2) SUSY if and only if (G, H, J) consist of a
bi-Hermitian structure. Gates, Hull, RoZek '84
A bi-Hermitian structure is equivalent to a generalized Kahler

structure, which is a Dirac structure of the Courant algebroid.
Gualtieri '04

A Dirac structure D is a subbundle of T'M @ T* M such that

1
(D,D) =0, [I'D,I'D|]pCcI'D, rankD = §rank(TM ®T*M).
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Example 6. Topological Sigma Maodels
3D Chern-Simons theory

on a three dimensional manifold X with the Lie group G.

2
S = X [ (AndA+2ANANA)
47'(' X 3

Is generalized to a gauge theory with a groupoid structure.

Courant sigma model NI '02, Roytenberg '06

1 . 1
5 — / by A+ (AN A) + pla(9)bi A AT+ Hape(§) A" A A” A A°
X N
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where ¢* is a scalar field and b; = %bwida“ A do”. This action is
gauge invaraint under the following gauge transformation:

69 = —pla(@)eV),
5A,ua _ a'ue(Z)a_i_kabpi (gb) (3 ) kabH (Qb)AMCG(l)d
3 3 810] a a (3 a (3
s = 0~ 09+ L2200 — 55 + A5
8Ha,bv

a A b (l)c
I (64,0 A,

if and only if a target space is the Courant algebroid.
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There exists a Wilson surface observable:

W) ="Tr (77 exp%/ budat N da”) .
>

This shows that the corresponding groupoid is a 2-groupoid from
the physical argument! Mehta, Tang '10, Li-Bland, Severa '11, Sheng, Zhu
'11

We find that the Courant algebroid is a Lie 2-algebroid.
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Example 7. Current Algebras

In 2D, S! x R, {xf(a),pj(a’)} — 5IJ5(0 — o).
We consider currents

Toin(@) = F@(0)), Tiua(0) = ar(#(0)der’ (o) +u (2(0)ps (o).

{Jo)(0), Josn (o)} pB. = 0,

a /
(1o (©), Jogn(@ypn. = 'S (a(o))d(o — o),
{Jl(u,oz)(g)aJl(u’,a’)(U/)}P.B. = —J1([(u,a),(u/,a/)]D)(0)5(0—0/)

+((u, a), (v',a'))(0")050(c — o),
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where f(z(c)) is a function, a(z) = aj(x)dz! is a 1-form and
u(z) = u!(x)dr is a vector field.

[(u, ), (u', )| p : Dorfman bracket on T'M & T*M.
(u,a), (u',a")) =i, a—+ i, : scalar product on TM & T*M.

This has the structure of the Courant algebroid.
Alekseev, Strobl '05,

e Higher dimensional generalized current algebras have structures
of Lie n-algebroids. NI, Koizumi '13, NI, Xu '13

e Analysis of flux vacua, T-duality, p-branes from algebroid current
algebras Halmagyi '09, Jurco, Schupp, Vysoky '14, et.al.
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Example 8. String Field Theory
Gauge symmetry in the BV master equation Hata, Zwiebach '93

The quantum master equation:
20hAW — {W, W} = 0.

(9) -
has a gauge symmetry under W’/ = €% W. W’ satisfies the
quantum master equation,

2%RAW' — (W', W'} =0,

(q)
W' == W = CihAZ -+ W {W,E}+ L{{W, 2}, E} +- -
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Example: String Theory
D-brane DBI actions Asakawa, Muraki, Sasa, Watamura '14
Example: Higher gauge theory, 6D

A higher gauge theory, a gerbe, Lie 2-algebra, semi-strict Lie
algebras, crossed modules are (quasi-)Lie algebroids.

Example: Integrable systems, Solvable models
Quantum groups, Hopf algebras

Example: Supergravity
Symmetry and compactefied spaces on flux vacua
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§8. Future Problems
Mathematics

(A compact connected semi-simple Lie group corresponds to a
compact semi-simple Lie algebra.)

e There is no 'one to one’ correspondence of Lie groupoids and Lie
algebroids. The Lie's 3rd theorem does not hold for a Lie algebroid.

Crainic, Fernandes '01

e Classification theory like A to G series by the Dynkin diagram is
unknown.

Physics can propose proper frameworks and ideas for the above
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problems.
Physics

e Quantization of (quasi-)lie groupoid and nonperturbative analysis
of gauge theories, string and M-theories.
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Thank you!
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